|
- 10 ' A Camera's Efficiency for Meteors
- 20 '
- 30 RD=180/3.14159
- 35 C=4*RD^2
- 40 L=0: W=0: Q=0
- 50 K=0.003667: ' Constant
- 60 N=1: ' Exponent for focal length
- 70 X=0: ' Closed/open ratio
- 80 INPUT "F/ratio ";FR
- 90 INPUT "Focal length (mm)"; FL
- 100 AP=FL/FR: ' Aperture in mm
- 110 PRINT "Select film/image format:"
- 120 PRINT " (1) 35-mm"
- 130 PRINT " (2) 120 square"
- 140 PRINT " (3) 4 x 5"
- 150 PRINT " (4) 8 x 10"
- 160 PRINT " (5) Special area"
- 170 PRINT " (6) Fisheye (180 deg)"
- 180 INPUT "Selection";Q
- 190 IF Q<1 OR Q>6 THEN GOTO 180
- 200 ON Q GOTO 210,220,230,240,250,260
- 210 L=36: W=24: GOTO 270
- 220 L=55: W=55: GOTO 270
- 230 L=119: W=94: GOTO 270
- 240 L=240: W=190: GOTO 270
- 250 INPUT "Sky area (sq deg)";S
- 255 GOTO 310
- 260 S=20626: GOTO 290
- 265 '
- 266 ' Compute sky area covered
- 267 ' by a rectangular film frame
- 270 S=C*ATN(0.5*L/FL)*ATN(0.5*W/FL)
- 280 IF S>50 THEN S=INT(S+0.5)
- 290 PRINT "Sky area (sq deg): ";S
- 300 '
- 310 ' Now, evaluate McKinley formula
- 320 E=K*AP^2*S/((1+X)*FL^N)
- 330 PRINT USING "Efficiency ####.#";E
- 340 PRINT
- 350 INPUT "Another (y or n)";Q$
- 360 IF Q$<>"n" THEN GOTO 40
- 370 END
- 380 '
- 390 ' Written by Roger W. Sinnott, this program calculates the relative
- 400 ' efficiency of any given camera lens and film format for capturing
- 410 ' meteors. The efficiency is expressed as a number that ranges from
- 420 ' less than 10 for poor combinations (such as a 35-mm camera with a
- 430 ' long telephoto lens) to more than 1,000 for highly specialized systems
- 440 ' such as the Baker Super-Schmidt. The program was described in
- 450 ' Sky & Telescope for February 1994, page 85.
|