|
- 10 REM MOUNTAIN SHADOWS
- 11 REM
- 12 DIM M(70): C=-0.4
- 13 DR=2*3.14159265/360: FM=1/5280
- 14 INPUT "MOUNTAIN HEIGHT (FT)";H1
- 15 INPUT "OBSERVER HEIGHT (FT)";H0
- 16 INPUT "HORIZON HEIGHT (FT) ";H
- 17 H1=H1*FM: H0=H0*FM: H=H*FM
- 18 INPUT "SLOPE ";S: S=S*DR
- 19 INPUT "SUN ALT";A: A=A*DR
- 20 INPUT "OBS'R AZ";Z: Z=Z*DR
- 21 E=0.30: B=0.005: B9=0.9+B
- 22 H9=60: V9=30: W=1*DR
- 23 S9=2.5*LOG(B9)/LOG(10)
- 24 S0=2.5*LOG(B)/LOG(10)
- 25 REM OBSERVER'S LOCATION
- 26 X0=COS(Z)*(H1-H0)/TAN(S)
- 27 Y0=SIN(Z)*(H0-H1)/TAN(S)
- 28 Z0=H0-H1
- 29 REM SET UP GRID OF DIRECTIONS
- 30 FOR J=1 TO V9
- 31 AL=W*(V9/2-J)
- 32 FOR I=1 TO H9
- 33 AZ=W*(I-H9/2)
- 34 REM DISTANCE TO 'NORTH' SLOPE
- 35 REM SHADOW PLANE
- 36 A0=SQR(TAN(S)^2-TAN(A)^2)
- 37 A1=-1*TAN(AL)/COS(AZ)-TAN(A)
- 38 A2=A0*TAN(AZ)
- 39 A3=-X0*TAN(AL)/COS(AZ)-Z0
- 40 A4=A0*(Y0+X0*TAN(AZ))
- 41 XI=(A3+A4)/(A1+A2)
- 42 F1=0: D=TAN(AZ)
- 43 IF XI>=X0 THEN F1=1
- 44 A5=1+D^2+(TAN(AL)/COS(AZ))^2
- 45 D1=ABS(XI-X0)*SQR(A5)
- 46 REM DIST TO 'SOUTH' SLOPE
- 47 REM SHADOW PLANE
- 48 XI=(A3-A4)/(A1-A2)
- 49 F2=0
- 50 IF XI>=X0 THEN F2=1
- 51 D2=ABS(XI-X0)*SQR(A5)
- 52 REM DISTANCE TO HORIZON PLANE
- 53 F3=0: IF AL>=0 THEN F3=1
- 54 D3=(H0-H)/SIN(ABS(AL)+0.001)
- 55 REM INTEGRATE ALONG ILLUMINATED
- 56 REM PORTION OF LINE OF SIGHT
- 57 D0=100*E
- 58 IF D1<D0 AND F1=0 THEN D0=D1
- 59 IF D2<D0 AND F2=0 THEN D0=D2
- 60 IF D3<D0 AND F3=0 THEN D0=D3
- 61 IF F1+F2+F3=3 THEN D0=0
- 62 B0=10^(C*E*D0)
- 63 IF F3=0 THEN B0=B0-10^(C*E*D3)
- 64 IF B0>B9-B THEN B0=B9-B
- 65 G=S9-S0
- 66 SK=2.5*LOG(B0+B)/LOG(10)
- 67 M(I)=INT(0.05+9.9*(SK-S0)/G)
- 68 NEXT I
- 69 FOR I9=1 TO H9
- 70 PRINT RIGHT$(STR$(M(I9)),1);
- 71 NEXT I9: PRINT
- 72 NEXT J
- 73 END
- 74 REM **************************
- 75 REM ASTRONOMICAL COMPUTING
- 76 REM SKY & TELESCOPE, APRIL 88
- 77 REM **************************
|