UNIVERSITY OF ATHENS
DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

Working with the Unix OS

Maria Fragouli
Dimitris Leventis
Argyris Petropoulos
Alex Delis

AN INTRODUCTION

TO UNIX

CONTENTS

1. INTRODUCTION TO UNIX ...ttt e e 1
2 UNIX SHELLS. ..ottt e et e e e e e e e e 18
3. CPROGRAMMINGcotiiiiiiiiiiiiiiieee ettt e 25
4. UNIX TOOLS ... s 38
5. DEVELOPMENT TOOLSuuiiiiiiiiiiiiiiiiieeeeeeeeeie et 51
0. CLIBRARIESottt et e e e 64
7. INTRODUCTION TO KERNELcccciiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeieeeeee e 80
8. PROCESSES (I) .ettttiiiiiiiiiiiiiiiiiiiiiiititee ettt aaaasasaasassaassssaasassaaaae 93
9. PROCESSES (I1) . eititiiteee ettt ettt e e e e e e e 122
10. /O SUBSYSTEM ...ttt 143
11. INTERPROCESS COMMUNICATIONcutiiiiiiiiiiiiiiiiiiieeeee e 153
12. PROCESS SCHEDULINGuuuitiiiiiiiieiiiiiiieeeee ettt eeee e e e e e e e 169
13. BUFFER CACHEoiiiiiiiiiiiiiice ettt 180
14. UNIX ADMINISTRATIONouiiiiiiiiiiiiiiiiiiieeeee et 187
15. UNIX SECURITY .eoiiiiiiiiiiiiiiiiiieeeee ettt e e e e e e 200
TABLE OF FIGURES

Figure 1. Data Structures for PTOCESSESc.uiiiiiiiiiiiiiiieiiieeeiie et 85
Figure 2. Process States and TTansitionscocueeruieeriiernieeniieenieeeitee et 85
Figure 3. Sample Code Creating Doubly linked LiStcocceeriiiiiiiiiiniiiiiiiiceiceeeee 85
Figure 4. Incorrect Linked List because of Context SWitchccocoueiiiiiiniiiiniienniienieeee 86
Figure 5.Multiple Processes Sleeping on a Lockcoooiiiiiiiiiiiiiiiiiie e 86
FIgure 6. PrOCESS STATEeeeiiiiiiiie ettt ettt et e st ettt e e 99
Figure 7. Processes and REZIONSccoiuuiiiiiiiiiiiiiiiieiit ettt 100
Figure 8. Mapping Virtual AddreSsescooouuiiiiiiiniiiiiieiiie ettt 101
Figure 9. Changing Mode from USETcccuiiiiiiiiiiiiiiiieiiie ettt 101
Figure 10. Memory Map of u area in the Kernelcocoiiiiiiiiiiiniiiniiecieeeee 101
Figure 11. Components of Context of @ Process.........ccovueeiiiiiriiiiiiiiiieenieceiee e 102
Figure 12. Sample INteIrupt VECTOT.....ccocutiiiiiiiiiiiiiiie ettt 102
Figure 13. Handling INtermupts.........cccveieerciiieiieiiieeeeiiieeeeiete e seveeeeseneeeesenaeeesenenaeesennns 102
Figure 14. Example of INTETTUPESeieiuiieiiiiiiiie ettt ettt 103
Figure 15. Algorithm for System Calls InVOcations.............cceecueeiiiieniieiniieiniienieenieee 103
Figure 16. Stack configuration for creat system call............ccooooiiiiiiiniiiiniiineceiceeee 103
Figure 17. Steps for a Context SWItCh.......cooouiiiiiiiiiiiiiieeeee e 103
Figure 18. Pseudo-Code for Context SWiItChcooouiiiiiiiiiiiiiiiiiiiere e 103
Figure 19. Process System Calls.........c.coiiiiiiiiiiiiiiiiieeie ettt 104
Figure 20. Algorithm for fOrkc.coiiiiiiiii e 104
Figure 21. Fork Creating New Process CONEXt..........eevruuieriiiiniiiiiiieniieenieeeieeesiee e 105
Figure 22. Example of Parent and Child Share File Accoooiiiiiiiniiicceee 105
Figure 23. Use of Pipe, Dup and FOrk...........ccoiiiiiiiiiii e 106
Figure 24. Checking and Handling Signalscccccoiiiiiiiiiiiniiiiiicee e 107
Figure 25. Recognizing SigNalsccoiiiiiiiiiiiiieiiie ettt et 107

Figure 26. Algorithm for Handling Signalscoccceeiiiiiiiiiiniiiiiiciceee e 108

Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.

Driver ENtry POINES.......cccviiiiiiiiireceiiiee ettt sie e etee e e ee e s irneeesenaee s 143
Block and Character Device Switch Tables..........cccoocvvvieviiiiiienriieeeeeeeeee, 143
OPENING @ DEVICEeeviiiiiiieeiiiiie ettt e eetee e ee e e e rae e e e steaeesearaeeessseeeas 144
ClOSING @ DEVICEvvvivieeiiiiieeeiiiee e eitee e estrte e e irte e e e etre e e e streeesentbeeeeessaaeeesnnseas 144
Reading Disk Data - block & raw interface.........ccccveevevverevniiieeenniieeeeeiiee e 145
Data Sequence and Data Flow through Line Dicsipline.............ccccvveevrvveeennnnen. 146
Removing characters from @ CLiStccovvciireirriiieeeriiee e 147
Placing characters on @ CLiStcovcviieiiriiiiee e e are e 147
Writing Data to a Terminalcccccvveirriiieenniiiieeeeiiee e e e 148
Flooding Standard Output with Data...........ccccceeeeiiiiiiriiiieeiiee e 148
Algorithm for Reading a Terminalccccoeiviiiieiiiiiieeeriiee e 1
Contending for Terminal Input Datacccoveeiviviiriiiiieniiee e 149
Raw Mode - Reading 5 character BUrstscccceevriiireeniiiieeeiieee e 150
Polling @ Terminalcccvviiriiiieeiiiiiee et eeiee e e e e ire e et e e s eenreeeenes 150
| e =441 8 1 1 PSPPSR 151
A Stream after OPEN......ccccvvieeeiciiireeeiiie ettt e eeriieeeeerreeeestraeesesrreeessnseeesenes 151
Pushing a Module onto @ Stream............eeevevrireerriieeeeriiireeeiieeeesireeeseeneeeeeens 152
WINAOWING VT .ottt ettt ettt e tae e e e sttee e e stnaeeeensreeesnnseeas 152
Pseudo-code for Multiplexing Windowscccceveeriiieeenriieeeeniieeeeeiieee e 152
Process SCheduling..........cccvviiiiiiiiiiiee e e 170
Range of Process PriOTItiescc.eveereviieeiriiiieeeeiieeeeriieeeeeireeesseneeeseenneeeeens 171
Process Scheduling EXampleoocoiiiiiiiiieiiniiee e 171
T DIEaKer TULE ...eeoeiiiiiiieiie e 173
Fair Share Scheduler..........coouiiiiiiiiiii e 173
Program USING TIMETc.cvviiiriiiieeeiiieeeriieeeeriieeeeeirreeesnveeessnreeeseenneesenenns 174
AJATT Call.ciiiiiiee e 174
CLoCK HANAIETeeeiiiiiiiieeiee e 175
Invoking Profil system call.............cccuviiriiiiieniiiie e 175
Output for Profil Programi..........cccoccviiiiriiiiiiiiiie e 175
Algorithm for Allocating Space from Mapsccoccueerriieriieeniieenieeeieeeeeene 176
Mapping PrOCESS SPACEcveerruviieiiiiiieeeriit et eeeertee e e rtree e e erreeeerreeeeennneeas 177
Swapping a Process into MEMOTYccueveereuviieerrrieeeesiieeeenrreeessnneeessereeeens 177
Adjusting Memory Map for EXpansion SWap.........ccccccevvveerriverenrciieeeeniinee e 177
AlZOTithm fOr SWaAPPETc..vvvieeiiiiie ettt et e e e e e et e e s seraeeeenens 178
Thrashing due t0 SWaPPING........c.vvveerivireeriiiieeeeiieeeeereeeerreeeeerreeeeraeeessaeees 179
Sequence of SWappIng OPErationsccuvveeerrrrereeriurereersrreeeesnrreeesssreeessssees 179
Free List of BUITETSooouiiiiiiiiie e 180
Buffers on the Hash QUEUES............cooeiiiiiiiiiiiiieieeee e 181
Algorithm for Buffer AlloCationcccooeviieiiriiire e 181
First Scenario in Finding a Buffer: Buffer on Hash Queue............ccccococeenine 182
Second Scenario for Buffer ALlocation............cccueeevrciieeeeriiieeeeniiiee e 183
Third Scenario for Buffer AlloCation..............ccoveviieericiiireeniiee e e, 183
Forth Scenario for Buffer Allocation...........cccceeveeiiiieiriiiiireeniiee e eeiiee e 184
Race for Free Buffer.........cooiiiiiiiii e 184
Fifth Scenario for Buffer Allocation............cccceeveviieeiniiiieeniiie e 184
Race for a Locked BUTTET.cccviiiiiiiiiii et 185
Reading a Disk Block Bach, "bread"..........ccccccoveiiireiniiiieeniiee e 185
Algorithm for Block Read Ahead "br eada"..........ccccoovveviiiieiieciiieieee e, 186

Writing a Disk Block Bach, "DWr it €". ...oooiiiiiiie e 186

Introduction to Unix

1. INTRODUCTION TO UNIX

Brief History
The Unix system was developed by Brian Kernighan and Dennis Ritchie at AT&T. It is written in the C language

and it entails many simple powerful concepts such as
- simple homogeneous file system
devices & files treated the same
- pipes - turn programs into building blocks
- powerful shell command language
- on-line manuals
The system is designed as a program development environment, not a commercial data processing operation system

Earlier Versions
of the system include:
- Version 6 Unix -early 70s -very cheap for Universities
- Version 7 Unix -dominated the research world
- Berkeley Unix 4.1, 4.2, 4.3, 4.4 -fast file system, sockets, symbolic links
- AT&T System V 4.2 -file locking for data bases
- Networking & Remote mounted file systems

Unix Survival commands

Login & Logout

 ogin user_name
passwor d enter with noecho
exit logout

passwd to change password

File manipulation

cat <file> output file

more <file> scroll file

m/ <fromfile> <to-file> rename file
rm<file> remove file

cp <fromfile> <to-file> copy file

cp <filel> <file2> <to-dir> copy file to directory
Working with files

I's list directory

nkdi r make directory

rndi r remove directory

cd change working directory

pwd display working directory

Printing

[porlpr print files

| pstat orl pq status of line printer queue

Compilation

cc C compiler

CC -0 name nane.c compiles the program in "name.c", creates an executable program file in "name"
lint nane.c check C programs scrupulously

UBUNTU: splint

Usage: splint <options> fileName

Introduction to Unix

Execution

mane executes program in file "name"

a.out default from cc if -0 not used
Command Shells

command interpreter
programming languages

accepts commands while logged in
shell scripts

sh Bourne Shell the original

csh C Shell C-like interpretive language

ksh Korn Shell includes all of Bourne shell

tcsh Enhanced C Shell completely compatible to the C Shell
Help on-line manuals for commands

man |s Is manual

man man manual

man <conmand> man for any command

man -k <keyword> keyword search in description

Example:

man -k wite (= apropos -ucb command)

creat (2) create a new file or rewrite an existing one

UBUNTU, SOLARIS: touch

Usage: touch <filename>

fread, fwite(3S) buffered binary input/output to a stream file
| seek(2) move read/write file pointer; seek

rwal I (I'M write to all users over a network

rwal I (3N) write to specified remote machines

wal | (1M write to all users

wite(l) write (talk) to another user

wite, witev(2) write on a file

File Permissions

Example:
s -1 nyfile
0123456789 L User Group Size Last-Updated File-Name
-rwxrwxrwx 1 fred st udent 2134 Feb 17 14:05 nyfile
where:
L: number of links
0: type of file {"-": ordinary, "d": directory}
123: owner (user) rights
456: group rights
789: world (others) rights

More specifically, the access rights when applied to files or directories are:

Files Directories
147 ="r" read read file names (ls)
258 ="w" write create/delete files (cp, rm)
369 ="x" execute access files in sub-directory (called search permission)

Introduction to Unix

-

Example:

drwxr-xr-- 2 fred student 1024 Mar 21 19: 35.

0="d" its a directory

123 ="rwx", the owner has full permission

456 ="r-x" the student group members can list this directory and access its files

789 ="r--" everyone else can list the directory but not touch its files

or "--x" access directory files but only if file names are known, can't list directory

In Summary:

To access an existing file, a user needs:

-

- search "x" permissions to each directory in the path name
- access "r" permission to the file

Example:
cat ../dirl/dir2/prog.c

- need "x" search permissions in:
. /dirl
.. ldirl/dir2

- and "r" read permission
../dirl/dir2/prog.c

Warning:
- don't allow others "w" permissions to your directories, as files can then be deleted
- don't allow "w" permissions to your .profile "rm -r *" in your .profile would zap all your files next time you
logged in chown, chgrp & chnod
By the way...
- chown user file
-changes file ownership
-can donate a file to another user
-restricted to root on most systems
- chgrp group file
-changes the group of a file
-only group members need apply
- chnod node file
-changes file mode (permission bits)
-can modify existing permissions or explicitly set new permissions
- chnmod u+rw nyfile
-adds user read & write permissions
- chnod og-x nyprog
-removes group & others execute permission

Mode bits:

File permissions are stored in one number as a set of bits called the mode

User | Group | Other

rwx r wWx I WX

4 4 4 read

2 2 2 write

1 1 1 execute

Example
chnod 644 nyfile sets "rw-r--r--" permissions
chnod 751 nyprog sets "rwxr-x--x" permissions

-

Unmask command:

The "umask" command is used to set the default creation mask for new files and directories (can be set in .profile).

Introduction to Unix

It works in the opposite way to "chnmod". The mask specifies which permissions should NOT be given when a file

1s created.

Examples:

$ umask 000

$ date> nyfilel
$1s -1 nyfilel

set no masked bits
creates "myfilel"
show file permissions

-rwrwrw 1 fred student 15 Jun 21:45 nyfilel

set umask bits
creates "myfile2"
show file permissions

$ umask 026
$ date> nyfile2
$1s -1 nyfile2

STWF----- 1 fred student 15 Jun 21:46 nyfile2

$ nkdir nydir
$1s -Id nydir

creates a directory

drwxr-x--x 1 fred student 15 Jun 21:46 nydir

I/0O Redirection
Standard Input
. command
(stdin) ‘
TTY
(stderr)
Standard Error

Standard Output
(stdout)
TTY

where: TTY = terminal display (output) or keyboard (input)

command > output-file

To redirect the output from "Is -/" into the a file:
Is -1 > nylsfile

">" redirects stdout to be output to a file. Note that errors still output to terminal.

comand ">>" output-file

">>"appends stdout to the end of the output-file
Is -1 >> nylsfile

If the output file already exists then ">" will overwrite it, whereas ">>" will append to the end of it. If the
output file does not exist then both ">" and ">>" will create a new file.

command < input-file

The command "we"” counts the number of lines, words and characters which it read from stdin.

we < nylsfile
...the output to TTY may look like:
17 131 1236
"<" redirects stdin to be read from a file.

Pipes

To redirect the output from "Is -1" straight into the command "wc" we use the pipe connection

s -1 | w
connects stdout of 1st command to "stdin" of 2nd.

"||l

H|"

Introduction to Unix

stdout stdin

(stdm) @ @ (stdout)

TTY (stderr) TTY

Note: errors from both commands still go to terminal.

Examples:
spell < doc > doc. spell. m stakes

UBUNTU: aspell

Usage: apsell [options] <command>

who | sort | |pr
grep root < /etc/passwd | |ess
G ep searches for a pattern from stdin.

Background Processes

Normally when you execute a command the shell will wait until it has completed before prompting for the next
command. Often, users don't want to wait before typing and executing the next command. To do this, the command
is placed in the "background" by placing an ampersand "&" after the command.

Example:
While the spell program is checking spelling on doc1 the user can edit doc2
spell -b < docl > docs.spell &
vi doc2
Note ~C won't interrupt background processes. You have to use the "ps" command to find out the process
number, and then "ki | | " the command.

Command format

command [options] {file}

/ bi n/ who who

ls -1d

cc -g -0 object-file c-files

Note the object-file is an argument for the -o option

nyfile relative to current directory
text/xyz

./Inmyotherfile
/tnp/ exinit absolute path names

/ student/i 017901/ csb326/ assl

cat nyfile copies "myfile" to stdout

cat copies stdin to stdout

paste filel -file2 merges lines from filel, stdin and file2
Filenames

s -1 junk.c junk.o

s -1 *.¢c *.0

Is - *

Introduction to Unix

* matches 0 or more characters

? matches 1 character

[ccc] matches a set of characters

[c-c] set contains a range of chars

ls -1 [a-2]* matches all files starting with a lower case letter
echo ??? matches 3 char file names

cat ex[0-1] matches ex0 and exl

Filename Patterns

One exception is the dot "." character which must be explicitly matched if it is the first character.
echo * all files except those starting with a dot character
echo .* all files starting with a dot

Otherwise the special directory files . and .. and many other normally hidden files would match "*".
Unlike MS-DOS, all unix commands can use patterns like these to generate file names, even your own programs.
The reason is that pattern matching is built into the shell, instead of being duplicated in every program.

Argument Quoting

Often we wish to send a program which may contain some of the special characters like "*", ">", "| " or "&". How
they can we prevent the shell from interpreting these as special?

The answer is to use quoting,

There are several ways to quote characters. The first method quotes just one character and is done by preceding it
by a back-slash "\".

Example: echo Now for the * of the show ..

Outputs: Now for the * of the show. ..

Now the back-slash is a special character and it can be quoted using another back-slash.
Example: echo Slash me back with a \\
Outputs: Sl ash ne back with a \

Another way to quote a string of characters is to place them inside single or double quotes.
Example: echo 'Please enter a letter: [a-z]?
Outputs: Pl ease enter a letter: [a-2]?

Note : In what it follows we are working at the Bourne Shell (give the command sh in the prompt).

Normally spaces and tabs would be separate each argument and the <return> key would indicate the end of a
command. These special characters can also be quoted so that all characters within a quoted string would be treated
as one argument to the program

Example: echo "Linel Outputs: Li nel
Li ne2 Li ne2
Li ne3" Li ne3

Note that when typing a multi-line quoted argument, shell will prompt you with a ">" instead of "$" to indicate that
the string is not yet complete.

Environment Variables

EDI TOR=/ usr/ bi n/ vi preferred editor
EXINI T="set redraw aw ai wm=0" vi options

UBUNTU,SOLARIS: Not Defined using any of the shells

HOVE=/ hone/ user s/ grad0777 home directory
LOGNAME=gr ad0777 login name

PATH=/ hone/ newapps/ SUN\Vpr o/ bi n command search path

6

Introduction to Unix

PS1=% shell prompt

UBUNTU,SOLARIS: S$prompt

pPS2=> quoted string prompt
MAI L=/ var/ mai |l // grad0777 mail box

SHELL=/ usr/| ocal / bi n/tcsh shell program
TERMEXxt erm terminal type
HOST=kr onos computer host name

Use the command "set " with no arguments to display the values of all shell environment variables.
gu play

All environment variables are strings. To change value or create a new variable, use a shell command of the form:
<vari abl e- nane>=<stri ng>

Example:
EXINI T="set redraw aw ai w0 nunber”
PS1="Pl ease give nme a command? "

Note that there is no space beside the equals sign.

If the string does not contain any characters that need quoting, then the quotes are not needed. i.e. no white space,
or pattern characters

Example:

TERMEVE | 00 set termnal type
TWP=/t np/ j unk

TMP=" set to null string
TMP=

Each process has its own copy of these environment variables. When a command is executed and a new process is
created by the shell, only the variables marked to be exported are copied into the new process.

Example:

export EXINIT TERM

Most variables set up by the system are already marked as exported. These exported variables are accessible within
C programs by using the library function get env() .

Example:

char *terntype;

terntype = getenv("TERM);
Note however that another program cannot modify the environment variables within the original shell. This is
because they exist in a separate process and only copies of these variables are available within the program.
Shell variables can also be used within the shell. Any shell command may contain variable names preceded by
dollar "$" to substitute it's value.

Example:

echo $HOVE displays home directory

If a shell variable contains special characters such as white space or pattern characters then these are interpreted
after the variable is substituted.

Example:

LI B="cur ses"

CCFl LES="yesno.o *.c"

CC=cc -0 nyprog -|$LI B $CCFI LES

$CC assl kit Is this the same as?

cc -0 nyprog -lcurses yesno.o assl.c kit.c

Command Output
echo $CCFI LES yesno.o assl.c kit.c
echo "$CCFI LES" yesno.o *.c
echo ' $CCFI LES $CCFI LES
Vi modes

Introduction to Unix

vi file-nane start visual editor

File is created/opened and first screen displayed.

