|
- 10 ' Visibility of an Occultation
- 20 INPUT "Moon's sunlit percentage";SF
- 30 INPUT "Zenith distance of star (degrees)";Z
- 40 INPUT "Height of Sun above horizon";HS
- 50 INPUT "Cusp angle (<0 for bright side) in deg";C
- 60 BV=.7: ' Star's color index, B-V (in mags.)
- 70 K=.3 : ' Vis. extinction coeff. (mag./airmass)
- 80 BC=0: ' Brightness from light pollution (nL)
- 90 SE=1: ' Seeing disk diameter at zenith (arcsec)
- 100 FV=20: ' Moon fraction in field of view (%)
- 110 D=6: ' Telescope aperture (inches)
- 120 M=150: ' Magnification
- 130 TR=80: ' Telescope throughput (%)
- 140 AG=30: ' Observer's age (years)
- 150 RS=1: ' Snellen ratio (20/20=1, 20/40=0.5,...)
- 160 EX=5: ' Experience (1-9; 5=average, 9=expert)
- 170 MS=8.61: ' Star's visual magnitude
- 180 PRINT "Choose program mode --"
- 190 PRINT " (1) Minimum aperture"
- 200 PRINT " (2) Limiting magnitude"
- 210 INPUT Q$: IF Q$<>"1" AND Q$<>"2" THEN 210
- 220 IF Q$="2" THEN 270
- 230 D=.5: ' Find minimum telescope aperture
- 240 D=D+.1: M=25*D: GOSUB 290: IF MS>ML THEN 240
- 250 PRINT "Aperture should be at least" ;D;" inches"
- 260 GOTO 280
- 270 GOSUB 290: PRINT "Limiting magnitude is ";ML
- 280 END
- 290 ' Routine to find lim. mag. for given conditions
- 300 XX=COS(Z/57.295): ' First, estimate corrections
- 310 X=1/(XX+.025*EXP(-11*XX)): ' Airmass of Moon
- 320 ZE=SQR(2.89*X*SE^2+(17.9/D)^2):'2nd moment of image
- 330 F1=10^(.4*K*X): ' Extinction
- 340 F2=1.41: ' Binocular vision
- 350 F3=100/TR: ' Transmission of scope
- 360 DE=4: ' Guess that pupil is 4mm
- 370 F4=(25.4*D/(M*DE))^2: ' Light outside pupil
- 380 IF F4<1 THEN F4=1
- 390 F5=(DE/(25.4*D))^2: ' Light gathering power
- 400 XX=1-EXP(-.026*DE^2)
- 410 YY=1-EXP(-.026*(25.4*D/M)^2)
- 420 F6=(25.4*D/(DE*M))^2*XX/YY:'Stiles-Crawford effect
- 430 IF F6>1 THEN F6=1
- 440 F7=(1+.03*(M*ZE/100)^2)/RS^2: ' Resolving the star
- 450 FI=F1*F2*F3*F4*F5*F6*F7:' Corr. for intensities
- 460 FB=M^2*F2*F3*F4*F5*F6:'Corr. for surface brightness
- 470 ' Calculate brightness of Moon
- 480 CP=SF/50-1
- 490 IF CP=0 THEN PH=3.14159/2: GOTO 520
- 500 PH=ATN(SQR(1-CP*CP)/CP): ' Lunar phase (0 is full)
- 510 IF CP<0 THEN PH=PH+3.14159
- 520 DM=1.49*PH+.043*(PH^4)-12.73 : ' Moon's magnitude
- 530 IM=10^(-.4*(DM+16.57)): ' Intensity of Moon
- 540 BM=5.67E+12*IM/(F1*SF): ' Moon brightness (nL)
- 550 SP=3.14159-PH: ' Earth's phase from Moon
- 560 XX=1.49*SP+.043*(SP^4)-12.73
- 570 BE=1.1E+07*10^(-.4*(XX+16.57))/F1: ' Earthshine
- 580 ' Calculate glare brightness
- 590 XX=(COS(C/57.295))^2+(1-SF/100+SIN(C/57.295))^2
- 600 YY=(1-.4*EXP(-1*C/30))
- 610 IF YY<.6 THEN YY=.6
- 620 TH=.25*SQR(XX)*YY: ' Effective distance to Moon
- 630 B1=6.25E+07*IM*(F1-1)/(TH*F1)^2:'Scattering in air
