|
- 10 REM PRECESSION OF A SATELLITE'S ORBIT DUE TO J2
- 20 REM
- 30 GOSUB 260: J=0
- 40 INPUT "Planet's name"; P$
- 50 FOR K=1 TO 9
- 60 IF P$=PL$(K) THEN J=K
- 70 NEXT
- 80 IF J=0 THEN 40
- 90 REM
- 100 INPUT "Altitude of the satellite orbit (km)"; A
- 110 INPUT "Inclination to the equator (degrees)"; I
- 120 I=I/RD: REM Convert to radians
- 130 REM
- 140 K1=R(J)*R(J) * (R(J)+A)^(-3.5) * SQR(GM(J))
- 150 N=-1.5*K1*J2(J)*COS(I)
- 160 P=.75*K1*J2(J) * (5*COS(I)*COS(I)-1)
- 170 N=N*RD*S: P=P*RD*S: REM Radians/sec to deg/day
- 180 REM
- 190 PRINT "Precession of the node: "
- 200 PRINT " ";N;"deg/day, ";N*Y;"deg/yr"
- 210 PRINT
- 220 PRINT "Precession of pericenter: "
- 230 PRINT " ";P;"deg/day, ";P*Y;"deg/yr"
- 240 REM
- 250 END
- 260 REM READ IN DATA
- 270 DIM PL$(9), GM(9), J2(9), R(9)
- 280 RD=180/3.14159265#: REM Radians to degrees
- 290 Y=365.2422: REM Days per year
- 300 S=86400: REM Seconds per day
- 310 REM
- 320 DATA "MERCURY","VENUS","EARTH","MOON","MARS"
- 330 DATA "JUPITER","SATURN","URANUS","NEPTUNE"
- 340 FOR J=1 TO 9: READ PL$(J): NEXT
- 350 REM
- 360 REM PLANETARY GM'S (KM^3/S^2)
- 370 DATA 22032, 324860, 398600, 4902, 42828
- 380 DATA 125680000, 37931000, 5793900, 6835000
- 390 FOR J=1 TO 9: READ GM(J): NEXT
- 400 REM
- 410 REM PLANETARY J2'S
- 420 DATA 0.00006, 0.0000186, 0.001083, 0.0002027
- 430 DATA 0.00196,0.014736,0.016480,0.003345,0.0043
- 440 FOR J=1 TO 9: READ J2(J): NEXT
- 450 REM
- 460 REM PLANETARY RADII (KM)
- 470 DATA 2440, 6050, 6378, 1738, 3398
- 480 DATA 71492, 60268, 25559, 24760
- 490 FOR J=1 TO 9: READ R(J): NEXT
- 500 RETURN
- 510 REM
- 520 REM This program by Anthony Mallama predicts how
- 530 REM a satellite in a low orbit around the Earth
- 540 REM or any other planet will change due to the
- 550 REM planet's equatorial bulge. It is described
- 560 REM fully in Sky & Telescope, May, 1990, page 543.
|