1, a, 0, etc
command insert

<esc> key

From command mode (to line mode)

"o waits for input on last line of screen
A search forward for a pattern

e search backward for a pattern

+ Cursor motion
left h or <bs>
down |

up k

right 1 or <space>

start of previous line -
start of next line +
start of current line 0
start of text on line A
end of current line $

or <return>

Top H, Middle M Bottom L of screen

scroll up AU, down "D
page back "B, forward "F
word back b, forward w, end of word e
word back B, forward W endofword E

goto last line G Istline | G 6thline 6G
position in a column 70 70|

* Multiple moves
5w five words forward
5+ five lines forward

+ Searching
for a string:
forward /, back ?
next same direction n
next reverse direction N
single character "c" on current line:
forward fc, backward Fc
next same direction ;
next reverse direction ,
just before a character:
forward tc, backward Tc
+ Insert
until an <escape> key

insert before cursor i, append after a

before start of line I, atend of line A

open line before current O, after 0
i Hel | o<esc> inserts the word ‘Hello’

70a- <esc> appends 70 dashes
+ Delete
char at cursor X, before cursor X
word dw, line dd, end of line D

d5w deletes 5 words

+ Change

word cw, line cc,
change to end of word ce
change to before next comma ct

rest of line C

+ Replace
just one character r
overwrite mode till escape R

+ Substitute
replaces chars, changes to insert mode
1 char s, next 5 chars 5s, aline S

+ Put back the last thing deleted
after cursor p, before P
swap 2 chars xp, swap 2 lines ddp

+ Yank
3 words y3w, line Y, 5 lines 5Y
copy a line Yp, make 3 copies Yppp

+ Mark point (labels a-z)

Mark a point with label a ma
Return to marked point a "a
Delete to marked point a d
Yank to marked point a y

'a
'a
+ Buffers (buffers "a - "z)

link line into buffera "aY

delete line into buffer a " add
extract from buffera "ap

Introduction to Unix

+ Brackets

move to a matching bracket O {11 (%%
+ Indent

indent a line by one tab >>, un-indent
indent to mark a >'"a, indent 5 lines
indent a block of C code with {} >%

+ Misc

redraw screen L

join current and next line J

change case of one letter ~
repeat last command .
undo last change u, all changes on line U

+ Exit

Save and Quit wg or ZZ

Write a copy W

Write to filename w newfile

Write section of file wWa, .w newfile
Quit :q

Quit and force it :q!

Edit another file e file

Edit next file :n (vi filel file2 ...)
Insert another file x file

+ Shell commands inside vi

Kernel & Utilities

<<
5>>

execute shell command denmd args
jump into shell :sh (return with "exit")
insert output fromemd :r !cnd args

output to shell cmd w lcnd args

* Vi options
show current settings :set al |

indent mode :set auto indent
ignore case searching :set i gnorecase
set terminal type ;set termrevt| 00
show line numbers :set nunber

wrap line at edge :set wr apmar gi n=0

Options can be set from shell or .profile.

EXI NI T="set redraw autowite autoindent
w0 t s=8"

export EXINIT

+ Insert mode commands
backspace one word "W
back one indent "D
enter non-printable char *Vc

+ Ifyou botched it

If you hit the wrong key... type <esc> to abort

If you accidentally altered something ...type U

If you moved somewhere ...type " to return back

The Kernel resides in memory, while the Utilities reside on disk -loaded into memory on request

+ Logging In

The i ni t program automatically starts up a get ty for each terminal port on a system. getfy determines the baud
rate and displays the login: message. Whet someone types their login name getty starts the login program which
checks the password with the entry in/ et ¢/ passwd. If successful the users default shell is activated.

The Shell is responsible for:

- program execution

- variable and file name substitution
- 1/O redirection < > >> <<
- pipeline hookup |

- environment control

- interpreted programming language

Regular Expressions
used by ed, sed, awk, grep, & vi

+ Compare with shell pattern matching

* zero or more characters
? a single character
[a-z] range of characters

+ Example regular expressions
I
1,$s/p.o/ XXX/ g

look for 3 chars surrounded by blanks
change all occurrences of p?o to XXX (mary)

Introduction to Unix

1, $s/ ™ >>/ insert >> at beginning of each line

1, $s/..%/1/ delete the last 2 chars from each line
[[tT] he/ look for the or The

1,8%s/[ra-zA-Z]/ /g delete all non alphabetic characters
1,$s/ */ /g change multiple blanks to single blanks

1, $s/e. *el +++/
1, $s/ A\ {10\}//
1, $s/ . \{5\}%//
1, $s/\(.*\) \(.*\)/\2 \1/

change from first e to last e on a line
delete first 10 chars from each line
delete last 5 chars from each line
switch to fields

Regular expression characters

Notation Meaning Examples Matches
eeo__any character > P x followed by any two characters
D e beginofline ~wood line starting with wood

end of line x$ line ending with x
___ "$... linewithnochars
* ZEro or more X* Zero or more x's

occurrences of XX* one or more Xx's
___ .X* __zeroormorechars
[chars] any chars [tT] lower/uppercase t
___ [a-z] ... lowercaseletter . .
[~chars] not chars [~0-9] any nonnumeric

[ra-zA-Z] any nonalphabetic

\{m n, max\} at least min x\ {1, 5\} at least 1 and

at most 5 x's
[0-9]\ {3, 9\} anywhere from 3-9
successive digits
exactly 3 digits

and at most max
occurrences of
previous regular

expression [0-9]\{3\}

V(.. .\) store chars M(L)) Ist char on line
matched between store in register 1
parentheses in MLV Ist and 2nd char on
next register(1-9) line if they're same

Advanced Vi
Abbreviations
cab fit Faculty of Information Technology
Macros -set of macro chars { g, v, K", ~A, ~ D, * E, "X "Y'}
map “A :lcat $HOW .vi hel p*M
Search & Replace
g/ man /s//person /gc
gV (. *\) -\(.*\)/s//\2 -\1/gc
Customise options for ".exrc’ file
:set all
options abbreviation default
aut oi ndent ai noai
i gnor ecase (search) ic noi c
nunber nu nonu
redraw nor edr aw
showratch) } sm nosm
wr apscan ws ws
W apnar gi n wm wn=0

The UNIX Operating System
Advantages

10

Introduction to Unix

UNIX runs on everything from PCs to super-computers. UNIX is a multi-user, multitasking operating system.
There are millions of UNIX systems around the world supporting many users. Some UNIX is free.

Criticisms
UNIX is not user friendly, uses cryptic commands, and was designed by programmers for programmers. UNIX
uses concepts which are powerful but unfamiliar to many people who have worked with simpler operating systems.
UNIX has more than 300 commands (DOS < 100).

UNIX has three basic components

- The scheduler
allows more than one person to use the computer at same time, this involves the concepts of time sharing
and swapping.

- The file system
a collection of files forming a hierarchical directory structure.

- The shell
the command interpreter, this reads the lines you type and perform them accordingly.
[From the users view point: UNIX = file_tree + utilities|

Basic Concepts
Accounts
An account must be created by the super user known as "root" before you can log on. Each account has the
following fields in the file /etc/passwd.
- login name
- password
- identification number
- group number
- information field
- home directory
- login shell

Shells
Bourne Shell uses the dollar sign ($) as a prompt
C-Shell uses the percent sign (% as a prompt
Korn Shell uses the dollar sign ($) as a prompt
Tcsh uses the sign (>) as a prompt

Files

+ Ordinary files

A collection of characters (8-bit bytes) which represent documents, source code, program data, and

executables.

Each files has the following attributes:

- filename,

- inode number,

- size in bytes,

- access permissions,

- the owner and group

Directory Files

A directory contains the names and inodes numbers of the files within it.
Inodes contain the following information:
- file type,

- links to file,

- location c disc,

- size of file,

- file owner,

- group,

- access permissions,

- and time file was modified

11

Introduction to Unix

Special Device Files
Each physical device hard disc, line printer, terminals, memory is assigned to a "special file".

Directory Structure

(oot The inverted tree structured
ro/o) directory hierarchy
[mmmmmmm— e [mmmmmmmm e \ \
bin etc home/users dev
| | [o \ |
chmod passwd john mark ttyOl
[===\ |
mail src text

User Directory
Within the users "hone" directory, a user may have other subdirectories that he/she own and control.

Filenames

A sequence of 1 to 14 (or 256) characters consisting of letters, digits and other special characters. When a
filename contains an initial period, it is hidden.

The following characters should never be used in filenames because they have special meaning to the shell: ?,
*l [’] ’ " ’ ' and T

Pathnames
A pathname is a sequence of directory names followed by a simple filename, each separated by a slash "/". If
the pathname begins with a slash it specifies a file that can be found by search from "root", otherwise by search
from user's current directory (found by the command "pwd" -path of working directory). All files and
directories except root have parent directories.

shorthand name of current directory, e.g. . / fi | enane

shorthand name of parent directory, e.g. cd. .

Special Characters

* match zero or more characters, e.g. | s chap*
[1 matches any character inside brackets, eg |s chap[1-9]*
? matches any single character, e.g. 1 s chap?l

Notational Convention
~d hold down control key and press the d key
ESC the escape key

Some Commands

I's display directory contents

I p file print files

cat file display file contents commands are executable programs

Command Syntax
cnd [option] [arguments] [fil enane]
options are always preceded by a dash "-".
eg |ls -1
grep "string of text" filenane

Command Line
The command line can be edited with ~h (erase/backspace) and ~u (kill). You cc also edit the command line
with the Korn shell using vi commands (activated by ESC key).

12

Introduction to Unix

Multiple commands can be entered on a single line, provided they are separated by a ";". To terminate a

command you can type ¢ (interrupt).

Input and Output

The default input comes from the terminal keyboard and output goes to the terminal screen.
Redirection & Pipes

> output redirection, egls > filelist

" append output, eg.cat filename " files

< input redirection, eg.mail joe mary < letter

| pass output from one command to another,

eg sort filenane | uniq | nore who | we-1
2> write standard errors to file, e.g. command> outfile 2> errorfile

& allows commands to be submitted for background processing by appending "&" to

the command line, eg. spssx <cndfile> outfile 2> errorfile &

Note: C shell syntax is: (spssx < cndfile > outfile) >& errorfile &

Logging In
+ Logging In
| ogi n: enter your user name.
passwor d: enter your password.
message of today
(hp) enter your terminal name
$ system prompt (Bourne, Korn)
+ Logging Out
% | ogout from C-shell
$ exit from Korn shell

$ ~d short logout if allowed
Remember to logout!!!

Changing Password
$ passwd

Changing password for user name
Old password:

New password: e.g.. NO01WAY.
Re-enter new password:

Terminal Type
$ TERMRVt| OO
$ export TERM

Halt screen output
~s stop scrolling
~q start scrolling

13

Introduction to Unix

Working with Files

Print Working directory
When you log in you are placed in your home directory.

$ pwd

Listing Directory Contents

$1Is short list

$ Il long list

STWPWAT - - 1 user group 1000 Feb 1 12:00 filenanme

permissions number owner group sizein time of modification filename
of links bytes

Changing your directory
$ cd /usr/local /bin verify with command "pwd"

$ cd .. move up one directory
$ cd / change to "root" directory
$ cd return home

Making and Removing directories
$ nkdir books
$ rndir texts

Renaming or moving files

$ nv books texts moves books to texts
Copying files

$cpfilel file2 copies filel to file2
Displaying files

$ cat filenane display file on screen
$ nore filenane waits every screen to continue
$ tail filenane displays last 10 lines
$tail -20 file displays last 20 lines

$ head -30 file display first 30 lines
Deleting Files

$ rmfilenane

$rm-i file confirm before deleting

Finding Files (mary)
find pathname -name filename -print
eg.$find/ -nane |'s -print

Searching Files
grep keyword filenames
e.g.$ grep user_nane /etc/passwd

Word Count
$ w /etc/notd count of lines, words, character
$ who | we -1 returns number of users

Printing files
$ Ip filenane

| p- 201 request ID Note: directory must be "publicly executable"

14

Introduction to Unix

cat filenane | Ip no problems
Ip -n2 -dipl file prints 2 copies on Ipl

cancel |p-201 remove request Help
| pst at printer status
| pstat -plp2 status on Ip2

A set of scripts for printing could be implemented.

printl return status on Ipl
print2 file request print on Ip2
print2 -k kill all requests for user
printl -h help on command

+ Changing Permissions.

Permissions are shown in the first 10 characters of the long listing of files. The first character indicates the type of
file and must be one of the following.
ordinary file

block special device -hard disk
character special device -terminal
directory

shared data

name special

pipe

semaphore

wWoT S 30 o !

The next 9 characters are in three sets of three. Each three indicates permissions for owner (user), group, other
users. Permissions have following meaning.

r readable

w writable

X executable

- permission not granted

+ File Protection
$ chrod go-rwx filenane
user, group and other (all)
read, write and execute
$ chrod go+rx filenane
Directories with r-x allow other users to access it.

+ Controlling Processes

$ ps -ef list all processes
$ ps -ef | grep user_nane
$ kill -9 process_id kill a process

+ Status Information

$ who who is on system

$ date date and time information

$ du disk usage

$ file determine file type

$ stty setterminal options

$tty get terminal name

Help

$ hel p for first time users

$ man manual on how to use command

15

Introduction to Unix

Communications
$ mail send and receive mail
$ write signal other users

VI Editing

Entering vi
$ vi filenane

Command Mode

Help

~AA display help screen (: 'cat .vihel p"M
Moving cursor

h move left a character b back a word

j move down a character ~F forward a screen
k move up a character "B backward a screen
| move right w forward a word

Deleting Text

x delete character at cursor dd delete a line
Replace Text
r replace a character R enter REPLACE MODE

Inserting Text
i INPUT MODE before cursor INPUT MODE line below
a INPUT MODE after cursor (@] INPUT MODE line above

o

Control of Changes
u undo last change U restore current line
repeat last change

Moving Text
Y yank line into buffer
p put buffer line below P put buffer line above

Other commands
J join with next line - toggle case
AG line number information

Searching

/text "M search for next occurrence of text string

?t ext "M search for previous occurrence of text string
n repeat last search command

N scan in opposite direction

Saving and Leaving vi

WM write (update) file

T wgtM update and exit file
(ql "M quit without update

Input or Replace mode

Input Editing

16

Introduction to Unix

AH delete last character
AV control character

+ Leaving Input Mode
ESC return to COMMAND MODE

SSH
+ SSH is a remote login program
usage: ssh hostnane -1 | ogi n_nane or
ssh | ogi n_name@ost nane
example: >ssh kronos.di.uoa.gr -l std00079 or

>ssh st d00079@kr onos. di . uoa. gr

>st d00079@kr onos. di . uoa. gr's password: bl abl a

>Last login: Thu Jun 29 15:00: 37 2006 from kronos. di . uoa. gr
>You have nmail.

>kr onos: / home/ user s/ st d00079>

17

Unix Shells

2. UNIX SHELLS

Back Quote Substitution
One way of viewing the output from a command is as a big long string of characters. Unix shell provides a way to
treat stdout from a command as a string which can be substituted into another command.

Example:
The - | option of gr ep lists the names of files that contain a pattern.
grep -1 'bug' *.c: outputs names of any *.c files containing the pattern 'bug'.
Say the output is:
fileO.c
file3.c

Now using back-quotes '..." we can take this output from "grep" and treat it as a string substituted into the
arguments for the command "vi "

vi 'grep -1 'bug' *.c': editsall *.c files containing the pattern 'bug'

vi fileO.c file3.c

Example:

The "tr" command can translate one or more characters into a different set of characters.
PATH=/ usr/ 1 ocal / bi n: /usr/uch:/bin:/usr/bin

The following outputs the string SPATH with colons translated into spaces:
echo $PATH | tr : ' ': outputs /ust/local/bin /usr/ucb /bin /usr/bin

We canuse "1 s" to display all of the system commands in the $SPATH directories:
Is ' echo $PATH | tr : ' ' '

Shell Here Documents
When writing shell programs you sometimes want some constant data (e.g. test data) as standard input for a
program. This can be done using " <<".

The general formis: Command << string
data line 1
data line 2

daté line N

string
Example:
spel | <<! Would run the spell program,
The quick brown fox read from standard input 2 lines of data.

junps over the lazy dog The terminating string is "!"
!

Flow Control Commands (make sure that you are working at the Bourne Shell - sh command)

+ FOR Statement

As mentioned earlier shell is a complete programming language and provides a set of conditional and looping
commands. Because shell usually dealing with lists the shell for loop terminates over a list of strings, such as a list
of file names.

for variable in stringl string2 ...stringN
do

conmands ...
done
Example:
for file in exl.c ex2.c yesno.c
do
echo "==== $file ===="
cat $file
done

18

Unix Shells

Before giving another example we will introduce the UNIX command "sed". Sed takes as its arguments a list of
editing commands. These commands are applied to text as it flows from stdin to stdout.

Example:
echo BIGONE | sed 's/BIGsmall/': outputs: smal | ONE

Example:

Suppose that we have a set of files which are named:
exanpl el. ¢ exanpl e2.c exanpl e3.c

And we wish to rename them using "mv" command to:
exl.c ex2.c ex3.c

for file in exanplel.c exanple2.c exanple3.c

do
mv "$file" "echo "$file" | sed 's/exanplel/ex/''
"ol d-nane Anew- name

done

+ Conditional Expressions
All UNIX programs return a status code indicating it's success or failure when executed. The value 0 indicates
success, any other value (7-255) indicates failure. Shell programs can test this status in several ways:

+ IF Statement
if test-comrand

t hen
conmands ... # when status is zero
el se
conmands ... # when status is non-zero
fi
Exanpl e:
if cp yourfile nyfile
t hen
vi myfile

fi

This executes the command "cp yourfile myfile". If it is successful (i.e. the copy worked), then it will edit myfile
using the command "vi myfile".

The program "/bin/test" is often used in the if statement, to check if files exist or have correct permissions and to
compare strings and numbers. It is also called "/bin/[" (Unix files can contain almost any character).

Example:
if ["$TERM' != vt100]
t hen
echo "Funny terminal type: $TERM"
el se

echo "Congratul ati ons your enulating $TERM "
fi

+ WHILE Statement
whi |l e test-command
do

conmands. . .
done

+ BREAK & CONTINUE Statements

br eak transfers control to statement after the done where as continue transfers control to the done, and the loop
continues execution.

19

Unix Shells

CASE Statement
case test-string in

pattern-1)
conmands
pattérh-Z)
commands
esac
TRAP Command
trap commands signal - nunbers
Signal Number Conditions
hang up 1 disconnect phone line
termnal interrupt 2 pressing interrupt key
qui t 3 pressing * \
kill 9 kill command (not -9)
ware term nate 15 default of kill command
Example:

trap '' 15 # prevent script exiting
trap 'echo I NTERRUPT; exit |' 2

renove tenporary file on exit conmand
trap 'rm/tnp/ $$. $script 2> /dev/null ' 0O

Functions

Functions are either in ".profile” or in scripts that require them.
function-nane()

{
}

comrands

Example:
wd()

cd $1
PS1=" [' pwd']
}

Shell Programs

A shell program is simply an ordinary text file containing shell commands. Shell programs are interpreted and
therefore need no compiler. With one minor exception, there is no difference between what can be typed on the
keyboard and what can be written into a shell program.

The exception is that shell programs should start with a comment line: ~ #!/ bi n/ sh
To ensure that if they are executed under a different shell program such as Korn or C Shell, they will be interpreted
by the Bourne Shell.

Shell program files must be made executable: chnod u+x nyshel | prog
and can be treated like any other unix command.

To trace a shell program, run it using -x option of sh(l}. sh -x ./ nyshel | prog

For more info on shell programming type: "man sh".

20

Unix Shells

Shell Program Variables
Several special variable names are available within shell programs.

$0 Program name
$1 $2 ... %9 Program arguments
$# Number of arguments
$* Same as "$1 $2 ...§9"
$@ Like $* except "$@" will put double quotes around each argument.
$@ --> "$1" "$2"..."$n"
$? Exit status of the last command.
$$ Shell process number. Uniquely identifies the process. Often used for temporary

e.g. /tmp/ | sout $$

file names which reside in the /tmp directory which is shared by everyone.