- 640 B2=4.63E+07*IM*(FV/100)/(TH^2*F1):'Scat. in eye
- 650 B3=443000*IM/(TH^3*D*F1): ' Diffraction
- 660 B4=2.6E+08*IM*EXP(-1*(TH/.4)^2)/F1: ' By mirror
- 670 BG=B1+B2+B3+B4: ' Glare brightness
- 680 ' Calculate effective background brightness
- 690 XX=1-.96*(SIN(Z/57.295))^2
- 700 BN=180*(.4+.6/SQR(XX))/F1: ' Night sky
- 710 XX=10^(PH/1.571-1.1): IF XX<1 THEN XX=1
- 720 BT=XX*10^(8.45+.4*HS)*(F1-1)/F1: ' Twilight sky
- 730 PM=10^5.36*(1.06+(COS(PH))^2): ' Mie scattering
- 740 PA=10^(1.65+1.43*PH): ' Aerosol scattering
- 750 XX=-.4*K/(SQR(1-.96*(SIN((90-HS)/57.295))^2))
- 760 BD=11700*10^XX*(PM+PA)*(F1-1)/F1: ' Daytime sky
- 770 BS=BN+BT+BC: ' Sky brightness
- 780 IF BD<BT THEN BS=BN+BD+BC
- 790 XX=.5*(1+C/ABS(C)): ' +1 if dark limb
- 800 YY=.5*(1-C/ABS(C)): ' +1 if bright limb
- 810 BA=BS+XX*(BE+BG)+YY*BM: ' Apparent brightness
- 820 ' Condition of the observer's eye
- 830 R1=380*10^(.3*(BA/FB)^(-.29)): 'Night resolution
- 840 R2=42*10^(8.28*(BA/FB)^(-.29)): 'Day-vision resol.
- 850 RE=900/RS: IF R1<900 THEN RE=R1/RS
- 860 IF R2<900 AND R2<R1 THEN RE=R2/RS
- 870 XX=1.85*(IM*.000929*FV/F1)/(1.122^(M*TH))
- 880 YY=EXP(-.16*(.000001*BA/FB+XX)^.4)
- 890 ZZ=7*EXP(-.5*(25/100)^2):'Standard obsvr is age 25
- 900 DS=ZZ*YY: IF DS<2 THEN DS=2: 'Stand. pupil size
- 910 ZZ=7*EXP(-.5*(AG/100)^2): ' Dark pupil for obsvr
- 920 DE=ZZ*YY: IF DE<2 THEN DE=2: 'Pupil size of obsvr
- 930 ' Recalculate correction factors
- 940 F4=(25.4*D/(M*DE))^2: ' Light outside pupil
- 950 IF F4<1 THEN F4=1
- 960 F5=(DS/(25.4*D))^2: ' Light-gathering power
- 970 XX=1-EXP(-.026*DS^2)
- 980 YY=1-EXP(-.026*(25.4*D/M)^2)
- 990 F6=(25.4*D/(DS*M))^2*XX/YY:'Stiles-Crawford effect
- 1000 IF F6>1 THEN F6=1
- 1010 F7=(1+.03*(M*ZE/RE)^2)/RS^2:'Resolving the star
- 1020 F8=10^(-.4*(1-.5*BV)): 'Color corr (night)
- 1030 IF BA>1480 THEN F8=1: 'Color corr (day)
- 1040 FI=F1*F2*F3*F4*F5*F6*F7*F8: 'Corr for intensities
- 1050 FB=M^2*F2*F3*F4*F5*F6*F8: 'For surface brightness
- 1060 ' Calculate limiting magnitude
- 1070 B=BA/FB: ' Perceived brightness
- 1080 ID=4.46E-09*(1+SQR(1.26E-06*B))^2: 'Day vision
- 1090 IN=1.59E-10*(1+SQR(.0126*B))^2: 'Night vision
- 1100 I=ID: IF IN<ID THEN I=IN: 'Limiting illum.(ft-cd)
- 1110 ML=-16.57-2.5*LOG(I*FI)/LOG(10): ' Limiting mag
- 1120 ML=ML+.16*(EX-6): ' Correct for experience
- 1130 ML=ML-1.2: ' Correct for steady visibility
- 1140 RETURN
- 1150 '
- 1160 ' OCCVIS.BAS -- This program by Dr. Bradley
- 1170 ' E. Schaefer computes the visibility of a
- 1180 ' star near the Moon. It is intended as a guide
- 1190 ' to observers of lunar occultations. For a
- 1200 ' detailed explanation of the program's use, see
- 1210 ' Sky & Telescope, January 1993, page 89.
|