Inputs and Outputs to/from a Process

Inputs Outputs

Files Files

Stdin Stdout/Stderr
Program name Exit status
Arguments

Exported environment

variables

Unix Shell Examples
ZLESS
$ vi zless
------- Enter using vi editor-------

#1/bin/sh
@#)zless - browse conpressed files
zcat $* | less
$ chnod ug+x zl ess # make shell script executable

$ zless assl.c.Z

SOLARIS: Zless is not provided

MKSHAR
#!/bin/sh
@#)nkshar - creates shell archives fromlist of files
shell archives use the "here docunment" facility to
store the contents of one or nore files.
shel |l archives can be executed by shell to create
the original archived files. They are typically
used to send files by electronic mail or news.
for file
do
echo "cat > $file << \\!YOYr@@a"
cat "$file"
echo "!'Yorar@zax
done

$ nkshar filel file2 file3

cat > filel << lYoyr@@X@@Y
This is what's inside the 1st file

l'Yeraa@ary

cat > file2 << l'Yoyr@x@ @Y
The 2nd file contains these boring

21

Unix Shells

two |ines
lYor@z@ @y

cat > file3 << lYo¥r@@Z@@yY
The 3rd file has even |ess

lYeraa@ay

YESNO

#1/bin/sh

@#)yesno - pronpts yes/no response
usage: yesno <pronpt> [<default>]

pronpts yes/no response and returns
corresponding exit status of 1 or O
#
#
c

H*

e.g.
yesno "delete $file" n & rm "$file"
ase $# in
1) pronpt="$1 [y/n] " ;;
2) prompt="%$1 [$2] " ;;
*) echo "usage: “basename $0° pronpt [default]" >&2

exit 1 ;;
esac
whil e :
do
ans=
portable way to keep cursor on sane |line
#tr -d '\012'" >&2
echo "$prompt" | tr -d "\012" >&2
read ans
[-z "$ans"] && ans="$2" # get default from conmand
case "$ans" in
[Yy]| YES| yes) exit 0 ;;
[Nn] | NO no) exit 1 ;;
*) echo "Pl ease answer y/n" >&2 ;
esac
done
MVSED
#1/bin/sh
@#)nmvsed - renane files using sed-script
rename a list of files using a sed(1l) conmand
mvsed [-e] sed-script file ..
-e just outputs the "mv" conmands
(no files are renaned)
e.q.
nvsed -e 's/wW BIGN' awk passwd wal
out put s:
nmv awk aBl Gk
nv passwd passBlI GM
nv wal | Bl Gnal |
if [$# =0]
t hen
echo " basenane $0°: [-e] sed-script file ..." >&
exit 2
fi
ECHO=

case "$1" in
-e) ECHO=echo; shift;;
esac

sed="%$1"; shift
for file
do

22

Unix Shells

$ECHO nv "$file" “echo "$file" | sed "$sed"’

done

exit O

VIG

#1/bin/sh

@#)vig - grep pattern and edit files using vi
edit all files containing the pattern $1.

files may be specified by $2 ... $n, or by

the exported variable $VIGif it exists, or

if no files are specified and $VI G is undefi ned
then it will search all *.c and *.h files

PATH=/ bi n: / usr/ bi n: /usr/ ucb
PROG="basenane $0°
USAGE="usage: $PROG pattern [file ... 1"

case $# in
0) echo "$USAGE" >&2; exit 2 ;;
1) pattern="$1"; shift; set ${VIG*.[ch]}
*) pattern="$1"; shift;;

esac

use grep to find all files containing the pattern
FILES="grep -1 "$pattern"” "$@°

do any files contain the pattern ?

if [-n "$FILES"]

t hen
+/ $pattern/ makes vi search for pattern
vi "+/ $pattern/" $FILES

fi

EXAMPLE

#! / bi n/ sh

"basenane" tool renoves any directories in

file path so use "basenane $0° as program nane

USAGE="usage: "basenane $0° [-x] [-a file] file ..."

set defaults
append=f al se; encrypt=fal se; output=outfile

while [$# 1= 0]

do
case "$1" in
-X) encrypt=true ;
-a) shift; append=true; output="3$1"
-*) echo "$USAGE" >&2; exit 1 ;;
*) break ;; # exit loop to process files
esac
shift # shuffle argunents left (forget $1)
done

use "&&" for a concise "if" statenent
[$# 1= 0] && { echo "$USAGE"' >&2; exit 1; }

for file
do
process each file
if $crypt
t hen
crypt "$file"
el se
cat "$file"

fi |

23

Unix Shells

i f $append
t hen
tee -a "S$output"”
el se
cat
fi
done

exit O # return a healthy exit status

Built-in Shell Commands

" pgm

null command
execute a program or shell script

replace with output of pgm command
br eak exit from for, while, or until loop
cd change working directory
conti nue start with next iteration of for, while
eval scan and evaluate the command line
exec execute a program in place of current process
exit exit from current shell
export place the value of a variable in calling environment
newgr p change users group
read read a line from standard input
readonly declare a variable to be readonly
set Set shell variables (display all variables)
shift promote each command line argument
tines display times for current shell and its children
trap trap a signal
umask File creation mask
wai t wait for a background process to terminate
echo display arguments
getopts parse arguments to a shell script
hash remember location of command in search path
pwd print working directory
return exit from a function
test compare arguments
type display how each arg would be interpreted
ulimt limit the size of files written by shell
unset remove a variable or function
Shell Variables
HOME pathname of your home directory
IFS internal field separator
PATH search path for commands
PS1 prompt string 1
PS2 prompt string 2
MAIL file where system stores your mail
HOST the host name of the computer
SHELL identifies name of invoked shell

24

C Programming — Basics

3. C PROGRAMMING

Syntax Notes

C is a high level language similar to Pascal which provides some low level features.

1. begin and end are replaced by '{' and '}'

2. the assignment operator is '=' not ":='
3. the equality test operator is '=='not '='
4. there is no 'then' keyword
5. there is no 'boolean' type
6. comment delimiters are /* and */
7. '%'is modulo division (i.e. mod)
8. there are no procedures only functions
9. there are no local functions

C Example

The following is an example C program to give an overview of the style of the language.

#i ncl ude <stdio. h>
mai n()
/* This program conputes the sumof the first n integers
where n is input by the user*/
{ int i,n;
| ong sum
/* prompt for n */
printf("Enter value > ");
scanf (" %", &n)

/* Conpute the sum */
sum = O;

for (i=l; i<=n; i++)
{

sum = sum + i;

/* Gve the answer */

printf("The sumof the first %l integers is %d\n",i, sun);
}

Simple Types
There are four primitive types in C :

char a single byte, capable of holding one character from the system's

character set.

int an integer, the size of which is dependent on the host machine.

f1 oat single precision floating point number

doubl e double precision floating point number

In addition there are three qualifiers which can be applied to the type int short, long and unsigned.

Short, refer to the number of bits used to represent the number
| ong

unsi gned indicates that only positive integers can be stored in that variable

Qualifiers are applied in the following way:
short int x;
long int vy;
unsi gned int z;
The int part of these declarations may be omitted and usually is.

Declarations

Each bracket pair ("{" and '!’) in C define a block and each block may have its own local variables. Scope rules in C

are virtually identical to those of Pascal.

25

C Programming — Basics

mai n() Running this program will result in the following output:
{ x=3
int x; X=2
X = 1; x=
{ int x;
X = 2
L
int Xx;
X = 3;

printf("x=o\n", x):

printf("x=%\n", x);
}

}

printf("x=%l\n", x);

Program Form

Files to include | #i ncl ude ...
Macro definitions I #define ... |
Global variable I funcl(....) I
declarations | { |
Function definitions | |
| } |
Declarations Of | ::::::::::::::l
fOr’malparameters | ::::::::::::::|
| func2 (....) |
Local variable | { |
declarations I) I
| ::-::::::::::::l
| main(...) |
Function | { |
Body |} |

Storage Classes
As well as having a type, C variables have a class which describes how they are stored in memory. There are four

storage classes:

Automatic
This is the default storage class. Memory is allocated for an automatic variable when the block in which it
is declared is entered and this storage is deallocated when the block is exited. This is equivalent to the
normal Pascal local variable.

Register
This is the same as for automatic except that if possible the compiler will attempt to use a hardware register
for storing the variable making access faster. Most compilers find it too hard to do.

Static
Memory is allocated for a static variable at compile time and is never deallocated. Local static variables
retain their values between function calls. Similar to the SAVE facility in FORTRAN.

External
Equivalent to global variables in Pascal. They are not local to any function including main.

Variables declared outside the scope of any function are global variables. A function may access any global
variable declared above it in the source code without any further declarations.

If however the programmer chooses to declare the global variable again within a function as an external variable,
its global declaration may appear below the function in the source code.

Storage class descriptions appear before the type in a variable declaration.

26

C Programming — Basics

eg.
static int i;
extern float r;

Simple I/O
C does not have any built-in I/O operations. Instead a library of I/O functions must be provided for the

programmer. To help make C portable there is a standard library of I/O functions which is available with every C
compiler. This library is called 'stdio' .

This library will normally be loaded automatically when a program is loaded however some of the definitions used
by stdio may be needed by a program in order for it to compile properly. All the definitions used by stdio are kept
in a header file called stdio.h. Any program which uses any of the stdio functions should include a copy of this file.
This is achieved by placing the line below in the source code.

eg.

#i ncl ude <stdi o. h>

The two library functions for writing to standard output and reading from standard input are pri ntf and scanf
respectively.

Printf and Scanf
Printf and Scanf work in a similar way to the FORTRAN I/O statements.
Printf takes a comma separated list of arguments. The first is a string containing the message to be printed and
format descriptors for the variables to be printed while the rest of the arguments are the actual variables to be
printed.

eg.
printf("The values of a and bare %d and %\ n", a, b);

Scanf takes a string containing only format descriptors and a list of addresses of variables to be read in. The address
of a variable is obtained with the '&' operator
eg.
printf("Enter a and b : ");
scanf ("%l %", &a, &b);

Operators and Expressions

1. Arithmetic Operators {+, -, *, I, %

2. Relational Operators {<, <=, > >=, ==1=

3. Logical Operators {&&, |],!'}

4. Bitwise Logical Operators & |, " <<, >, ~}
eg.

If B represents the number of bits in a word and the bits in a word are numbered in this way

B-1B-2B-3] [3]2]|1|

then an expression which returns the 7 bits starting at position pos from the contents of the variable word would
be(word >> (pos + 1 -n)) & ~(~0 << n)

Note that the resulting bits would be right justified.

5. Conditional Expression Operator {?: }

eg.
if (a>Db) z=(a>b) ?a: b
z =a;
el se
z =b;
6. Assignment Operators {+=, -=, *=, /=, %, <<=, >>=, &, "=}

a op = bisequivalenttoa = a op b

27

C Programming — Basics

e.g.
i += 2 adds 2 to i
7. Increment - Decrement Operators {++, --}
at+ is equivalent to a = atl
++a is equivalent to a = atl
b = a++ is equivalent to b a, a = atl;
b = ++a is equivalent to a=a+l; b= a;
Functions

A function in C is very similar to a function in FORTRAN.

e.g.: a max function

i nt max(a, b)

i ntegers */
int a,b;
{
if a>b
return(a) ;
el se
return(b) ;

/* A function to compute the maxi mum of two

Notes:

- the type of the function appears first.
- there is no semicolon between the function header and the formal

- parameter declarations.

- results are passed back using the return statement.
- all parameter passing is call by value.

The default type for a function is int and so can be omitted in this case. Even if a function has no parameters its
name must be followed by parentheses,

eg.
voi d say_hell o()

printf ("Hello World\n");

}

Control Structures
+ Binary Decision
i f (expression)
statenentl
el se
st at enent 2

+ General Loops

the expression must be enclosed in parentheses

the expression is considered false if it evaluates to 0 and true, otherwise

as in Pascal, elses associate with the nearest ifs

as the semicolon is a terminator in C they will occur before elses

whil e (expression) statenent: provides a pretested loop.

C also provides a for statement which is a useful shorthand for an often occurring while statement form.

These two constructs are equivalent
for (exprl;expr2;expr3)
st at enent ;

exprl ;
whil e (expr2)
{

st at enent

28

C Programming — Basics

| expr3;
|}

exprl, expr2 and expr 3 may be as complicated as you like
do

st at ement
whi | e (expression)

This is a post-tested loop which continues to execute while expression is non-zero.

* Multi-way Decision
swi tch (expression)

{
case optionl : statenent |ist
case option2 : statenent |ist
case optionN : statenent |ist
default: statenent |ist

}

Notes:

- similar to 'case' in Pascal
- execution starts at the statement list which has a label corresponding to the value of the expression and
continues through all remaining statement lists

To stop processing in the middle of a switch statement, a break statement can be used to terminate execution of
the current block.

Functions Returning Non-integers
Often functions return (void) or int
Many functions like sgrt, sin, and cos return double

#i ncl ude <ctype. h>
doubl e atof (char s[]) /* atof: convert string s to double */
{
doubl e val , power;
int i, sign;
for (i=0; isspace(s[i]); i++); /* skip white space */
sign = (s[i] ="'-") ? -1: 1
if (s[i] =="+" []| s[i] =="-") i++
for (val=0.0; isdigit(s[i]); i++)
val = 10.0*val + (s[i] - '0");
if (s[i] ==".") i++
for (power=1.0; isdigit(s[i]); i++) {
val = 10.0*val + (s[i] - '0");
power *= 10.0;
}

return sign*val / power;

}

The calling routine must know what atof returns thus all functions should be explicitly declared.

#i ncl ude <stdio. h>

#defi ne MAXLI NE 100

main() /* sinple calculator */

{
doubl e sum atof(char []);
char |ine[MAXLI NE] ;
int getline{char line[], int max);
sum = O;
while (getline{line, MAXLINE) > 0)

printf{"\t%\n", sum += atof(line));

return O;

}

29

C Programming — Basics

External Variables
A C program consists of a set of external objects, which are either variables or functions.

Functions are always external (can't define function inside). External variables are globally accessible.

Consider a calculator program that provides +, -, % .
In infix notation an expression is: (1-2) * (4 +05)
when entered in reverse polish notation it is: 12-45 + ¢

The structure of the program is thus a loop as below
whi l e (next operator or operand is not end-of-file indicator)

i f (nunber)
push it
else if (operator)

pop operands

do operation

push result

(newl i ne)

pop and print top of stack

else if

el se
error

Translating this to code
#i ncl udes
#def i nes

function declarations for main

main() {...}

external variables for push and pop
voi d push(double f) { ...}
doubl e pop(void) { ...}

int getop (char s []) { ...}

routines called by getop

/* reverse polish cal cul ator exanple */
#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
#def i ne MAXOP 100
#defi ne NUMBER ' O'

int getop(char []);
voi d push(doubl e);
doubl e pop(void);

/[* for atof() */
/* max size of operand or operator */
/* signal that a nunmber was found */

/* prototypes */

mai n() /* reverse polish calculator */
{

int type;

doubl e op2;

char s[MAXOP] ;

while ((type = getop(s)) != EOF)

{

switch (type)
{

case NUMBER push(atof(s)); break;
case '+': push(pop() + pop()); break
case '*': push(pop() * pop()); break
case '-': op2 = pop(); push(pop() - op2); break
case '/': op2 = pop(); if (op2 !'= 0.0) push(pop()/op2);
el se printf("error: divide by zero\n"); break
case '?': printf("operators are +, *, -, /\n"); break
case'\n': printf("\t%8g\n", pop()); break
default: printf("error: unknown command %\n", s); break

30

C Programming — Basics

return O;
}
/* stack mani pul ati on functions */
#def i ne MAXVAL 100 /* maxi mum depth of val stack */
i nt sp=0; /* next free stack position */
doubl e val [MAXVAL] ; /* val ue stack */
voi d push(doubl e f) /* push: push f onto val ue stack */
{
if (sp < MAXVAL)
val [sp++] = f;
el se
printf("error: stack full, can't push %\n", f);
}
doubl e pop(voi d) /* pop: and return top value from stack */
if (sp> 0)
return val[--sp];
el se
{
printf("error: stack enpty\n");
return 0.0;
}
}
#i ncl ude <stdio. h> /* for getch */
#i ncl ude <ctype. h> [* for isdigit */
i nt getop(char s[]) /* getop: get next operator or operand */
int i, c;
while ((s[0] = ¢ =getch()) ==" ", || ¢ = "\t");
s[1] = "\0";
if (lisdigit(c) & c !'=".")
return c; /* not a nunber */
i = 0;
if (isdigit(c)) /* collect integer part */
while (isdigit(s[++ti] = c = getch()));
if (c ==".") /* collect fractional part */
while (isdigit(s[++ti] = c = getch()));
s[i] ="\0";
if (c !'= ECF)
unget ch(c);
return NUMVBER
}

Scope Rules
The scope of a name is the part of the program within which the name can be used.
In filel: /* where you require use of sp and val */
extern int sp;
extern double val[];
In file2: /* initial declaration of sp and val */
int sp = 0;
doubl e val [MAXVAL];

Header Files

calc.h
#defi ne NUMBER ' O
voi d push(doubl e);
doubl e pop(void);
int getop(char []);

31

C Programming — Basics

mai n. ¢
#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
#i ncl ude .cal c. h.
#def i ne MAXOP 10
main () {

stack.c
#i ncl ude <stdi o. h>
#i ncl ude "cal c. h"
#defi ne MAXVAL 100
int sp=0;
doubl e val [MAXVAL] ;
voi d push(doubl e)
doubl e pop(voi d){
-

getop.c
#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude "cal c. h"
int getop(char s[]){
—

Variables, Structure & Initialisation

Static variables remain in existence rather than coming and going each time the function is activated, i.e. permanent

storage within a single function.

C is not a block structured language in the sense of Pascal, because functions may not be defined within other

functions.

In the absence of explicit initialisation, external and static variables are guaranteed to be initialised to zero,

automatic and register variables have undefined initial values.
int days [] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
char pattern[] = "auld"; /* this is equivalent to */

char pattern[] = {'0", "u ,"'1,'d,'\0},;

Recursion
/* gsort: quick sort into ascending order */
void qgsort(int v[], int left, int right)
{
int i, last;
void swap(int v[], int i, int j); /* you nust inplement it */
if (left >=right) /* do nothing if array contains */
return; /[* fewer than two el enents */
swap(v, left, (left+right)/2); /* nove partition elem?*/
last = left;
for (i=left+l; i<=right; i++) /* partition */
if (v[i] < v[left])
swap(v, ++last, i);
swap(v, left, last); /* restore partition elem*/
gsort(v, left, last-1);
gsort(v, last+1, right);
}

Command-line Arguments

Command line parameters can be passed to the program via argv.
argv: | .-] --->] .-| --->]echo\OQ]

| .-] --->]hello\0]

| .-] --->|world\O]

| 0|

0

32

C Programming — Basics

#i ncl ude <stdi o. h>
mai n(int argc, char *argv[]) /* echo conmand |ine argunents */
{

int i;

for (i=1; i<argv; i++)

printf("9%", argv[i]);

printf("\n"); return O;

}

#i ncl ude <stdio. h>
mai n(int argc, char *argv[]) /* alternative echo program */

while (--argc > 0)
printf("%", *++argv);
printf("\n"); return O;
}

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#defi ne MAXLI NE 1000

int getline(char *line, int max); /* you nust inplement it */

mai n(i nt argc, char *argv[])
{
/* find: print lines that match pattern from 1st arg */
char |ine[MAXLI NE] ;
i nt found=0;
if (argc !'= 2)
printf("usage: find pattern\n");
el se
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1]) !'= NULL)

printf("%", |ine);
f ound++,;

return found;

}

A common convention for C programs on UNIX system is that an argument that begins with a minus sign

introduces an optional flag or parameter.
e.g.
-x (for "except for"), and -n (for "line nunber")
find -x -n pattern or find -xn pattern

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#defi ne MAXLI NE 1000

int getline(char *line, int nmax);

mai n(i nt argc, char *argv[])
{
/* find: print lines that match pattern from 1st arg */
char |ine[MAXLI NE] ;

| ong |i neno=0;

int c, except=0, nunber=0, found=0;

while (--argc > 0 && (*++argv)[0] == ‘-")
while (c = *++argv[0])
swi tch(c)
case 'x': except=1; break
case 'n': nunber=1; break

33

C Programming — Basics

default: printf("find: illegal option %\n", c);
ar gc=0; found=-1; break;

}

if (argc !'= 1)
printf("usage: find -x -n pattern\n");

el se
while (getline(line, MAXLINE) > 0)
{
i neno++;
if ((strstr(line, *argv) !'= NULL) != except)
i f (nunber)
printf("%d:", lineno);
printf("is", line);
f ound++,;

}

return found;

}

Pointers to Functions
It is possible to define pointers to functions, which can be assigned, placed in all's, passed to functions, returned by
functions, and so on.
e.g.
void gsort(void *lineptr[J, int left, int right,

int(*conp)(void *, void *));
/* this declaration says that conp is a pointer to a function */
/* that has two void* argunents and returns an int */

/* the call to this function is as follows */
gsort((void **) lineptr, 0, nline-1,

(int (*)(void*, void*))(nunmeric ? nuntnp : strcnp));
/* nuntnp conpares two strings nunerically */

for (i=left+l; i<=right; i++) /* nodification to gsort */
if ((*comp)(v[i], v[left]) <0) /* strcnp or nunctnp */

swap(v, ++last, i); /* conp is ptr to function*/
gsort(v, left, last-I, conp) /* call within gsort to gsort */

Complicated Declarations

char **argv argv: pointer to pointer to char

int (*nmonth)[13] nonth: pointer to array[13] of int

int *ront h[13] nont h: array[13] of pointer to int

voi d *conp() conp: function returning pointer to void

void (*comp) () conp: pointer to function returning void

char (*(*x())I[DO X: function returning pointer to array|] of pointer to function returning char
char (*(*x[3])())[5] x: array[3] of pointer to function returning pointer to array[5] of char

Self-referential Structures

Suppose you wanted to handle the problem of counting the occurrences of all words in some input. One solution is
to keep the set of words seen so far sorted at all times, by placing each word into its proper position in the order it
arrives. This can be done with a binary tree.

The tree contains one "node" per distinct word; each node has:
- apointer to the text of the word

- a count of the number of occurrences

- apointer to the left child node

- apointer to the right child node

34

C Programming — Basics

struct tnode{ /* the tree node */

char *word; /* points to the text */

i nt count; /* nunber of occurrences */
struct tnode *left; /* left child */

struct tnode *right;}; /* right child */

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#defi ne MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);
int getword(char *, int);

mai n()

{

/* word frequency count */ (Structures 2)
struct tnode *root;
char wor d[MAXWORD] ;

root =NULL,;
whil e (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))

r oot =addt ree(root, word);
treeprint(root);
return O;

}

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct tnode *addtree(struct tnode *p, char *w)
{
i nt cond,
if (p == NULL) /* a new word has arrived */
{
p = talloc(); /* make a new node */
p->word = strdup(w);
p->count = 1,
p->left = p->right = NULL

}
else if ((cond = strcnmp(w, p->word)) == 0)

p- >count ++; /* repeated word */

else if (cond < 0) /* less than into | eft subtree */
p->left = addtree(p->left, w;

el se
p->right = addtree(p->right, w);

return p;

}

/* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)

{
if (p !'= NULL)
treeprint(p->left);
printf("%d %\n", p->count, p->word);
treeprint(p->right);
}
}

#i ncl ude <stdlib. h>
/* talloc: nmake a tnode */

/* for malloc */

35

C Programming — Basics

struct tnode *tall oc(void)
{
return (struct tnode *)mall oc(sizeof (struct tnode));
}
char *strdup(char *s) /* make a duplicate of s */
{
char *p;
p = (char *)malloc(strlen(s)+1); /* +1 for *\0" */
if (p !'= NULL)
strcpy(p, S);
return p;
}
Unions

A variable that holds, at different times, objects of different types and sizes, i.e. different data in a single area of
storage.

union u_tag {

int ival;

float fval;

char *sval;

Hu;

if (utype == INI)
printf("%l\n", u.ival);

else if (utype == FLQOAT)
printf("%\n", u.fval);

else if (utype == STRI NG
printf("%\n", u.sval);

el se
printf(" bad type id in utype\n", utype);

A union is a structure in which all members have an offset zero from the base. Can only initialise value first
member.

Bit fields
When storage space is at a premium, it may be necessary to pack several objects into a single machine word.

The usual way this done us to define a set of "masks" corresponding to the relevant positions, as in
#defi ne KEYWORD 01
#defi ne EXTERNAL 02
#defi ne STATIC 04
or
enum { KEYWORD = 01, EXTERNAL = 02; STATIC = 04);

flags | = EXTERNAL | STATIC, /* turns bits on */
flags & = ~(EXTERNAL | STATIO); /* turns bits off */
if((flags & EXTERNAL | STATIC)) == 0) /* both true */

As an alternative C offers the capability of directly defining and accessing fields within a word.
struct{ /* 3 one bit fields */
unsigned int is_keyword : 1;
unsigned int is_extern : 1;
unsigned int is_static : 1;
}fl ags;

flags.is extern = flags.is static = 1, /* bits on */
flags.is extern = flags.is static = 0; /* bits off */
if (flags.is extern == 0 & flags.is static == 0)

Table Lookup
Table lookup code is typically found in the symbol table management routines of a macro processor or a compiler.

36

C Programming — Basics

struct nlist{ /* table entry */

struct nlist *next; /* next entry in chain */
char *nane; [* defined nane */

char *defn; /* replacenent text */

i

#defi ne HASHSI ZE 101
static struct nlist *hashtab[HASHSI ZE]; /* pointer table */

unsi gned hash(char *s) /* hash: form hash value fro a string */
{
unsi gned hashval ;
for (hashval = 0; *s !="\0"; s++)
hashval = *s + 31 * hashval;
return hashval % HASHSI ZE

}

struct nlist *lookup(char *s) /*|ookup: look for s in hashtab */
{
struct nlist *np; /* wal king along a linked list */
for (np = hashtab[hash(s)]; np !'= NULL; np = np->next)
if (strcnp(s, np->nane) == 0)
return np; /* found */
return NULL; /* not found */

}

struct nlist *lookup(char *);
char *strdup(char *);

struct nlist *install (char *nane, char *defn)

/* install: put (name, defn) in hashtab */
{
struct nlist *np;
unsi gned hashval ;
if ((np = lookup(nane)) == NULL) /* not found */
np = (struct nlist *) malloc(sizeof(*np));
if (np == NULL || (np->nane = strdup(nane)) == NULL)
return NULL,;
hashval = hash(nane);
np- >next = hasht ab[hashval];
hasht ab[hashval] = np
}
el se /* already there */
free((void *) np->defn);/* free previous defn */
if ((np->defn = strdup(defn)) == NULL)
return NULL,;
return np;
}

37

Unix Tools

4. UNIX TOOLS

Tools of the Trade

cut — cut out various fields
cut -cchars file
cut -c¢5- data
cut —cl1, 10-20 data

e.g.who | cut —-c1-8 | sort

cut -ddelimiter -ffields file
cut -d: -f1 /etc/passwd

past e — paste lines together with tabs
paste files

past e -d:names addresses numbers

paste -s names

sed
sed command file

sed "s/Unix/UNIX/g" intro > tenp

sed -n "1,2p" intro
sed '1,2d" intro > tenp

tr
tr fromchar to-chars

date | tr ' ' "\12
tr '[a-z]" '[A-Z]" < intro
tr -s ' ' " " <intro

grep
grep pattern files
grep '"*' intro
grep -i 'unix’ intro
grep -v 'UNLX *
grep -1 "Unix'" *.c
grep -n "unix' intro

sort
sort nanes

sort -u nanes
sort -r nanes
sort nanmes -0 nanes
sort -n data
sort +1n data
sort +2n -t: passwd

uni q
unig in_file out _file
sort names | uniq —d
sort names | uniq -c

t est
test expression
if test "$nane" = john

stringl = string2
stringl !'= string2

print first 2 lines only
delete first 2 lines

translate spaces to newlines
translate to upper case
squeeze out multiple spaces

ignore case

print lines that don‘t contain

list file names that contain

precede matches with line numbers

climate duplicates

reverse

sort names > names # won't work
arithmetically

skip first field

sort by user id

remove duplicates
list duplicates
count line occurrences

identical
not identical

38

Unix Tools

string # not null
-n string # not null
-z string # null
intl -eq int2 # equal

intl -ge int2

intl -gt int2

intl -le int2

intl -1t int2

intl -ne int2

-d file # directory

-f file # ordinary file

-r file # readable

-s file # nonzero file

-wfile # writable

-x file # executable

-a # AND

-0 # OR

[\("$count -ge O \) -a \("$count" -1t 10 \)]

Parameter Substitution

$(paranet er) $(par amet er: ?val ue)

mv $file $(file)x # reduces conflicts if parameter is set, substitute value,

else write value to standard error and exit

$(paramet er: -val ue) $(PHONEBOCK: ?" No PHONEBOXK file!")

if parameter is set, substitute value

$ EDI TOR=/ bi n/ ed $(par anet er: +val ue)

$ echo $(EDI TOR: -/ bin/vi) it parameter is set, substitute value,

I'bi n/ vi else substitute nothing

$(par anet er: =val ue)

if parameter is null, value is assigned to parameter
: $(PHONEBOOK: =$HOVE/ phonebook)

Misc

+ eval
eval command-|i ne # scan the command line twice
$ pi pe="|"
$ I's $pipe we -l # |, we, -1 are not found
$ eval |s $pipe we -l # first scan substitutes |

second scan recognises

+ More I/O
conmmand 2> file #redirect standard error
comand >& 2 # redirect output to std error
command > | og 2>>| og # both std output & std error
command > | og 2>&1 # same effect
exec < data # redirect subsequent commands

exec > /tnp/output
exec 2> /tnpl/errors

command <&- # close standard input
command >&- # close standard output

39

Unix Tools

Korn shell
.profile
HI STSI ZE=100
export H STSI ZE
set -0 vi

.scripts
#1/ bi n/ ksh
@#)fibonacci — nunber generator

1))
b=0))

((fib
((ol df
while ((fib < 1000)) ; do
echo $fib
((save = fib))
((fib="fib + oldfib))
((oldfib = save))
done

job control
$ prog &

[1] 886
$ jobs

[1] + running pr og
$ kill %

[1] + term nated prog
$ prog
NZ

[1] + stopped pr og
$ bg
[1] prog &

I/ bin/sh
@#)rolo - rolodex: |ook up, add & renove phone book entries

#

#

#

phonebook entry

e.qg.

nane: addr ess: ci ty: phone:

#if it is set on entry, then leave it al one

${ PHONEBOOK: =$HQVE/ phonebook}

export PHONEBOOK

if [! -f "$PHONEBOOK"]; then
echo "No phone book file: $HOVE/ $PHONEBOXK !";
echo "Should | create it for you (y/n) ? \n"
read reply

if ["$reply" '=y]; then
exit 1
fi
> $PHONEBOXK || exit 1 # exit if creation fails

fi

if argunents are supplied, then do a | ookup
if ["$#" -ne 0]; then

rololu "$@; exit 0
fi

set trap on interrupt to continue |oop
trap "continue" 2

40

Unix Tools

loop until user selects exit
while true ; do

display nmenu

echo '

Wul d you like to:

Look soneone up

Add soneone to the phone book
Renove soneone fromthe phone book
Change an entry in the phone book
Show all entries in phone book

Qui t

Pl ease sel ect one of the above (1-6):\c

ookwhE

read and process sel ection
read choice
echo

case "$choice" in
1] 1) echo "Enter nane to look up: \c
read nane
if [-z "$nane"]; then
echo "Lookup ignored"
el se
rololu "$nane"
fi;;

2| a) roloadd ;
3| r) echo "Enter name to renpve: \c"
read nane
if [-z "$nane"]; then
echo "renove ignored"
el se
rol orenove "$nane"
fi;;
4] ¢) echo "Enter nanme to change: \c"
read nane
if [-z "$nane"]; then
echo "change i ngored"
el se
r ol ochange " $nane"
fi;;

5| s) roloshowall;

6| g exit O

*) echo "Bad choi ce\007";
esac
done
#! / bi n/ sh
@#)rololu - | ook up soneone in the phone book

if ["$#" -ne 1]; then
echo "I ncorrect nunber of argunents"”
echo "usage: rololu nane"
exit 1

fi

nane=$1

41

Unix Tools

grep "$nane" $PHONEBOOK > /t np/ mat ches$$

if [! -s /tnp/matches$$]; then
echo "Can't find $nanme in the phone book"
el se
di splay each matching entry
while read |line; do
./rol odisplay "$line"
done < /tnp/ mat ches$$

fi

rm/tnp/ mat ches$$

#!/ bi n/ sh

@#) rolodisplay - display rolo entry from phone book
S

| Joe's Pizza |

| George Street |

| Brisbane |

| 864-3021 |

|

|

| o] o] |
S
echo

EChO M-m e
entry=$1

| FS=":" # field separater

set $entry

for linein "$1" "$2" "$3" "$4" "$5" "$6"

do
echo " [\r| $line"
draws right side first \r sends cursor back to beginning

done

echo "| o] o | "

€ChO M- m s "

echo

#!/ bi n/ sh

@#)rol oadd - add soneone to the phone book

echo "Type in your new entry"
echo "enter a single RETURN when done"

first=
entry=

while true ; do
echo ">> \¢c"
read |ine

if [-n"S$line"]; then
entry="$entry$line:"
if [-z "$first"]; then

first=%line

fi

el se
br eak

fi

done

echo "$entry" >> $PHONEBOOK

42

Unix Tools

sort -o $PHONEBOOK $PHONEBOCK
echo
echo "$first has been added to phone book"

#! / bi n/ sh
@#)rol orenove - renove soneone fromthe phone book

nanme=$1

get matching entries and save in tenp file
grep "$nane” $PHONEBOOK > /t np/ mat ches$$

if [! -s /tnp/matches$$]; then
echo "Can't find $nanme in the phone book"
exit 1

fi

display matching entries one at a tinme and confirmrenova
exec < /tnp/ mat ches$$ # reassi gn standard i nput

while read line ; do
rol odi splay "$line"
echo "renove this entry (y/n) ? \c"
read reply < /dev/tty # use 'line' if not supported

if ["$reply" =y]; then
br eak
fi
done

rm/tnp/ mat ches$$

if ["$reply" =y]; then
if grep -v "~$line$" $PHONEBOOK > /tnp/ phonebook$$; then
mv /t np/ phonebook$$ $PHONEBOOK
echo "sel ected entry has been renoved"
el se
echo "entry not renoved"
fi
fi

#! / bi n/ sh
@#)rol oshowal | - show all entries in phone book

| FS=
ECHO M- m o m e e "
while read line ; do
get first and last fields, names and phone nunbers

set $line
display first and last fields
eval echo "\t \ $$# r $1\ " "
done < $PHONEBOOK
€ChO M-mme e m e "
AWK — Tutorial
convenient & expressive programming language, Example:_employee hourly rate hours worked
2 types of data: numbers & strings John 8.00 0
Mark 8.50 10
Sue 9.00 20

43

Unix Tools

awk "$3 > 0 { print $1, $2 * $3 }' enployee.data
Mar k 85
Sue 180

UBUNTU: mawk

Usage: mawk [-W option] [-F value] [-v var=value] [--] 'program text' [filename]

Program structure
pattern (action)
every input line is tested using 'pattern'

Running AWK
awk 'program' input files
awk -f progfile input files

Output

{ print $0 } print entire line

{ print $1, $3} print first and third fields

{ print NF, $1, $NF }print number of fields and first and last fields

{ print NR $0 } print number of records and line prefix each line with line number
{ printf("pay for", $1, "is", $2 * $3) } place text in output
{ printf("pay for %8sis $%6.2f\n", $1, $2 * $3) } formatted output
Selection

$2 >= 5

$1 == "Sue"

/ Sue/

$2>:4|| $3 >= 20
1($2 < 4 && $3 < 20)

data validation

NF !'=3 {print $0, "nunber of fields is not equal to 3"}
$2 <5 {print $0, "rate is bel ow m ni mum wage"}

$3 <0 {print $0, "negative hours worked"}

$3 > 60 {print $0, "too many hours worked"}

add headings to input file
BEG N {print "NAME RATE HOURS', print ""}

{ print }

Computing
$3 > 15 { enp = enmp + 1}
END { print enp, "enployees worked nore than 15 hours" }

END { print NR "enpl oyees"}

{ pay = pay + $2 * $3 }
END { print NR, "enpl oyees"}
print "average pay is", pay/NR
}

$2 > maxrate { maxrate = $2; maxenp = $1 }
END { print "highest hourly rate:", maxrate, "for", nmaxenp }

string concatenation
{ names = nanmes $1" "}
END { print names }

44

Unix Tools

print last input line
{ last = $0 }
END { print last }

counting lines, words and characters

{ nc =nc + length($0) + 1
nw = nw + NF
}
END { print NR "lines,", nw, "words,", nc, "characters" }

Flow Control
compute total & average pay of employees above $6/hour
$2 >6 { n=n + 1; pay = pay + $2 * $3 }
END {
if (n>0)
print n, "enployees, total pay is", pay, "average is", pay/n
el se
print "no enpl oyees are paid nore than $6/ hour"
}

interest] — compute compound interest
input: amount rate years
output: compounded value at end of each year
i =1

{ while (i <= $3)

{ printf("\t%2f\n", $1 * (1 + $2)"i)

i =i +1
}

$ ank -f interestl
1000 0.06 5

interest2 — compute compound interest
{
for (i =1; i<=$3 i =i + 1)
printf("\t%2f\n", $1 * (1 + $2) ~ i)
}

Arrays
reverse — print input in reverse order by line
{ line[NR] = $0 } # renmenber each input |ine
END
{ for (i =NR i >0; i =i - 1)

print line[i]
}

"One-Liners"
Print the total number of input lines NF > 4
END { print NR}

Print all input lines where last field is greater than 4

Print the tenth input line SNF > 4
NR == 10

Print the total number of fields in all input lines
Print the last field of every input line { nf =nf + NF}
{ print $NF } END {print nf}

Print the total number of lines that contain Mark
Print the last field of the last input line /Merk/ { nlines = nlines + 1}
{ field = $NF } END {print nlines}

END rint field
tp } # Print the largest field first and line that contains it

Print every input line with more than four fields $1 > max { max = $1; maxline = 30 }

45

Unix Tools

END { print max, maxline }

Print every line that has at least one field
NF > 0

Print every line longer than 80 characters
l engt h($0) > 80

Print the number of fields in every line and the line

AWK — Programming Language

File processing programming language:
- generates reports

- matches patterns

- validates data

- filters data for transmission

+ Program Structure
pattern (action)
pattern (action)

The pattern or action may be omitted, but not both

An awk program has the following structure:

{print NF, $0}

Print the first two fields in opposite order
{print $2, $1}

Replace first field by the line number
{$1 = NR print}

Erase second field
{$2 =""; print }

- a BEGIN section — run before input lines are read

- arecord section

- an END section — run after all files are processed

+ Lexical Units

Awk programs are made up of lexical units called tokens:
- numerical constants — decimal or floating e.g. 12.
- string constants — sequence of characters e.g. "ab"

- keywords

- BEGN END FILENAME FS NF NR OFS ORS OFMI RS

- break close continue
nunber print printf

- identifiers — variables k arrays
- operators
- assignment
- arithmetic
- relational
- logical && | !
- regular expression matching

- record and field tokens
- $0 current input record

- $1 first field, $2 second field, etc

4= = *= = O%= ++ --

- NF number of fields, $NF last field (not defined in BEG N or END pattern)

- NRnumber of records (lines so far)

- RSrecord separator (set to newline)

- FSfield separator (set to space)

- RS=" " makes an empty line the RS

- OFS output field separator
- ORS output record separator

- comments

exp for getline if in length |og next
split sprintf substr while

46

Unix Tools

- #this is a conmment

- tokens used for grouping
- Braces (...) surround actions
- Slashes /. ../ surround reg expr patterns

- Quotes

+ Primary Expressions

surround string constants

Patterns and actions are made up of expressions:
- numeric constant numeric value string value

0 0 0
1 1 1
.5 0.5 .5
5e2 50 50
- string constant numeric value string value
" 0 enpty
"a" 0 a
"xyz" 0 Xyz
" 5" 0.5 .5
- variables
- identifier
- identifier [expression]
- S$term
- functions
- arithmetic functions exp(el) int(el) log(el) sqrt(el)

- string functions
- getline

- index(el, e2)

replace current record with next record, returns 1 if there is a
next record or a 0 if no input record
returns the first position where €2 occurs as a substring in el.

-

- length(el) number of characters in string

- split(el) split expression into fields are stored in array[1],... array[n]
returns number of fields found.

- sprintf(f, el, e2, ...) similar to printf

- substr(el, e2, e3)

returns the suffix of a string

e.g. substr("abc", 2, 1) ="b"

Terms

Operators are applied to primary expr to produce larger syntactic units called terms:

- primary expression

- binary terms — term binop term

- unary terms — unop term

- incremented vars — ++var --var
- parenthesized terms — group terms

var ++ var - -

Expressions

Awk expression is one of the following:

- term

- termterm...

- concatenation of terms — e.g. 142 3+4 ==>37
- var asgnop expression

- assignment expressions —e.g. a +=Db

Using AWK

-

Input and Output

awk '{ print x }' x=5 -
awk '{ print x }' filel
awk -f awkprog RS=":" filel
awk -F: -f awkprog filel

input from file

input from std input

set Record Separator
set Field Separator

47

Unix Tools

nn

Let an example input file "countries", contain fields "country", "area", "population
p p y pop

nn

, "continent"

awk '{ print $2, $1 }' filel # outputcolumn?2 & 1

awk '{ print NR $0 }' filel #addline numbers
awk '{ printf "9%0s 9%d %d\n", $1, $2 ,$3 }' filel

{ if ($4 == "ASIA") print > "ASIA"
if ($4 == "EUROPE") print > "EUROPE"}
{ if ($2 == "XX") print | "mail joe" }
{ print $1 | "sort" }
{ print ... | "cat -v > /dev/tty" }
Patterns
Certain words

BEG N { FS="\t"
printf "Country\t\tArea\tPopul ati on\t Conti nent\n\n"

}
{ printf "% 10s\t%d\t%®d\t\t% 14s\n", $1, $2, $3, %4 }
END { print "The nunber of records is", NR}

Arithmetic relational expressions
$3 >100

Regular expressions
I xlyl # contains either x or y
[ax+b/ # 1 or more x's between a and b
[ax?b/ # 0 or more x's between a and b
/a.bl # any character between a and b
[ax*b/ # 0 or more x’s between a and b

Combinations of above

$2 >= 3000 && $3 >= 100 # AND
$4 == "Asia" || $4 == "Africa" # OR
$4 ~ /"Asia| " Africal # matches

+ Pattern Ranges

patternl, pattern2 (action)

all lines between patternl and pattern 2
eg.

/ Canada/,/Brazil/ {.}

NR == 2, NR==5{.}

Actions
Sequence of action statements separated by newlines

expressions
{ print $1, (1000000 * $3) / ($2 * 1000)}

variables
{Asial { pop += $3; ++n }
END { print "total population of", n, "Asian countries is", pop }

initialisation of variables
maxpop < $3 {
maxpop = $3
country = $1

}
END { print country, maxpop }

field variables

48

Unix Tools

BEGA N (FS="\t" }
{ $4 = 1000 * $3 / $2; print}

string concatenation
IN {s=s" "$1}
END { print s }

arrays
{ XINRl = $0 }
END { ... program...}

Special Features
Built-in Functions

print length of line
{ print length $0 }

print country with longest name

length($1) > max { max = length($1);

END { print name }

abbreviate country names to 3 letters

{ $1 = substr($1, 1, 3); print }

Flow of Control
{ if (maxpop < $3)
{

maxpop = $3
country = $1
}
END { print country, maxpop }
{ i =1
while (i <= NF)
{
print $i
++i
}
}
{ for (i = 1; i <= NF; i++)
print $i
}

BEG N { FS="\t"}
{ popul ation[$4] += $3}
END { for (i in population)

print i, population[i]

}

Report Generation

nane = $1 }

Smith draw 3 # input
Brown eqn 1
Jones spell 5
Smith draw 6

{ use [$1 "" $2] += $3 }
END { for (np in use}
print np" "use[np]
}

sort +0 +2nr"

49

Unix Tools

Brown eqn 1
Jones spell 5
Smith draw 9

output

{ if ($1 !'= prev)

{
print $1 ":"

prev = $1
}
print" "$2" "$3
}
Brown: # output
eqn 1
Jones:
spell 5
Smith:
draw 9

Cooperation with the Shell

To get field n into the awk program:

"{ print $ $1'}'
"(print \'$ $1)"

Multidimensional Arrays

for (i =1, i <= 10; i++)

for (j = 1; j <= 10, j++)
miltifi ", j] = ..

50

Development Tools

5. DEVELOPMENT TOOLS

Program/Project Development Tools

Make rebuild programs when source files are modified
t ouch put a new time on a file

[int rigorously check program syntax & semantics
ch ¢ beautifier — correctly indent C programs

i ndent a better program that indents C programs

UBUNTU: cb is not provided
Indent is not installed

ct ags generates "tags" file used by vi editor for quickly finding function definitions
cc c compiler options

cpp ¢ preprocessor — called by cc

Id link loader — called by cc

si ze bytes for text, data and bss sections

strip remove symbol & line information from common object file

ar archival libraries e.g. /usr/lib/libxxx.a

diff prints lines that differ in two files

sccs toolkit used for managing revisions of programs and group projects
adb/ sdb assembler and symbolic debuggers

dbx source code debugger

tar write file tree to tape/disk

conpr ess compact to save space

UBUNTU: compress provided as “ncompress” but is not installed
sccs is not provided
adb/sdb is not provided

I ex generate ¢ code for lexical analysis
yacc yet another compiler-compiler
MAKE

When a program is written as multiple .c and .h files there can be many steps to recompiling and eventually linking
the entire system. Manually keeping track of which files that need to be recompiled can be a difficult and unreliable
process. To automate this Unix provides the make program.

When invoked, make searches for a text file called "Makefile" or "makefile" which defines the rules for rebuilding
any part or sub-part of a system. In the most common case we wish to rebuild (compile) an object file
corresponding to a .c file.

For example a rule in the makefile like:

main.a: nain.c win.h
cc -DDEBUG -c¢ nmin.c

would indicate that to build the target file "main.o" we need the files "main.c" and 'win.h". The commands to create
the target file follow this heading and must be indented, with a <TAB> (in this case the “cc" command) . Any shell
command may be used.

Programs often consist of many source files, each of which may need to pass through preprocessors, assemblers,
compilers, and other utilities before being combined. Forgetting to recompile a module that has been changed — or
that depends on something you've changed — can lead to frustrating bugs.

51

Development Tools

Make looks at the date stamps on your files, then does what is necessary to create an up-to-date version.
Makefile format:
target: prerequisite-list
<TAB> construction-conmands

Increases of the modularity of programs means that a project may have to cope with a large number of files:

- file-to-file dependencies

- make creates the finished program by recompiling only those portions directly of indirectly affected by the
change

- find the target in the description file

- ensure that all files on which the target depends, exists and are up to date

- create target file if any of the generators have been modified more recently than the target

Commands in the rule will be performed whenever "main.o" is needed and "main.c" or "win.h" have been updated

since "main.o" was last rebuilt.

[* Main.Cc ------------mee oo */
#i ncl ude "w n. h"

[* WiN.C ----mmmm e */
#i ncl ude "w n. h"

[* Kit.C =-mmmmmm e e e e e a o */
#i nclude "kit.h" #include "w n.h"

makefile -------mmmmmm e
prog: main.o win.a kit.a
CC -0 prog main.a win.a kit.a #link

main.a: nmain.c win.h
CC -C main.c # conpile

win.o: wn.cwn.h
CC -C win.c -lcurses # conpile in library

kit.a: Kkit.c kit.h win.h

cc -DDEBUG -c kit.c # conpile with debug
B e e e e e eae
$ make kit.o # recompiles kit.a if any of kit.c, kit.h or win.h has been changed
$ make prog # rebuilds (compiles) any of object files required to build "prog " and then link these files
$ make # same as "make prog" (1st rule)
$ make -n prog # show commands only (not performed)
$ make -ffile.nk # use file.mk instead of Makefile
Dependency Tree main.c
} main.o
win.c
} win.o

win.h prog

kit.c kit.o

kit.h
#Makefile -----om e
BASE = /staff/neville
CcC =cc

52

Development Tools

CFLAGS =-Aa -O
| NCLUDE = -I$(BASE)/include
LI BS = $(BASE)/lib/glib.a \
$(BASE)/lib/ulib.a
PROG = $(BASE)/bin/compsort
oBJS = main.a compare.o quicksort.o \ rankorder.o
$(PROG) : $(OBIS)

@cho "linking ..."
@(CC) $(CFLAGS) -0 $(PROG $(0BJS) $(LIBS)
@cho "Done"
$(0BJS): conpare.h
$(CO) $(CFLAGS) $(INCLUDE) -c $*.c

TOUCH
Allows you to change dates on individual files

/* Example C programto denonstrate the make utility */
/* convert tabs in standard input to spaces in
standard out put while maintaining colums */

*

$ cc tabs.c oR $ nake tabs

$ a. out $ tabs

Four conponents of conpilation process:
Pr epr ocessor

Conpi | er

Assenbl er

Li nk Editor

L T T

~

/* preprocessor directives */
include <stdio. h> redefine TABSI ZE 8

/* prototypes */
int findstop(int col);

mai n()

{ |

int c; /* char read fromstdin */

i nt posn=0; /* colum position of char */

int inc; /* colum increment to tab stop */

while ((c = getchar()) !'= EOF){
switch(c){
case '\t': [/* c is a tab */
inc = findstop(posn);
posn += inc;
for (; inc > 0; inc--)

putchar(' ');
br eak;
case '\n': /* cis a neMine */
put char(c);
posn = O;
br eak;
def aul t: /* ¢ is anything else */
put char(c);
posn++;
br eak;

53

Development Tools

/* conpute size of increnment to next stop */
int findstop(int col)

return (TABSI ZE — (col * TABSIZE));

LINT

A C program checker/verifier. Attempts to detect features that are likely to be:
- execution errors — detects bugs

- non-portable

- wasteful of resources — obscurities

Also inconsistencies in code:

- unreachable statements

- loops not entered at top

- automatic variables declared and not used
- logical expressions that are constant

- return values in functions

- number of argument in functions

- function values changed but not returned
- checks consistency with libraries

- enforce type-checking rules more strictly
- find legal constructions that may produce errors used for portability

usage:
lint [options] files libraries
options:
- a suppress messages about assignments of long values to variables that are not long

- b suppress messages about break statements that can not be reached
consult "man lint"

INDENT

Indent and format C program source. It reformats the C program in the input-file according to switches:
indent [input-file [output-file]) [switches]

If you only specify an input-file, formatting is written back into the input file (a backup is made in file. BAK)

There are options to place blank lines before or after various blocks of code: - bap - bad,
- bbb, -bc
You may turn off the -bc option with -nbc.

Control the layout of compound statements: - br, -bl, -brr

if (...)

{/* -br option */
code

}

The layout of comments: -cn, -cdn, -cdn

CTAGS
Create a tags file for "vi". Each line of the tags file contains the object name, file in which it is defined, and an
address specification for the object definition

- X causes ctags to print a simple function index: function name, filename, line number, text of line to standard
output (no tags file is created)

C Compiler
Example:
$ cc -c min.c filel.c file2.c

54

Development Tools

$cc —o pgmnain.a filel.o file2.0

cc [options] file.c

-C compile only (suppress link editor)
-g generate code for debugger

-0 optimize for speed

-p produce code for profiler

-0 name put executable code in name

-M make a makefile

-S generate assembler code .s file

- |d —link editor
Takes one or object files or libraries as input and combines them to produce executable file. It resolves references
to external symbols, and performs "relocation" of addresses.

-1 x search library libx.a
-L dir directory other than /lib or /usr/lib
-u symane enter undefined symbol in symbol table
-S strip symbol table
- Cpp - c preprocessor
- Dnane=def define name for preprocessor
- Idir include file directory
-E invoke preprocessor only
Example:
Exanpl e nmakefile
LIB=~/1ib

CFLAGS=-1~/i ncl ude - DDEBUG

.C.o0:
cc -c P(CFLAGS) $<

main: main.a filel.o file2.0
$(CC -o main filel.o file2.0 -L $(LIB)

C Preprocessor

cpp - actions before ¢ compiler

#define ident token eg. #defi ne I F i f(

#undef i dent #def i ne THEN)
#def i ne BEG N{

#incl ude "fil enane" #def i ne END 1}

#i ncl ude <fil ename> #defi ne ELSE el se

used to include:
#def i nes
ext erns
typedefs
struct definitions
nest ed #i ncl udes

#i f const _expr
#i fdef ident
#i f ndef i dent

#el se

55

Development Tools

#endi f
#l i ne constant ident

Profiler

Produces a report on the amount of execution time spent in various portions of the ram times each function called.

#i ncl ude <stdio. h>
#defi ne N 5000

mai n()
{
int a[N, i;

void quicksort(int *, int *);

srand(time(NULL));
for (i=0; i<N, ++i)
atil = rand() % 1000;
qui cksort(a, a+tN-1);
for (i=0; i<N1; ++i)
if (a[i] > a[i+1])
{

printf("SORTI NG ERROR — bye!\n");
exit(1);

}

$ cc -p -0 quicksort main.c quicksort.c
$ qui cksort
$ prof quicksort

%time cumsecs #call ms/call name
469 7.18 9931 0.72 partition

16.1 9.64 1 2460.83 _main
11.7 011.43 19863 0.09 _find pivot
10.8 13.8 _mcount

6.9 14.13 50000 0.02 _rand

AR — archive
Used to create libraries of object files
ar key [posnane] arfile.a [object _files]...

e.g.
ar rvrst.a *.a # replace, verbose
ar t /lib/libc.a # print table of contents

$ ar ruv $HOWE/ lib/glib.a gfopen.o gfclose.o gcalloc.o ...

$cc-cmin.c filel.c file2.c
$cc-opgmmain.afilel.ofile2.0 -L$HOW/ lib -1g

NM

nm-f rst.a # name list
nane val ue cl ass type size line section

Application Programming

Need for interaction G sharing of information. Developed by a team of programmer. Lifespan of application —

average of 5 years. Different programmer — average every 2 years.

Functions

- operation of each

- number S name of arguments
- arguments are input/output

56

Development Tools

- data returned by function
Portability
- to produce code to run on many systems
Documentation
- comments throughout for successor programmer
- list of functions to stop duplication
- instructions on use of applications
- end-user documentation
Project Management
- tracking dependencies between modules of code
- dealing with change request in controlled way
- seeing that milestone dates are met
SCCS
When a program is under the control of SCCS, only one copy of any one version of 1 code can be retrieved for
editing at a given time.

Only the changes are recorded. Each version is identified by its SID (SCCS indent number).
SCCS commands:

admi n initialise SCCS files — access

get retrieves versions of SCCS files
delta applies changes to SCCS files

prs prints portions of SCCS files

r ndel remove a delta from SCCS

cdc change comment with delta

what search files for special pattern
sccsdi ff show differences between SCCS files
conb combine consecutive deltas into one
val validate an SCCS file

Used to track evolving versions of files:
- store and retrieve files under its control
- allow no more than a single copy of a file to be edited at one time
- provide an audit trail of changes to files
- reconstruct any earlier version of file

History data can be stored with each version,
- Why changes were made,
- Who made them,
- When they were made.

Terminology
A delta is a set of changes made to a file under SCCS custody. To identify and keep track of a delta, it is
assigned as SID (SCCS ID).

Creating SCCS file
A file called "lang" contains the following:
C
PL/1
FORTRAN
COBOL
ALGOL

$ admin -ilang s.lang
$ rmlang

Retrieving file via "get"
$ get s.lang

57

Development Tools

1.1
5 lines

Retrieves text in file "g.lang"
$ get -e s.lang 1.1
new delta 1.2
5 lines

Creates "lang" for both reading and writing, also creates another file p.lang" needed by "delta". Add two
more languages to the file "lang*.

SNOBOL

ADA

Recording changes via "delta"
$ delta s.lang
comments ?
added more languages
1.2
2 inserted
0 deleted
5 unchanged

Additional info about “get”
$ get -e r2 s.lang Ifrelease 2 does not exist retrieves 1.2 and names it 2.1 1.2
new delta 2.1
7 lines

Delete COBOL from languages
$ delta s.lang
comments?
deleted cobol from list
2.1
0 inserted
1 deleted
6 unchanged

The help command
$ get lang
ERROR [l ang]: not an SCCS file (col)

$ help col
col :
"not an SCCS file”

A file that you think is an SCCS file does not begin with the character "s"

Delta Numbering
Think of deltas as nodes of a tree in which the root node is the original version of the file. The root is
named 1.1 and delta nodes are named 1.2, 1.3, etc. release.level.branch.sequence

Debugging
It usually faster and more efficient to place a few well placed print statements within your code and recompile it,

than resort to using adb/sdb. However newer debugging tools are mouse driven and extremely ease to use.

ADB — absolute debugger
General purpose debugger — sensitive to architecture of processor. Unless you are ¢ assembly hacker this is a time
consuming experience.

adb [options] [objfile [corefile]]
adb a.out core

58

Development Tools

DBX — source code debugger (xdb)

Compile the .c files that you wish to debug with "-g" option. This tool is quiet useful, but takes time to master.
$cc-g-cwn.c
$ cc -oprog nain.a win.a kit.a
$ dbx prog

Example commands:
r args runprogram with arguments

S step — execute one line of program
S Step one line

t display runtime stack

q quit

GDB — the GNU debugger
- What statement or expression did the program crash on?
- Ifan error occurs while executing a function, what line of the program contains the call to that
function, and what are the parameters?
- What are the values of program variables at a particular point during execution of the program?
- What is the result of a particular expression in a program?

Compile source program with "-g" option: $ cc -g prog.c -o prog
$ prog
bus error — core dunped

$ gdb prog
mai n: 25: x[i] = 0;

GDB commands

When gdb starts, your program is not actually running. It won't run until you tell gdb how to run it.
Whenever the prompt appears, you have all the commands on the quick reference sheet available to you.

s run command-line-arguments
Starts your program as if you had typed
a.out command-line arguments
or you can do the following
a.out < somefile
to pipe a file as standard input to your program

« break place
Creates a breakpoint; the program will halt when it gets there. The most common
breakpoints are at the beginnings of functions, as in

(gdb) break Traverse
Breakpoint 2 at 0x2290: file main.c, line 20

The command break main stops at the beginning of execution. You can also set breakpoints at a
particular line in a source file:

(gdb) break 20
Breakpoint 2 at 0x2290: file main.c, line 20

When you run your program and it hits a breakpoint, you'll get a message and prompt like this.
Breakpoint 1, Traverse(head=0x6110, NumNodes=4)
at main.c:16

(gdb)

59

Development Tools

In Emacs, you may also use C-¢ C-b to set a breakpoint at the current point in the program (the
line you have stepped to, for example) or you can move to the line at which you wish to set a
breakpoint, and type C-x SPC (Control-X followed by a space).

delete N

Removes breakpoint number N. Leave off N to remove all breakpoints. info break gives info
about each breakpoint

help command
Provides a brief description of a GDB command or topic. Plain help lists the possible topics

step
Executes the current line of the program and stops on the next statement to be executed

next
Like step, however, if the current line of the program contains a function call, it executes the
function and stops at the next line.

step would put you at the beginning of the function

finish
Keeps doing nexts, without stepping, until reaching the end of the current function

Continue
Continues regular execution of the program until a breakpoint is hit or the program stops

file filename

Reloads the debugging info. You need to do this if you are debugging under emacs, and you
recompile in a different executable. You MUST tell gdb to load the new file, or else you will keep
trying to debug the old program, and this will drive you crazy

where
Produces a backtrace - the chain of function calls that brought the program to its current place.
The command backtrace is equivalent

print £

prints the value of £ in the current frame in the program, where £ is a C expression (usually just a
variable). display is similar, except every time you execute a next or step, it will print out the
expression based on the new variable values

quit
Leave GDB. If you are running gdb under emacs,

Cx0
will get you just your code back

The goal of gdb is to give you enough info to pinpoint where your program crashes, and find the bad
pointer that is the cause of the problem. Although the actual error probably occurred much earlier in the
program, figuring out which variable is causing trouble is a big step in the right direction. Before you
seek help from a TA or preceptor, you should try to figure out whereyour error is occurring.

60

Development Tools

TAR

tar cf files.tar dirnane # create tar of files
tar tvf files.tar # full view of files in tar
conpress files.tar # compress (tree archive)

uuencode files.tar.Z files.tar.Z > files.tar.Z. uu
elm-s "files.tar.Z. uu" neville < files.tar.Z. uu

uudecode files.tar.Z uu | unconpress | tar xvf — #extract files
Other compression tools such as " f r eeze*, "zoo", "zip", "jpeg" are freely available for UNIX systems.
Program Development

yacc a parser generator — generates a parser from a grammatical description of a language
make controlling the processes by which a complicated program is compiled

lex

YACC

making lexical analysers

Example: A simple calculator
4*3%2

24
355/113

3.1415929
(142)*(3+4) Grammar:

21 list: expr \n
list expr \n

expr: NUMBER
expr +' expr
expr '-' expr
expr ** expr
expr /' expr
I(I expr I) '

Yet Another Compiler-Compiler. Yacc is a powerful tool. It takes some effort to learn. Yacc-generated parsers are
small, efficient and correct.

write the grammar

each rule of grammar can have an action written in C — this defines the semantics

a lexical analyser (LEX) to break input into meaningful chunks (token) for the parser
a controlling routine to call the parser that yacc built

- Input to yacc:

%o{

C statements like #include, declarations
Yo}

yacc declarations: lexical tokens, grammar variables, precedence and
associativity information

%%

grammar rules and actions

%%

more C statements

main() { ...; yyparse(); ...}

yylex() { ... }

/*
$ yacc hocl .y
$ cc y.tab.c -0 hocl

61

Development Tools

*/

%

#def i ne YYSTYPE double /* data type for yacc stack */
#i ncl ude <stdi o. h>

#i ncl ude <ctype. h>

char *prognaneg;

int |ineno=1;

%
% oken NUMBER
Yeft "+ - /* left associative, same precedence */
%eft "> "/ /* left assoc., higher precedence */
%
list: /* nothing */

| list "\n'

| list expr "\n" { printf("\t%8g\n", $2);}
exp}:
NUMBER

| expr expr {3 =%1

expr ' expr {3 =%1

+ + $3;}
| - - $3;}
| expr "*' expr {$$ =$1 * $3;}
| expr '/' expr {$$ =%$1 / $3;}
| ' (" expr) {$% =%2;}

9@6}*end of grammar */

mai n(i nt argc, char *argv[])
{
prognane = argv[0];
yyparse()

gylex()
int c;
while ((c=getchar() ==" "' || c == "\t");

if (c == EOF)
return O;
if (c =="." || isdigit(c))
{
ungetc(c, stdin);
scanf ("9%f", &&yylval);
return NUMBER
}
if (c =="\n")
[i neno++;
return c;

}

yyerror(char *s)

war ni ng(s, (char *) 0);

}
war ni ng(char *s, char *t)

fprintf(stderr, "%: %", prognane, s);
if (t)

fprintf(stderr, " %", t);
fprintf(stderr, "near line $d\n", |ineno);

62

Development Tools

}

- This is processed by yacc into file called y.tab.c

C statenents frombetween %4 and %, if any
C statenents fromafter second %4 if any
main() { ...; yyparse(), ...}

yylex(){ ... }

S/S/.parse() (parser, which calls yylex)

- Using lex and yacc)
lexical rules ~ grammar rules

lex yacc

| |
LEX input —— yylex —— yyparse —parsed input

- Input to lex:
definitions

%%

rules

%%

user subroutines

lex regular expressions

[a-z]* any number of characters, including zero
[a-z] + one or more characters
[A-Z][a-z][A-Za-zO 9] * all strings with leading character

| or

ab?c optional — matches ac or abc

Example:

/*

$ lex scan.1 ==> lex.yy.c

*/

D [0-9]

E [DEde][-+]?{D}+

9%

{D}+ printf("integer");

(D)+"."{Dt*({E})? | [/* at least one digit before . */
(D)*"."{D}+({E})? | [/* at least one digit after . */
{D}+H{ E} printf("real");

9%

63

C Libraries

6. C LIBRARIES

Input and Output
I/O streams that point to a file are block buffered.
Streams that point to a terminal (stdin & stdout) are line buffered.

To explicitly direct the system to flush the buffer at any time use the function 'ff lush"
voi d set buf (FILE *stream char *buf)

If you pass a null pointer as the buffer, the stream is unbuffered.
<stdio.h> header file — standard 1/0 functions
- prototype declarations for all I/0 functions
- declaration of the FILE structure
- macros — stdin, stdout, stderr, EOF, NULL

getc() fgetc(*fp++)
get char ()

put c() fputc(c, *fpt++)
put char ()

ferror() NULL is zero
clearerr() EOF is -1
feof ()

/* streamstat.c

if neither flag is set, stat will equal zero
if error is set, but not eof, stat equals 1
if eof is set, but not error, stat equals 2
if both flags are set, stat equals 3

*/

#i ncl ude <stdio. h>

#defi ne EOF_FLAG 1

#defi ne ERR FLAG 2

char stream stat (FILE *fp)
{
char stat =0;
if (ferror(fp))
stat | = ERR FLAG
if (feof (fp))
stat | = EOF_FLAG
clearerr(fp);
return stat;

}

More I/O info:
i nt getchar (void) = getc(stdin)
char *gets(char *string)=reads a line from stdin
/* gets = reads the linefeed & converts to a NULL */
int printf(char *format)
i nt put char (char c) = putc(c, stdout)

int puts(char *string) = writes a line to stdout
i nt scanf(char *format)

File /O
FI LE *fopen(char *fil ename, char *type)
type | Description
trt open existing text file for reading at beginning
"w' create a new text file for writing
"a" open an existing text file in append mode

64

C Libraries

"t open an existing text file for reading & writing at beginning
" WA open a new text file for reading & writing at beginning
"at" open an existing text file in append mode & allow reading
"pb" binary file

int fclose(FlILE *stream
int fflush(FILE *stream

int fgetc(FILE *strean
int fputc(int ¢, FILE *strean

char *fgets(char *s, int n, FILE *strean)
int fputs(char *s, FILE *strean

int fprintf(FILE *stream char *fornat)
int fscanf(FILE *stream char *format)

/* random access of file */
long ftell (FILE *stream
int fseek(FILE *stream |ong offset, int wherefrom
wherefrom= 0 beginning (SEEK SET)
1 current (SEEK_CUR)
2 end (SEEK_END)

int getc(FILE *stream
int putc(char ¢, FILE *strean)
int ungetc(int c, FILE *stream

int fread(void *buffer, unsigned el enent size, unsigned count, FILE *stream
/* read a block of binary data froma stream */

int fwite(void *buffer, unsigned el ement size, unsigned count, FILE *stream

voi d rewi nd(FI LE *stream

/* open test.c */
#i ncl ude <stdio. h>

FI LE *open_test (voi d)

FILE *fp;
fp = fopen("test","r");
if (fp == NULL)
fprintf(stderr, "Error opening file test\n");
return fp;

[* if ((fp=fopen("test", "r")) == NULL)
fprintf(stderr, "Error opening file test\n"); */

/* test_copy.c */

#i ncl ude <stdi o. h>

#define FAIL 0

#defi ne SUCCESS 1

int copyfile(char *infile, char *outfile)
FILE *fpl, *fp2;

if ((fpl=fopen(infile, "r")) == NULL)

return FAIL,;
if ((fp2=fopen(outfile,"w')) == NULL)
{ fclose(fpl); return FAIL;
}

65

C Libraries

while (!feof (fpl))
putc(getc(fpl),fp2);

fclose(fpl);

fcl ose(fp2);

return SUCCESS,;

}
Unbuffered I/0
standard device | file descriptor
stdin 0
stdout 1
stderr 2

void close(int fd)

int creat(char *nane, int perns)

| ong Lseek(int fd, long offset, int origin);
i nt open(char *name, int flags, int perns)
int read(int fd, char *buf, int n)

int wite(int fd, char *buf, int n)

unl i nk(char *nane)

flags

O RDONLY open read only

O WRONLY open write only

O _RDWR open read & write
perms

0666 all read & write

String Operations
#i ncl ude <string. h>
/* s and t are char * and ¢ and n are int */

strcat(s,t) concatenate t to end of s

strncat (s, t,n) concatenate n characters of t to end of s
strcnp(s,t) return -ve if s<t, 0 if s==t, +ve if s>t
strncnp(s,t, n) same as strcmp but only in first n chars
strcpy(s,t) copy ttos

strncpy(s,t,n) copyn characters fromttos
strlen(s) return length of s

strchr (s, c) return pointer to first ¢ in s

strrchr (s, c) return pointer to last c in s

Testing and Conversion
#i ncl ude <ctype. h>
/* function returns int and c is int */

i sal pha(c) non-zero if ¢ is alphabetic

i supper (c) non-zero if ¢ is upper case

i sl ower (c) non-zero if ¢ is lower case
isdigit(c) non-zero if ¢ is digit

i sal num(c) non-zero if isalpha(c) or isdigit(c)

i sspace(c) non-zero if ¢ is blank, tab, If, cr, ff, vt
t oupper (c) return ¢ converted to upper case

t ol ower (c) return ¢ converted to lower case

Error handling — Stderr and Exit
Output which is sent to stderr goes to the screen not down a pipeline or into an output file. Exit stops the program
and returns a value back to the system.

66

C Libraries

/* cat.c: — concatenate files */
#i ncl ude <stdi o. h>

mai n(int argc, char *argv[])

{

FILE *fp;

void filecopy(FILE *, FILE *);

char *prog=argv[O0]; /* program nane for errors */

if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);

el se
while (--argc > 0)

if ((fp=fopen(*++argv,"r")) == NULL)

{
fprintf(stderr, "%: can't open %\n", prog, *argv);
exit(1);

el se
filecopy(fp, stdout);
fclose(fp);

}

if (ferror(stdout))
fprintf(stderr,"%: error witing stdout\n", prog);
exit(2);

exit(0);

}

Line Input and Output
/* getline.c: — read a line, return | ength*/
#i ncl ude <stdio. h>

int getline(char *line, int nax)

{
if (fgets(line, max, stdin) == NULL)
return O;
el se
return strlen(line);
}
Read and writing to strings is similar to files
int sprintf(char *string, char *format, argl, arg2, ...);
i nt sscanf(char *string, char *format, argl, arg2, ...);

Storage Management
#i ncl ude <stdlib. h>

The functions malloc and calloc obtain blocks of memory dynamically.

void *mall oc(size t n); /* pointer to n bytes */
void *calloc(size t n, sizet size); /* n objects */
int *ip;

ip=(int *) calloc (n, sizeof(int));

void free(char *ptr) /* deal |l ocate nmenory */
char *realloc(char *ptr, unsigned size)

/* preserve contents and change size */

/* dynam c expandi ng of arrays */

for (p=head; p!=NULL; p=p->next){

67

C Libraries

free(p); /* what is wong here ? */

}

Mathematical Functions
#i ncl ude <mat h. h>
/* functions returns a double and has doubl e argunments */

si n(x) sine of x radians opp/hyp
cos(x) cosine of x radians adj/hyp
atan2(y, x) arctangent of y/x radians
exp(x) exponential function ex

I og(x) natural logarithm of x

[0g10(x) base 10 logarithm of x

pow(X, y) X"y

sqgrt(x) square root of x

f abs(x) absolute value of x

UNIX System Interface
File Descriptors

In the UNIX operating system, all input and output is done by reading or writing
files, because all peripheral devices, even keyboard and screen, are files in the file system.

When a file is opened a +ve integer, the file descriptor is used to identify the file. A file descriptor is analogous to the
file pointer used by the ANSI standard library, or to the file handle of MS-DOS.

File descriptor 0 is stdin, 1 is stdout, and 2 is stderr.
Low level I/O Read and Write

int n_read = read(int fd, char *buf, int nbytes);
int n_witten = wite(int fd ,char *buf, int nbytes);

/* copy.c: — copy input to output */
mai n()

char buf[BUFSI Z] ;

int n;

while ((n = read(0, buf, BUFSIZ)) > 0)
wite(l, buf, n);

return O;

/* getchar.c: — unbuffered single character input */
i nt getchar(void)

char c;

return (read(0, &, 1) == 1) ? (unsigned char) c : EOCF;
}
/* getchar.c: — sinple buffered version */

i nt getchar(voi d)

static char buf[BUFSI Z];

static char *bufp = buf

static int n = 0;

if (n==0) /* buffer is enpty */

{
n = read(0, buf, sizeof(buf));
buf p = buf;

68

C Libraries

return ((--n >= 0) ? (unsigned char) *bufp++ : EOCF);
}
Note: get char is often implemented as a macro in <stdio.h>, need to #undef getchar. Better to rename your
getchar.

Random Access

long I seek(int fd, long offset, int origin);

To append to file (>> in UNIX, "a" for fopen), seek end of file before writing: Iseek(fd, OL, 2);
To beginning ("rewind"): Iseek(fd, OL, 0);

A typical <stdio.h> header file:
#defi ne NULL 0
#def i ne EOF (-1
#defi ne BUFSI Z 1024
#define OPEN_MAX 20

/* max #files open at once */

typedef struct _iobuf {

int cnt; /* characters left */

char *ptr; /* next character position */
char *base; /* location of buffer */

int flag; /* nmode of file access */

int fd; /* file descriptor */

} FILE

extern FILE _iob[OPEN_MAX];

#define stdin (& iob[0])
#defi ne stdout (& iob[1])
#define stderr (& iob[2])

enum _fl ags {

_READ = 01, /* file open for reading */
_WRITE= 02, /* file open for witing */
_UNBUF= 04, /* file is unbuffered */
_EOF = 010, /* EOF has occurred on this file */
_ERR= 020 /* error occurred on this file */

};

int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

#define feof (p) (((p)->flag & _EOF) !'= 0)
#define ferror(p) (((p)->flag & _ERR) !'= 0)
((p

#define fil eno(p)) ->fd)

#define getc(p) (--(p)->cnt >= 0 ? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x, p) (--(p)->cnt >= 0 ? *(p)->ptr++ = (x) : _flushbuf ((x),p))
#defi ne getchar () getc(stdin)

#def i ne put char (x) putc((x), stdout)

The getc macro decrements the count, advances the pointer, and returns the character If the count goes negative, getc
calls the function fi |l buf to replenish the buffer and return a character.

#i ncl ude “syscalls.h”

/* fillbuf.c: — allocate and fill input buffer */

int _fillbuf(FILE *fp)

{

i nt bufsize;

69

C Libraries

if ((fp->flag& _READ| _ECF| _ERR)) != _READ)
return EOF;

bufsize = (fp->flag & _UNBUF) ? 1: BUFSI Z;

if (fp->base == NULL) /* no buffer yet */

if ((fp->base = (char *) malloc(bufsize) == NULL)
return EOCF; /* can't get buffer
fp->ptr = fp->base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);

if (--fp->cnt < 0)

if (fp->cnt == -1)
fp->flag | = _ECF;
el se
fp->flag | = _ERR
fp->cnt = 0;
return EOF;

return (unsigned char) *fp->ptr++;

}

Initialization of array _iob:
FILE _iob[OPEN MAX] = { /* stdin, stdout, stderr */
{ 0, (char *) 0, (char *) 0, _READ, O },

{ 0, (char *) 0, (char *) 0, WRITE, 1},
{ 0, (char *) 0, (char *) 0, WRITE| _UNBUF, 2},

3

Reading Directories
A directory is a list of filenames and an indication of where they are located. The inode for a file is where all
information about a file except its name is kept.

n n

To show a list of files lets write a fsize program (1s), using three routines "opendir", "readdir" and "closedir" to
provide system independent access to the name and inode number in a directory entry.

/* dirent.h */

#def i ne NAME_MAX 14 /* longest fil ename conponent */

t ypedef struct({ /* portable directory entry */

 ong i no; /* inode nunber */

char nane[NAVE_MAX+1); /* nanme + '\0' terminator */
}Dirent;

t ypedef struct({ /* mniml DR no buffering, etc */
int fd; /* file descriptor for directory */
Dirent d; /* the directory entry */

}DIR

DI R *opendir(char *dirnane);/* prototypes */
Dirent *readdir(D R *dfd);
voi d cl osedir(D R *dfd);

The system call "st at " takes a filename and returns all of the information in the inode for that file, or -1 for an error.

char *nane;
struct stat stbuf;
int stat(char *, struct stat *);

st at (name, &stbuf);

Fills the structure "stbuf' with the inode information for the file name. This structure is described in
<sys/stat. h>.

70

C Libraries

struct stat /*
{

dev_t st _dev; /*
ino_t st _ino; /*
short st _node; /*
short st _nlink; /*
short st _uid; /*
short st_gid; /*
dev_t st _rdev; /*
off t st_size; /*
time_t st_atine; /*
time_t st_ntine; /*
time_t st _ctine; /*
1

i node information returned by stat

devi ce of inode */

i node nunber */

node bits */

nunmber of links to file */
owner's user id */

owner's group id */

for special files */

file size in characters */
tinme | ast accessed */

time last nodified */

tine originally created */

*/

The types "dev_t" and "ino_t" are defined in <sys/types.h>. The "st_mode" is a set of flags defined in <sys/stat.h>.

#define S
#define S

MI 0160000 /*
DI R 0040000 /*

#define S_| FBLK 0060000 /*

I F
I F
#define S_| FCHR 0020000 /*
I F
I F

#define S_| FREG 0100000 /*

/*

*/

type of file */
directory */
character special */
bl ock special */
regul ar */

The "fsize" program to print file size:

#i ncl ude <stdio. h>
#i ncl ude <strings. h>

#i ncl ude <fcntl. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude "dirent.h"

#i ncl ude "syscall s. h" /*

voi d fsize(char *);

mai n(i nt argc,

{

}

if (argc == 1)

char **argv)

/* flags for read and wite */

prototypes of syscalls */

[* print file sizes */

/* default: current directory */

fsize(*++argv);

fsize(".");
el se

while (--argc > 0)
return O;

The function "fsize" prints the size of the file. If the file is a directory, f si ze calls dirwalk to handle all the files.

[* fsize:
int stat(char *,
voi d dirwal k(char *,

voi d fsize(char *nane)

{

struct stat stbuf;

print size of file "nanme" */
struct stat *);
void (*fcn)(char *));

if (stat(nane, &stbuf) == -1)

fprintf(stderr,

return;

"fsize: can't access %\n",

}
if ((stbuf.st_node & S IFMI) == S | FDIR)

di rwal k(nane,
printf("ld %\n",

fsize);
st buf. st_size, nane);

71

C Libraries

/* dirwal k: apply fcn to all files in dir */
#defi ne MAX_PATH 1024

void dirwal k(char *dir, void (*fcn) (char *))

{
char nanme[MAX_PATH ;
Dirent *dp;
DI R *df d;
if ((dfd =opendir(dir)) == NULL){
fprintf(stderr, "dirwal k: can’t open the %\n",dir);
return;
}
while ((dp = readdir(dfd) !'= NULL){
if (strcnp(dp->nanme,".") == 0 || strcnmp(dp->nane,"..") == 0)
conti nue; /* skip self and parent */
if (strlen(dir)+strlen(dp->nane)+2 > sizeof (nane))
fprintf(stderr,"dirwal k: name %% is too long\n", dir, dp->nane);
el se
{
sprintf(nane, "%%", dir, dp->nane);
(*fcn) (nane);
}
}
cl osedir (dfd);
}

The directory information in <sys/ di r . h>

#i fndef DI RSI Z
#define DIRSIZ 14

#endi f

struct direct /* directory entry */

{

ino_t d_ino; /* inode nunber */

char d_nane[DI RSI Z] ; /* long name does not have '\0' */
b

/* opendir: open a directory for readdir calls */
int fstat(int fd, struct stat *);

DI R *opendi r (char *di rname)

int fd;

struct stat stbuf;

DI R *dp;

if ((fd = open(dirnane, O RDONLY, 0)) == -1 || fstat(fd, &stbuf) == -

|| (stbuf.st_mde & S IFMI) != S IFD R
|| (dp = DR *) malloc(sizeof (DIR))) == NULL)
return NULL,;

dp->fd = fd;

return dp;

}

/* closedir: close directory opened by opendir */
voi d cl osedir (D R *dp)

if (dp)

{
cl ose(dp->fd);
free(dp);

}

72

C Libraries

/* readdir: read directory entries in sequence */
#i ncl ude <sys/dir. h> /* local directory structure */

Dirent *readdir(DIR *dp)

{
struct direct dirbuf; /* local directory structure */
static Dirent d; /* return: portable structure */
whi | e(read(dp->fd, (char*) &dirbuf, sizeof(dirbuf))== sizeof(dirbuf))
{
if (dirbuf.d_ino == 0) /* slot not in use */
conti nue;
d.ino = dirbuf.d_ino;
strncpy(d. nane, dirbuf.d_nanme, DIRSIZ);
d.name[DIRSI Z] = "\0'; /* ensure term nation */
return &d;
return NULL,;
}

File Status and Control

int fstat(int fd, struct stat *status);

int link(char *origfile, char *newfile);

int chmod(char *filenanme, int accessnode);

int chdir(char *dirnane); /* return O if successful */
int ioctl(int fd, int request, struct req *reqgparans);

/* get and set line paraneters (baud rate etc) */

System call /O
User

function caLl?/s A return

Standard I/0
A

functi Standard call tlues
A

function. UNIX kernel iurn values

Pipes
FI LE *p; /* pipe stream*/
char |ine[MAXLI NE] ; /* lines read */

if ((p = popen("grep unix *", "r")) == NULL){
fprintf(stderr,"can't create pipe\n"); exit(1);
}

while (fgets(line,sizeof line, p) = EOF){
/* do sonething with Iine */

pcl ose(p); [/* close the pipe */

Parallel execution

f or k duplicates a process and sets both executing in parallel, where as exec allows process to hand over control to
another program. By combining fork and exec, one program may start a second program and continue executing
itself. The original is then called the parent process, the copy is called the child process and both exe in parallel.

systemnm(char *command) /* execute a shell conmand*/

{
i nt status; /* status returned by conmand */
int pid; /* process id of conmand */
int wal; /* value returned by wait */

73

C Libraries

switch (pid=fork()){

case O: /* child exec's shell */
execl ("/bin/sh","sh","-c", conmand, 0) ;
/* fall through if exec fails */
case -1: /* could not fork, print error nmessage*/
perror (nynane);
exit(1);
def aul t: /* parent waits for child to finish */
while ((wal =wai t (&status)) != pid)
if (wal == -1) return -1;
}

return status;

}

Buffer control
#i ncl ude <stdi o. h>
char out buf [BUFSI Z] ;

mai n()
int c; /* for no buffering */
set buf (stdout, outbuf); /*set outbuf to NULL*/

while ((c=fgetc(stdin)) != EOF)
fputc(c, stdout);

}

The C Preprocessor

#i ncl ude for including files of text into a program

#include "fil enanme" from current directory

or

#i ncl ude <fil enanme> from directory "/usr/include"

cc -1../include prog.c tochange default directory redefine for defining constants

#defi ne NUMLINES 60

#def i ne for defining powerful in-line macros
#define mn(a,b) ((a) > (b) 2 (a) : (b))

#if, #ifdef, #ifndef & #undef for managing conditional compilation

#def i ne DEBUG
#i f def DEBUG
printf("M/Prog Version 1.0 (debug)\n"),
#el se
printf("Mprog Version 1.0 (production)\n");
#endi f

#undef _ TURBOC
#i fndef _ TURBOC

system("grep name * > nanes");
#endi f

#i f COLUWMNS > 80

/* code for wide printers */
#el se

/* code for narrow printers */
#endi f

cc -DLI NELENGTH=80 prog. c to define constants

74

C Libraries

Storage Allocator

Free list (points to a circular list of free blocks f)

n|x|f|f]x|x|f|n|n|x|f|f|f|f|n

x blocks (in use);
n blocks (not owned by malloc)

typedef |ong Align; /[* for alignnment to |ong boundary */
uni on header ({ /* bl ock header */

struct {

uni on header *ptr; /* next block if on free list */

unsi gned si ze; /* size of this block */

} s,

Align x; /* force alignment of blocks */

b

t ypedef uni on header Header

static Header base; /* enpty list to get started */
static Header *freep = NULL; /* start of free list */

/* malloc: general -purpose storage allocator */
voi d *mal | oc(unsi gned nbyt es)

{
Header *p, *prevp
Header *norecore(unsigned);
unsi gned nunits;
nunits = (nbyte+si zeof (Header)-1)/si zeof (Header) + 1;
if ((prevp = freep) == NULL) /* no free list yet */
{
base.s.ptr = freep = prevp = &base
base. s.size = 0;
}
for (p= prevp->s.ptr; ; prevp = p, p = p->s.ptr)
{
i f(p->s.size >= nunits) /* big enough */
i f(p->s.size == nunits) /* exactly */
prevp->s.ptr = p->s.ptr;
el se /* allocate tail end */
{
p->s.size -= nunits;
p += p->s.size;
p ->s.size = nunits;
}
freep = prevp;
return(void *) (p+l);
if (p == freep) /* wapped around free list */
if ((p = nmorecore(nunits)) == NULL)
return NULL; /* none |eft*/
}
}

Curses - screen handling
Screen management programs (handle I/O at video display) are a common component of many commercial
applications.

75

C Libraries

What is curses?
- library of routines for screen management
- locatedin"/usr/lib/libcurses.a"
- link editor"cc file.c -lcurses -o file"

mai n()

t
init
refr

refr

}

/* exanpl e program
#i ncl ude <curses. h>

scr();

nmove(LI NES/ 2 -
addstr("Bulls");

esh();

addstr (" Eye");

esh();

endwi n();

11

*/

/* initialise term nal settings */
COLS/ 2 - 4)

/* send output to term nal screen */

/* restore all termnal settings */

What is terminfo ?
- routines within curses library, e. g. to program function keys
- database of terminal capabilities

exanpl e
t put cl ear

- clear screen script

tput cup 11 36

echo "Bul |

Screen management programs using curses obtain info on terminals at run time from terminfo database.

TERM vt 100

sEye"

export TERM

tput init

fusr/lib/term ntol v/ vtl 00

Components:
capt

oinfo(lM

cur ses(3x)
i nfocmp(1m
tabs(1)

term nfo(4)

tool to convert termcap to terminfo

tool for printing compiled terminal info
tool for setting non-standard tab stops

tic(1M tool to compile terminal info
tput (1) tool for outputting terminal capability
Output:
i nt addch(chtype ch) write a character at a time
int addstr(char *str) write a string (calls addch)
int printw(fnt) similar to printf
int nove(int y, X) move cursor to row y, column x
int clear() clear screen
Input:
int getch() read character from terminal
int getstr(char *str) read string until <CR>
int scanw(fnt) similar to scan
Output Attributes:
int attron(chtype attrs) turns on attribute in addition

76

C Libraries

int attrset (chtype attrs) turns on requested attributes
int attroff (chtype attrs) turns off requested attributes
A BLI NK A BOLD A ALT ADM A REVERSE A STANDOUT
int beep() rings terminal bell
Input Options:
i nt echo()
i nt noecho()
int cbreak()
i nt nocbreak()

break for each character line at a time processing

Output:
Curses assumes stdin and stdout are connected to a terminal.
Oncei ni tscr () is called, curses takes over terminal control.

If endwi n() is missing, may need to type "stty sane" and terminated with *J.

A _UNDERLI NE

#i ncl ude <curses. h>
#i ncl ude <signal . h>

exit(register int code){
/* flush and cl ose ot her output streans */
endwi n();
fflush(stdout), fflush(stderr);
exit(code);
/[* exit nust not return */
}
mai n()
initscr();
signal (SIGANT, exit);
return O;
}
W NDOW *wi n; /* declare a variable */
initscr (); /* initialise screen */
wi n=newwi n(int lines, int colums, int begin_y, int begin_x);
/* open wi ndow */
wpri nt W WNDOW *wi n, char *format); /*printf in w ndow/

wrove(W NDOW *wi n, int vy,
wel ear (W NDOW *wi n) ;

int x); /* set current position */

/* clear w ndow */

del wi n(W NDOW *wi n) ;
endwi n();

/* show -
#i ncl ude <curses. h>
#i ncl ude <signal . h>

mai n(i nt argc,

{

char *argv[])

FI LE *fd;
char 1inebuf[BUFSI Z] ;

int Iine;
voi d done(), perror(), exit();
if (argc !'= 2)
{
fprintf(stderr, "usage:

exit(1l);

display file page at time -

/* del ete wi ndow */
/* end wi ndow nodes */

exanpl e for curses */

% file\n", argv[O0]);

77

C Libraries

%f ((fd=fopen(argv[1], "r")) == NULL)
{

perror(argv[1]);
exit(2);
}

signal (SIGANT, done); [/* open w ndow, echo off */
initscr();

noecho() ;

cbreak();

nonl () ;

i dl ok(stdscr, TRUE)

whi | e(1)
{
nove(0, 0);
for (line=0; line<LINES; I|ine++)
{
if (!fgets(linebuf, sizeof(linebuf), fd))
{

clrtobot ();
done ();

nmove(line, 0);
printw("%", |inebuf);

refresh();

if (getch() =="q")
done();

voi d done()

nove(LI NES- 1, 0);
clrtoeol ();
refresh();
endwi n();
exit(0);

}

Terminal capabilities

/* wel cone: paint wel come nessage, read manual on ternctap */
/* cc -0 welcome welcome.c — Iterncap to make wel cone */

#i ncl ude <stdi o. h>

char *getenv(char *envnane); /*read environment variable */
int tgetent(char *buffer, char *nane); /* get ternctap entry */
i nt tgetnun{char *capability);

int tgetflag(char *capability);

char *tgetstr(char *capability, char *area);

char *tgoto(char *cursor_notion, int colum, int line);

char buff[1024]; /* to hold terntap entry */
char area[1024]; /* to hold string capabilities */
mai n(int argc, char *argv[])
{
char *nane; /* term nal type name */
char *ap=ar ea; /* capability storage area */
char *cl; /* clear screen string */
char *cm /* cursor notion string */

78

C Libraries

int |i; /*
int co; /*

nunber of lines on the screen */

nunber

char *msg="Wel come to UN X"

if ((nane=getenv("TERM')) == NULL)
fprintf(stderr, "%: can't find term nal type\n",
argv[0]); exit(1l);
}
switch (tgetent(buff, nane))
{
case -1:
fprintf(stderr, "%: can't read terncap file\n",
exit(1);
case O:

fprintf(stderr,
argv[0], name) ;

exit(1);
}
cl = tgetstr("cl", &p);
cm= tgetstr("cnt, &p);
co = tgetnun{"co");

[i tgetnun("li");
printf(%%%\n", cl

"Os: can't find entry for 9%\n",

tgoto(cm (co/2)-(strlen(nsg)/2),1i/2),

of colums on the screen */

argv[0]);

nmsg) ;

79

Introduction to kernel

7. INTRODUCTION TO KERNEL

What is an Operating System?
What does it do ?
Why do we need one?

An operating system performs two main functions:
+ Resource sharing

- among simultaneous users

- central processor

memory

input/output devices

+ Provision of a virtual machine
- raw piece of hardware
- input/output - extremely complex programming
- memory - virtual memory
- filing system - locate by name not physical location protection and error handling
- program interaction - e.g. pipes
- program control - user interacts via command language

Types of operating systems
- single user systems - e.g. DOS
- process control - industrial process - feedback - failsafe
- file interrogation systems - database - fast response
- transaction processing - frequently modified database
- general purpose systems - multi-access - interactive

Operating System Functions

- job sequencing job control language interpretation
- error handling I/O handling

- Interrupt handling scheduling

- resource control protection

- multi-access good interface to user

- accounting of computer resources

Operating System Characteristics

+ concurrency
switching from one activity to another
protecting one activity from the effects of another
synchronizing activities that are mutually dependent

+ sharing
advantages | disadvantages
cost saving resource allocation
building on work of others simultaneous access to data
sharing data simultaneous execution
removing redundancy protection against corruption

+ long term storage
convenience of keeping data in computer
essay access, protection against interference/system failure

+ nondeterminacy

OS must be determinate - same program run today or tomorrow with same data should produce same results.

indeterminate - must respond to unpredictable order of events

80

Introduction to kernel

Desirable Features

efficiency * maintainability
response time resource utilization modular in construction
throughput clearly defined interfaces
well documented
reliability
OS should be error free + small size
able to handle all contingencies memory space
large systems more prone to error
Architecture of UNIX OS

File System
* Ordinary Files

It is not possible to insert bytes into the middle of a file, or delete bytes from the middle
- editor for example
- just write a completely new file

concurrent access - file locking - semaphores
i-number is an index into an array of inodes kept at the file system

Directories

Inconvenient to refer to files by i-numbers, directories provide names to be used
two column table, name & i-number-pair is called a link

usr/ast/data usr ---> i-number to usr directory

relative path OR absolute path begins with /

when link count is zero the kernel discards the file

directory entry: 14 bytes for file, 2 bytes for inode-number
fusr ==> [usr/ast ==> /usr/ast/data

Special Files

some type of device: tty, disk, FIFO

block & character devices

kernel pool of buffers - are used to cache to speed up /O

disks are both char & block special files
special files have an i-node, no data bytes just a device number and index to device drivers

I-node
When file opens the inode is kept in memory.

1, file type 9 rwx protection bits + few other bits
2, number of links

3, owner id

4, group id 10 disk addresses ==> direct blocks of 512 bytes

5, file size in bytes 11 ==> indirect - points to 128 addresses

6, 13 disk addresses - points to data blocks

7, time file last read 12 ==> double indirect - points to 128 addresses

8, time file last written - points to 128 addresses

9, time i-node last changed - points to data blocks

13, disk addresses 13 ==> triple indirect - points to 128 addresses
- points to 128 addresses
- points to 128 addresses
- points to data blocks

largest file = 1G byte for 512 byte blocks

81

Introduction to kernel

Programs & Processes
A program is a collection of instructions & data that are kept in an ordinary file on disk
the file is marked executable, the contents have to obey rules
text file -------- > object file ----- > bind with libraries
compile linker
To run program, the kernel has to create a new process (environment in which program executes)

A process consists of
- instruction segment
- userdata segment
- system data segment

A process's system data includes attributes such as
- current directory,
- open file descriptors,
- CPU time,

A process uses system calls to access & modify attributes

A process is created by the kernel on behalf of a currently executing process, which becomes the parent of the new
child process.

The child inherits most of the parents system data attributes.

The UNIX

Kernel user programs

traps libraries
User Level

Kernel Level
system call interface

file subsystem process control subsystem
interprocess communication
buffer cache scheduler

memory management
character block
device drivers
hardware control
Kernel Level

Hardware Level

]‘\QT(’]‘X/QTP

System calls interact with the file subsystem and process control system.

The file subsystem manages files, allocating file space, administrating free space, controlling access to files,
retrieving data for users.

The file subsystem accesses file data using a buffering mechanism that regulates data flow between the kernel and
secondary storage devices.

Block I/O devices are random access storage devices, raw devices are called character devices.

The process control subsystem is responsible for process synchronization, interprocess communication, memory
management, and process scheduling.

Processes interact with file subsystem via systems calls:
open, close, read, wite, stat, chown, chnod.

The system calls for controlling processes are: fork, exec, exit, wait, brk, signal.

Memory management - swapping and demand paging
Scheduler - allocates the CPU to processes
IPC - asynchronous signaling of events to synchronous transmission of messages between processes

Hardware control is responsible for handling interrupts and communicating with the machine.

82

Introduction to kernel

Intro to System Concepts

File Subsystem user fd table file table i-node table
User File Descriptor Table - allocated per process
File Table - global kernel structure I
Inode Table - index node , describes disk

layout file data, file owner, = .
access permissions, access times

When a process creates a new file, the kernel assigns it an unused inode. Inodes are stored in the file system, but
the kernel reads them into an in-core inode table.

The file table keeps track of the byte offset in the file where the user's next read or write will start, and the access
rights allowed to the opening process.

The user file descriptor table identifies all open files for a process. The kernel returns a file descriptor for the open
system call, which is an index into the user fd table.

File System Layout

boot block - occupies the beginning of the file system: first sector, bootstrap code

super block - describes state of file system: size, number of files, free space

inode list - kernel references inodes by index, the root inode is used by mount

data blocks - an allocated data block can belong to one and only one file in the file system
Processes

A process is the execution of a program and consists of bytes that the CPU interprets as machine instructions.
Processes communicate with other processes and with the rest of the world via system calls.

A process on a UNIX system is created by the" fork" system call. Every process except process 0 is created by
"fork". Process 0 is the swapper, process 1, known as init is the parent of all other processes.

Executable File contents:

- set of headers that describe the attributes of the file

- the program text

- machine language representation of data initial values when much memory space for uninitialized data (bss =
block started

- other sections, such as a symbol table

The kernel loads an executable file into memory during an "exec" system call. The three regions are: text, data and

stack.

The stack region is automatically created and its size is dynamically adjusted by t _kernel at run time.

#i nclude <fcntl. h> /* programto copy a file */
char buffer[2048];
int version = 1;

mai n(int argc, char *argv[])

{
int fdold, fdnew,

if (argc !'= 3)

printf("need 2 argunments for copy programn");

exit(1l);
}
fdold = open(argv[l], O _RDONLY); /* open source file */
if (fdold == -1)
{
printf("can't open file %\n", argv[l]);
exit(1l);
}
fdnew = creat(argv[2], 0666); /* create target file */
if (fdnew == -1)

83

Introduction to kernel

printf("can't create file %\n", argv[2]);
exit(1l);

}
copy (fdold, fdnew);
exit(0);

}

copy(int old, int new

int count;
while ((count = read(old, buffer, sizeof(buffer))) > 0)
wite (new, buffer, count);

}

UNIX system can execute in two modes, kernel or user, it uses a separate stack for each mode.

The user stack contains the arguments, local variables, and other data for functions executing in user mode.

The kernel stack of a process is null when the process executes in user mode.
+ User and

Kernel User Stack Kernel Stack
Stack
for Copy local not
Program vars shown
addr of frame 2
ret addr after write
params new
to buffer
write count frame 3 frame 3
local count call local
vars write() vars
addr of frame 1 addr of frame 1
ret addr after copy ret addr after func2
params old params func2
to new to
copy frame 2 kernel frame 2
local count call local call
vars write() vars func2()
addr of frame 0 addr of frame 0
ret addr after main ret addr after funcl
params argc params funcl
to) argv frame 1 to frame 1
main call kernel call
main() funcl()
start frame 0 system call interface frame 0

Data Structures for Processes

Every process has an entry in the kernel process table. Each process is allocated a u area (private data manipulated
only by the kernel).

The process table contains pointers to a per process region table, whose entries point to entries in a region table. A
region is a contiguous area of a process's address space, such as text, data and stack.

Region table entries describe the attributes of the region, whether it contains text or data, whether it is shared or
private, and where the "data" of the region is located in memory.

When a process invokes. "f or k", the kernel duplicates the address space of the old process, allowing processes to
share regions when possible and making a physical copy otherwise.

84

Introduction to kernel

Fields in the process table:

a state field

identifiers indicating the user who owns the
process

an event descriptor set when a process is
suspended

The u area contains:

a pointer to the process table slot of the
currently executing process

parameters of the current system call, return
values and error codes

file descriptors for all open files

internal I/O parameters

current directory and current root

process and file size limits

Context of a Process

u area

process table

per process

region table region table

T /

~ L/

/

main memo: v Y
ry

Figure 1. Data Structures for Processes

The context of a process is it state, as defined by its text, the values of its global user variables and data structures,
the values of machine registers it uses, the values stored in its process table slot and u area, and the contents of its
user and kernel stacks.

When the kernel decides that it should execute another process, it does a context switch.

context switch
permissible

user
running

sys call return
or interrupt

kernel

asleep 4

Moving between user and kernel mode is a
change in mode.

-

Interrupt, -

Interrupt -
return

¢

Process states

executing in user mode

executing in kernel mode

not executing, ready to run

sleeping, e.g. waiting for [/O to
complete

Process States and Transitions

Directed graph

- nodes - states a process can enter
- edges - events that move from
one state to another

Figure 2. Process States and Transitions

The kernel allows a context switch only when a process moves from state "kernel running” to "asleep in memory".

Critical sections of code are executed by at most one process at a time.

Figure 3. Sample Code Creating Doubly linked List

struct queue {

}*bp, *bpl ;

bpl ->forp = bp->forp;
bpl - >backp = bp;

bp->forp = bpl;

/*consi der possible context switch here */
bpl - >f or p- >backp = bpl;

85

Introduction to kernel

bpl
— = 3
bp
-_g————] ———
Placing bpl on doubly linked list
bp | bpl
— 1 —

Sleep and wakeup

The kernel raises the processor execution level around
critical regions of code to prevent interrupts that could
otherwise cause inconsistencies.

Figure 4. Incorrect Linked List because of Context Switch

Processes go to sleep because they are awaiting the occurrence of some event:

- waiting for I/O completion from peripheral device

- waiting for a process to exit

- waiting for system resources to become available

Sleeping processes do not consume CPU
resources. Sleep on an event - sleep until
event occurs, at which time they wake up
and enter ready-to-run.

The kernel does not constantly check to see
that a process is still sleeping but waits for
the event to occur and awakens the process
then.

The kernel must lock data structures:
while (condition is true)

sleep (event: the condition becomes false);
set condition true;

It unlocks the lock and awakens all processes
asleep:

set condition false;

wakeup (event: the condition is false);

Most kernel data structures occupy fixed-size
tables.

Figure 5.Multiple Processes Sleeping on a Lock

System Administration

Time

Proc A Proc B Proc C
Buffer locked
Sleeps
Buffer locked
Sleeps
: Buffer locked
Sleeps

| Buffer is unlocked ~Wake up all sleeping procs |

Ready to run Ready to run Ready to run

Runs
Buffer unlocked
Lock buffer

Sleep for arbitrary reason

Runs
Buffer locked
Sleeps
Runs
Buffer locked

Sleeps

Wakes up
Unlocks Buffer '
Ready to run Wake up all sleeping procs Ready to run

Context switch, eventually

Runs

Disk formatting, creating new file systems, repair of damaged file system, kernel debugging. The kernel does not
recognize a separate class of administrative process! - superuser privileges

86

Introduction to kernel

Summary
File subsystem controls storage and retrieval of data in user files. Files are organized into file systems, which are

treated as logical devices; a physical de' such as a disk can contain several logical devices.

Each file system has a super block that describes the structure and contents of the file system. Each file in a file
system is described by an inode that gives the attributes of the file.

Processes exist in various states and move between them according to well defined transition rules.

The kernel is non-preemptive - a process executing in kernel mode will continue t execute until it enters sleep state
or until it returns to execute in user mode.

It maintains the consistency of its data structures by enforcing the policy of non-preemption and by blocking
interrupts when executing critical regions of code.

The UNIX kernel views all files as streams of bytes

- ordinary - files that contain info
- directory - list of file names + pointers to inodes
- special - access to peripheral devices

- named pipes

File allocation
- Files are allocated on a block basis.
- Allocation is dynamic, as needed.

Inode - disk resident
File mode - 16 bit flag
12-14 File type (regular, directory, character, block, FIFO)
9-11 execution flags
8-6 owner read, write, execute permissions
5-3 group read, write, execute permissions
2-0 other read, write, execute permissions

Link Count - number of directory reference to this inode
Owner ID - owner of file

Group ID - group associated in file

File Size - number of bytes in file

File Addresses - 13 3-byte of addresses

Last Accessed - Time of last file access

Last Modified - Time of last file modification

Inode Modified - Time of last inode modification

UNIX Block Addressing, Scheme
System V block size is IKb, each block has 256 addresses

direct indirect

101234561789 10]11]12]

10 single indirect 256 blocks 256K bytes

11 double indirect 65K blocks 65M bytes

12 triple indirect 16M blocks 16G bytes

Lower level file system algorithms

nanei - converts a user-level path name to an inode
-usesiget, iput,andbnap

iget & iput - allocate and release inodes

alloc & free - allocate and free disk blocks for files

ialloc & ifree - assign and free inodes for files

87

Introduction to kernel

UNIX Internals

Kernel Basics - system calls & interrupts

File System - directory, regular, device files
Process management - share CPU & memory
Input/Output - terminal I/O

Interprocess Communication [PC

Kernel Basics

Kernel is part of UNIX OS

- share CPU & memory between competing processes
- processes system calls

- handles peripherals

- loaded into RAM on power on
- runs until turned off or system crashes

File management IPC
Input/Output Process management
Peripherals Memory management
CPU + RAM
Talking to Kernel

Processes access kernel facilities via system call interface & peripherals communicate with kernel via hardware
interrupts.

Peripherals ======= KERNEL ======= Processes
Hardware Interrupts System Calls

System Calls
- interface to kernel

- open/close files

- perform I/O read/write

- send signals - ki | |

- create pipes/sockets

- duplicate process - f or k

- overlay a process - exec

- terminate a process - exi t
- input/output
- interprocess communication
- process management

User Mode & Kernel Mode
The kernel contains data structures, which are essential to functioning of the system
e.g. process table - one entry for each process

open file table - one entry for each open file

- reside in kernel's memory space

- protected from user processes by a memory management system

- system calls can directly manipulate kernel data structures

- when a user process is running, it operates in a special mode called “user mode”
- user mode prevents a process from executing privileged machine instructions

- the only way for a user process to enter kernel mode is to execute a system call

e.g.
User Process
user code

result = open (" file", O _RDONLY);

88

Introduction to kernel

C runtine library
open(char *name, int node)
{
pl ace paraneters in registers.
execute trap instruction, switching to kernel code
return result of systemcall

Kernel

systemcall vector table

éddress of kernel close()
address of kernel open()
address of kernel wite()

kernel systemcall code
kernel code for open()

{

mani pul at e kernel data structures

return to user code and user node

The scheduler will not assign the CPU to another process during the execution of a system call. i.e. when a process

performs a system call, it cannot be "preempted".

System calls that make I/O requests from a device, may take time to complete. To avoid leaving the CPU idle, the
kernel puts the process to sleep and wakes it with a hardware interrupt signalling /O completion.

Interrupts
Interrupt vector table
hlféhe_ft 0 hardware errors >
priority | o >
; _CIOCk ,,,,,,, > pointers to kernel
disk /O ., interrupt handlers
3 keyboard......... 5
lowest 4 trans S/W interrunts
priority
current process suspend resume
> - - - - - o - oo
| |
| keyboard interrupt handler |
| >|
|
keyboard interrupt completed

When an interrupt occurs, the current process is suspended and the kernel determines the source of the interrupt. It

then examines the interrupt vector table to find the location of the code to process the interrupt.

If a higher priority interrupt than the current arrives, the lower priority interrupt handler is suspended until the

higher priority interrupt completes.

Critical sections of kernel code protect themselves from interrupts by temporarily disabling interrupts.

<disable all interrupts>
<enter critical section of code>

<leave critical section of code>
<re-enable all interrupts>

&9

Introduction to kernel

File System

regular files - contain data — standard I/O system calls
directory files - backbone of fs — directory system calls
special files - peripherals — standard I/O system calls

Disk architecture
cylinders
tracks
sectors
blocks 4K bytes

Interleaving
1:1 interleave - logically contiguous blocks
3:1 interleave - e.g. 8 sectors, blocks 14725836

Fragmentation
loss of storage due to under-use of last block

Scattered
file blocks are rarely contiguous

Block I/O
To read the first byte of data from a file, using the read system call, the device driver issues an I/O request to the
disk controller to read the first 4K block into a kernel buffer, then copies the first byte to your process.

Inodes

Index Node to store information about each file.
The Inode of regular or directory file contains the location or its disk blocks, the inode of special file contains
peripheral device information.

type of file

file permissions

user and group ids

hard link count

last modified, last accesses times

location of blocks or major and minor numbers

symbolic link

Block Map
Only the first 10 blocks of a file are stored directly in the inode. Larger files use indirect addressing schemes.

File System Layout

The first logical block of disk is the "boot block". The second logical block is the superblock, contains information
about disk. Followed by the inode list, each block holding about 40 inodes. The remaining blocks store directory
and user files.

Superblock
- Total number of blocks in file system
- Number of inodes in inode free list
- Free block bitmap - linear sequence of bits, one per disk block, 1 indicates it is free
- Size of block in bytes
- Number of free blocks
- Number of used blocks

+ Bad blocks
mkfs - location of all bad blocks on disk
inode number 1

90

Introduction to kernel

+ Directories

Inode number 2 contains the location of blocks containing the root directory. ..parent
. itself
Filenames are not stored in file's inode.
Directory is a list of <filename, inodenumber> pairs Label inode
2
. 2
bin 3
etc 4
usr 5

+ Pathname to Inode
open - absolute pathname starts from inode #2
- relative pathname starts from cwd
components of pathname processed from left to right search for matching label to obtain inode number

* Mounting File Systems

mount allow superuser to splice the root directory of a file system into an existing directory hierarchy
$ rmount /dev/hda3 /usr

Process Management
Scheduler - area of kernel that shares CPU
Memory Manager - area of kernel that shares RAM

* Executable Files Magic number, Main header

Header of section one
Header of section two

Section one

Section two

There is no system call to create a new process to run program X. Instead you must duplicate an existing process
and then associate the new child process with the executable file X.

The first process, with process id (PID) 0, is created by UNIX during boot up. This process fork/execs twice,

creating processes with PID 1 and 2. PID | Name
0 swapper
1 init
2 page daemon

All other processes are descendants of the init process. Most processes execute in user mode except when they
make a system call, at which they flip into kernel mode.

The swapper and page daemon processes execute permanently in kernel mode. Their code is linked directly into the
kernel and does not reside in a separate executable file.

When a process duplicates by using fork(), the original process is known as the parent of the child process.
Process 1
fork/exec =~ = mrmmmmmmmem fork/exec
Process 4 Process 12
fork/exec ---> Process 20
Every process in the system can have one of six states:
- running currently using the CPU
- runnable process can use CPU as soon as it is available
- sleeping waiting for an event to occur, e.g. read() system call, sleep until I/O request completes
- suspended frozen by signal SIGSTOP (stty stop "Z)
- idle created by fork and not yet runnable
- zornbified terminated has not returned exit code to parent

91

Introduction to kernel

Every process is composed of:

- codearea executable portion of a process

- dataarea used by process to contain static data

- stack area used by process to store temporary data
- userarea holds housekeeping info about process
- page tables used by memory management system

Every process has its own user area created in the kernel's data region and only accessible by the kernel.
- how process should react to each signal

- process's open file descriptors

- how much CPU time used

Process Table created in the kernel's data region and only accessible by the kernel.
- PID and parent PID

- real and effective user id and group id

- state (running, runnable, sleeping, suspended, idle, zombie)

- location of its code, data, stack, user areas

- list of pending signals

The Scheduler

- responsible for sharing CPU time

- maintains a multi-level priority queue

- a linked list of runnable processes

- allocate CPU time in proportion to importance

- CPU time allocated in "time quantums" 1/10 sec.

Scheduling Rules
Every second, calculate the priorities of all runnable processes and organize them into several priority queues.
Every 1/10 sec, the scheduler selects the highest priority process. If the process is still running at end of time
quantum, it is placed at the end of its priority queue.

92

Processes 1

8. PROCESSES (I)

Process Subsystem Details

In Unix, a process is the execution of a program and consists of a pattern of bytes containing:
- machine instructions (text)

- data

- stack

Several processes may all be instances of one program.
Processes follow sets of instructions of their own and not of others and may not read or write data or stack of
another process.

Processes

- Created by "fork" system call (all except process 0)

- Invoking process: parent

- New Process: child

- Every process has one parent, but parent may have many children.

- Kernel identifies files by process ID (PID)

- Process 0 created "by hand" at boot. After "forking" a child process, it becomes the 'swapper". Its child is
called "i nit".

- "i ni t"is the ancestor of all other processes on the system.

- When a user compiles a source program, an executable file is created which contains:
- Set of headers describing the attributes of the file
- Program text
- Initialized data and an indication of the space needed for uninitialized data
- other sections e.g.: symbol table info.

Executables
- Image, etc. loaded into memory during an ' exec' system call.
- When loaded, consists of 3 "regions":

- Text

- Data

- Stack

- Process has 2 stacks: 1 for user mode, 1 for kernel mode
- Processes enter kernel mode by executing "trap" instruction which causes a hardware mode switch.

Kernel Process Table

- One entry per process

- Each process is allocated a "u_area" which contains private data manipulated only by the kernel.

- This points to a "per process region table" which points to a "region table".

- Avregion is a contiguous area of a process's addressable space (i.e.: text, data, stack).

- Extra indirection is in place so that data spaces may be "shared" between processes

- Process table entry and u area entry contain the control and status information for a process. The u area is
basically an extension of the process table.

- u_area info is only needed when the process is executing.

- Process table entries are needed by the scheduler.

Context of a Process
- Process's state:
- Text
- Values of global user variables and data structures
- Values of machine registers
- Values in its process table entry and its u_area
- Contents of its user and kernel stacks
"Context switch" change of active process.
- Interrupts are handled in the context of the current process, not necessarily the originator.

93

Processes 1

Process States

1. Executing in user mode

2. Executing in kernel mode

3. Not executing but ready to run
4. Sleeping (e.g.: /0 wait)

Processes can't be pre-empted while in kernel mode (otherwise mutual exclusion problems)

Kernel Data Structures

- Most fixed size

- Limiting approach but fast and simple

- If expansion beyond limits is needed then failure occurs
- Simple loops usually used to find spare entries

One Special User

- Super user (root)
- uid=0
- gid=0

A process is the ordered execution of a set of instructions (a "thread of execution") operating on a specific input.

Most programs when executed constitute a single process. Nonetheless, in many applications, it is efficient — either
in terms of computer hardware utilization or just to allow re-use of existing software — to build programs
consisting of several processes which are largely independent but which exchange intermediate results from time
to time ("co-operating sequential processes").

In 'C', such programs are built using the system calls: f or k and usually, though not necessarily: exec
This allows the construction of sophisticated control programs which can be used to dispatch and monitor a whole
set of (utility) processes.

Related Systems Calls: wai t, exit
+ fork system call
produces a clone (child) process:

int fork() /* create a new process */
/* returns process_id and 0 on success or -1 on failure*/

child process has an almost exact copy of
- parent's code
- parent's user data
- parent's system data (e.g. environment)

void forktest()

{
int pid;
printf ("Start of test\n");
pid = fork();
printf ("Returned %\n", pid);
}
output: start of test
Returned 0
Returned 93

Some of the parent's system data is NOT inherited:
- process-id, parent process-id
- execution times reset to zero

Also, while file descriptor table (parent-process open file table) is copied exactly, the file pointer open file table) is
shared and if the child closes its FD, the parent's is undisturbed.
exec systemcalls

94

Processes 1

Executed in child process to overlay itself with a specified binary program file.

So: produces a child process different from parent.

Cost of fork: copies all instructions and data of parent, only to be overlaid by exec. Some VM versions
of UNIX use "copy-on-write" with parent and child processes sharing pages till
overwritten (e.g. by exec) does NOT change semantics of fork.

Exec: all executions on UNIX (apart from booting) are achieved by exec.

Parent and child

- are clones (except for pid)

- share wd (working directory) (and 1 or 2 other things)
- share open files

The child typically does: exec

eg.
if ((child-id = fork()) ! = 0)
{ /*parent * [/

/* assume> 0 */

foo = wait(&status); /* and returns status */
}
el se
{ /I* child: execute "Is" */

execl ("/bin/ls", "I's", "-1", NULL);

exit(1l); /* could not exec */

int execl (path, arg0O, argl, ..., argn, NULL);
| | |
binary prog file name local utility child may process these via arge, argv of its “main”

/* argv[argc] may not necessarily = NULL;
use argc to count arg's rather than | ook for NULL */

/* environment pointed to by environ is also accessible by child */

The exec family:

Argument Environment Path

Format Passing Search?
execl list auto no
execv array* auto no
execl e list manual# no
execve array*® manual no
execl p list auto yes+
execvp array* auto yes

* if no. of arg is unknown at compile time (c.f. "argv")
manually passing an environment pointer instead of automatically using environ
+ e.g., /bin:/usr/bin:/usr/me/bin::

execv will execute the file if it is a binary OR a shell command file.

- testenv program
mai n(ar gc, ar gv, envp)
int argc; char * argv[]; char * envp[];
{
int cntr;
printf("%\ n", argc);
for (cntr = 0; cntr < argc; cntr++)

{

95

Processes 1

printf("%l %\n", cntr, argv[cntr]);
}

cntr = 0;
whi l e(envp[cntr] [0] !'= 0)

printf("%\n", envp[cntr]);
cntr++;

t est env out put

0 a.out

-=./a/out
FCEDIT=/usr/bin/vi
EXINIT=set dir=/tmp
HOME-=/staff/tech/greg
PWD=/staff/tech/greg/itb443
SHELL=/bin/ksh
MAIL=/usr/mail/greg
EDITOR=vi
TERMCAP=/etc/termcap
LOGNAME=greg
TERM=vt100
PATH=/usr/bin:/usr/local/bin:/bin:/usr/lib ...>
TZ=est10

exi t _system call
void exit (status)/* does NOT */

i nt status; /* return */

convention: 0 normal termination
I = 0 abnormal termination
[a child process's 'parent-pid' changes to 1 (1 = init process) on parent termination|

The exiting process's parent receives the status via ' wai t'

wai t system call
i nt wait(status)

i nt *status;
/* returns process-id of child or —=1 on error(no children)
and status-code into *status unless status = NULL */

Zonbi e: exit by child before wait by parent; zombie retains only process (system) descriptor info till waited.

O phan: parent terminates before child does ... child gets new 'parent-process id' of 1.

wait (status)
if *status.lbyte = 0
then *status.rbyte is child's exiting status-code, i.e. as in "exit(n);"

Pipes

- accessed via std i/f (i.e. via file descriptor)

- each pipe associated with an inode (in table)
- size: 10 blocks = 5120 bytes (>4096)

- non-blocking read, blocking write (full)

Must check no. of bytes read in. If it is not blocking it will just return fewer bytes than requested.

Pipe creation
int fd[2]; pipe(fd);
/* fd[0] for reading

96

Processes 1

fd[l] for witing */
i.e. where read & write are used with a normal file's fd, we can likewise use read/write with a pipe f d.

Strategy for pipe manipulation/usage:
create the pipe
fork to create the (communicating) child, e.g. reading
in child: e.g., close writing end of and other preparation
in child: 'exec' child process (? utility)
in parent: close reading end of pipe
if a second child is to write to the pipe
create it (‘fork’)
make any special preparations
'exec' the child
else if parent is to write to pipe
go ahead - WRITE!

The above illustrate the need to separate 'fork' and 'exec' as two separate system calls

A e

int fd[2];

pi pe(fd);

if (fork() '=0) { [*parent */
cl ose(fd[O]; /* close reading end */
wite to fd[l]
}else { /* child code */
close fd[l]; /* close wite */
exec(what ever). .. /* overlay*/

/* reads fromfd[O]; */

}

'fork' generates a clone with an exact copy of "per process file table", The f d[0], fd[I] file descriptors (table
subscripts) refer to a clone's local table.

int fd[2];
pipe (fd) ;
if (fork()! = 0) { /* parent */
close (fd[0]); /* reading end */
if (fork() == 0){ [* 2nd child */
exec(foo); /* wite to fd[I] */
} else [* first child */
close (fd[I1]); /* close witing end */
exec(what ever). .. /* overlay */

/* reads fromfd[0] */
}

Standard utilities use
stdin (fd=0) stdout (fd=l)

To make use of the unmodified utilities, we use "dup" and "dup2",

eg.
pi pe (pfd); [* int pfd[2] */
if fork() !'=0) { /* parent */
cl ose(pfd[0); /* close the reading end */
wite to pfd[l]...
} else { /* child code */
cl ose(0); /* close stdin */
close(pfd[1]); /* close witing end */
dup2(pfd[0],0); /* copy the reading end over stdin */
cl ose(pfd[0]); /* close the original reading end */
exec(utility); /* reads fromstdin fd=0 */
}

97

Processes 1

dup (and other similar calls) copy a file descriptor to

- the designated fd entry
- the lowest free fd entry
dup2 does the former;

dup? - used for redirecting I/O (stdin, stdout) of a process to/from:

- afile (implements '<', ">")
- apipe (Implements ')

NOTE: st di n defined as 0, so identifying f d1 of open file table.

int pfd [2];

pi pe (pfd);

if (fork()!=0) { /*
close (pfd [0]); /*

if (fork()!=0) { /*
close(pfd[l]); /*

} else { /*
cl ose(l); /*
dup2(pfd[I1],1); /*
close(pfd[l]); /*
exec(foo); /*

} else { /*
close(pfd[l]); /*
cl ose(0); /*
dup2(pfd[0], O); /*
cl ose(pfd[0]); /*
exec (utility); /*

}

Bi-directional pipes ?
two results:

parent */

cl ose the reading end */

parent still */

parent closes the witing end */
2nd child */

cl ose stdout */

copy the witing end over stdout */
close the original witing end */
execute the utility witing to stdout */

first child */

close the witing end */

cl ose stdin */

copy reading end over stdin */

cl ose the original reading end */
utility will read fromstdin */

- short circuit (P1 will read back from pf d[0] its own data just written to pfd[I])
- possibility of deadlock or looping (both processes):

whil e not eof pfd[0] {
read pfd[O];
process dat a;

}
close pfd[I];

Solution: Use 2 pipes, treat them as simplex channels.

File Subsystem
- Manages files

- Allocates file space

- Administers free space
- Controls access to files
- Retrieves data for users

Processes interact with F.S. by a set of system calls

Process control subsystem

- Process synchronization

- Inter-process communication
- Memory management

- Process scheduling

P.C.S system calls

- open
- close
- read

- wite

- stat (Query attributes of a file)
- chrnod (change access permissions) -

Memory Management Module
- Controls allocation of memory

- fork

- exec

- exit

- Wwait

- brk

si gnal

98

Processes 1

- Makes sure all processes get a 'fair go'

- Ifinsufficient main memory, then main memory processes swapped to a secondary memory device.
- Two policies for this: Demand paging swapping

- Usually called the 'swapper'

Scheduler Module

- Allocates the CPU to processes

- Processes run till they voluntarily give up the CPU (waiting on a device for example) or until the scheduler
preempts them when time's up.

- Scheduler chooses the highest priority eligible process to run.

Hardware Control
- Responsible for handling interrupts and for communicating with the machine
- Interrupts are handled by special functions in the kernel (as we have discuss recently)

Inter-Process Communication User Running
- Asynchronous signaling of events
- Synchronous transmission of

messages between processes

sys call,/ / return
The Structure of Processes interrupt, interrupt/ / to user
The process table entry and the u area are interrupt return
part of the context of a process.
{ Kernel
Process states Running
L. executing in user mode it preempt
2. executing in kernel mode
3. isready to run, resides in main Zombie - Preempted
memory eschedule
4. is sleeping, resides in main memory sleep process
5. 1is ready to run, waiting on swapper
6. is sleeping, waiting on swapper
7. is returning from kernel to user mode, Ready to Run
. 4 > 3 In Memory
but kernel preempts it wakeup \
8. is newly created, process exists, but is .
.. . Aslee enough mem
not ready to run, nor is it sleeping I P
. . n
execujted the exit system ca}l, isa Memor Created
zombie, but contains an exit code and
.. .. swap| [swap
timing statistics swap out in
out
not enough mem
(swapping system only)
6 wakeup
Figure 6. Process State
Transition Diagram Sleep, Swapped Ready to Run, Swapped
Process table fields
- state field - scheduling parameters
- locate process and its u area - signal field
- process size - various timers

- user identifiers (UIDs)
- process identifiers (PIDs)
- event descriptor

99

Processes 1

The u area contains - amount of data to transfer

- pointer to process table identifiers - user buffer address

- real and effective user ids - file offset

- timer fields - current directory

- how to react to signals - user file descriptors

- control terminal "login terminal” - limits to restrict size of process
- error field - permission modes mask

- return value

Layout of System Memory

A process has three logical sections:

- text

- data

- stack

The compiler generates addresses for a virtual address space and machine’s memory management translates this to
physical memory.

Regions Per Proc Region Tables .
.. . . ; R
A Region is a contiguous area of virtual (Virtual Addresses) cglons
address space of a process that can be Text| 8K
treated as a distinct object. Process
A Data| 16K

Several processes can share a region. e.g.
processes can execute the same program, Stack| 32K
share one copy of text region; processes
can share a common shared memory area.

. . T
Each process contains a private per p .. s
process region table called a pr egi on. B Data| 8K
Stack] 32K

Figure 7. Processes and Regions

Pages and Page Tables

In a memory management architecture based on pages, the hardware divides physical memory into a set of
equalized blocks called pages.

If a machines has 232 bytes of physical memory and a page size of 1k, it has 222 pages of physical memory,
every 32-bit address can be treated as a pair consisting of a 22-bit page number and a 10-bit offset into the page.

Logical Page Number | Physical Page Number
0 177
1 54
2 209
3 17

Assuming a page is IK bytes, want to access virtual memory address 68, 432. Therefore it is in the stack region,
byte offset 2986 in the region, counting from 0, with byte offset 848 of page 2, physical address 986k.

Memory management register triples
- address of the page table in phys
- first virtual address mapped

- number of pages in the page table

100

101

d soid J %014 g 20id ¥V 20id

[ouIoy oy ur vare n Jo depy AIowaA (] 9131 MLLY MOLL MLYR MS9¢
2607 A0Sy A19¢ p: 134

A9LT A067 AveL A8OL

*9pOW JOSN Ul SAINIIXD UYM JoU Av81 A6L81 ALY8 AvTl

INq OPOW [OUISY UI SOINOOX J1 USYM BOIE N SII SSOI0. ULD $50001d V7 sealy) 30§ SOQEL 98%d

B3I NI
14 T o~ € oiduy 8oy (vary N)
1080 woy apoy Suiduey) ‘g 2mS1] z oidury 8oy
so[qe] a3ed [ouioy so[qe], 28eg (uorday) ssa001g . [oidu] 3oy
: : : T s|qe] 9%ed ur ssao0id ul J[qel 23ed
: : sofed JOo 'ON IPPV [BnyiA JO SSOIPPY $9SSaIpPY [eMIA Surddepy g 231
M6LT M6E ML MTE9 Mty
AP0t ASET h; 12 D, 19 4 Jleee AY9s
M6 L6 T Mi66 | [vose| [iLie w Sies
95T 8T 0 M95S MLL 1958 i e
3A100¢
: M9601 Ae8L
. M6 ATPS
/7 / ! \ € 9|91 8oy 1osn) p. 1213 ALTL
M .
// / pe aidu], 8oy Josny ALEY Acss
e vl A8 S9SSOIPPY [BNHIA
zv%/ 1 opduy, 39y Jos) NTss
W2 NN € o[du] 8oy pusey MLET AYS | yoers
N Kdus
WI / T 91duL 39y Puiey . (43 elRp
0 A\ 1 o[du 8oy [ouIdy / 8 1%9)
DT ———oavL e (S98s2.ppY [e01sAYd) sojqe], o8ed
sofeq jo ony PPV [BMHA oo ssarppy a|qe uoIday 201d 194

I S9ssa001g

Processes 1

The Context of a Process Static Portion of Context Dynamic Portion of Context
The register context consists of: atic rortion ol >-ontex .
- program counter processor status User Level Context
- register stack pointer Process Text
- general purpose registers Data

Stack Kernel Stack for Layer 3
Th tem-level context consists of: .
) e;ﬁcess table entry Shared Data Saved Register Context
_ ‘theu arca for Layer 2
- pregion entries Kernel Stack for Layer 2
- kernel stack Static Part of
- dynamic part - set of layer System Level Context Saved Register Context

for Layer 1

/
Process Table Entry
Kernel Stack for Layer 1

U Area
Per Process Region Table Layer 1 | gaved Register Context
for Layer 0
Kernel
Context
Layer 0 (User Level)

Figure 11. Components of Context of a Process

Saving the Context of a Process
+ Interrupts and Exceptions
Kernel sequence to handle interrupts:
1. save current register context, push a new context layer

2. determine source of interrupt, type of interrupt, interrupt number Interrupt Interrupt
Number Handler
0 clockintr
1 diskintr
2 ttyintr
3 devintr
4 softintr
. 5 otherintr
Figure 12. Sample Interrupt Vector

3. invoke interrupt handler
4. restore register context and kernel stack of previous context layer

algorithm inthand /* handle interrupts */
input: none
output: none
{
save (push) current context layer; determine interrupt source;
find interrupt vector;
call interrupt handler;
restore (pop) previous context layer;

Figure 13. Handling Interrupts

102

Processes 1

+ System Call Interface

algorithm syscall

/* algorithm for invocation of system call */

input: system call number

({)utput: result of system call
find entry in system call table corresponding to system
call number;
determine number of parameters to system call;
copy parameters from user address space to u area;
save current context for abortive return;
invoke system call code in kernel;
if (error during execution of system call)

set register 0 in user saved register context to
error number;

turn on carry bit in PS register in user saved
register context;

}

else
set registers 0, 1 in user saved register context
to return values from system call;

Figure 15. Algorithm for System Calls Invocations

mode value (octal 666)

address of variable name

1b6
204
6a

trap
at Tc

value of
stack pointer
time of trap

direction of
stack growth

l

Figure 16. Stack configuration for creat system call

+ Context Switch

1. Decide whether to do a context switch, and
whether a context switch is permissible now.

2. Save the context of the "old" process.

3. Find the "best" process to schedule for execution,
using process scheduling algorithm of Figure 46.

4. Restore its context.

Figure 17. Steps for a Context Switch

return address after call to library

Interrupt Sequence

Kernel Context Layer 3
Execute Clock
Interrupt Handler

Save Register Context
of Disk Interrupt
Handler

Clock Interrupt
A

Kernel Context Layer 2
Execute Disk
Interrupt Handler

Save Register Context
of Sys Call

Disk Interrupt..........

A

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

Make System Call

Figure 14. Example of Interrupts
Executing User Mode

kernel stack
context layer 1

calling sequence
for create
saved register context
for level O (user)

program counter 7e
stack pointer

ps
reg 0 (input val 8)
other general
purpose registers

i{f (save context()) /* save context of executing process * /

/* pick another process to run */

resume_context (new...process); /* never gets here! */

}

/* resuming process executes from here */

Figure 18. Pseudo-Code for Context Switch

103

Processes 1

Process Control
use and implementation of system calls

fork creates a new process

exit terminates process

wai t allows a parent process to synchronize
exec allows a process to invoke a new program
brk allows a process to allocate more memory

System Calls Dealing with Memory System Calls D.ealllng with Miscellancous
Management Synchronization
fork exec br k exit wai t si gnal kill setpgrp | setuid
det achreg
al | ocreg
dupreg attach
attach reg grow eg | detachreg
reg gr ow eg
| oadr eg
mapr eg

Figure 19. Process system calls

Process Creation

pid = fork(); /* parent is returned child’s PID */
- allocates a slot in process table for new process

- assigns unique ID number to child process

- logical copy of the context of parent process

- increment file and inode table counters

- returns 0 value to child, and child PID to parent

algorithm fork

input: none

output: to parent process, child PID number
to child process, 0

{

check for available kernel resources;

get free proc table slot, unique PID number;

check that user not running too many processes;

mark child state "being created;"

copy data from parent proc table slot to new child slot;

increment counts on current directory inode & changed root (if applicable);

increment open file counts in file table;

make copy of parent context (u area, text, data, stack) in memory;

push dummy system level context layer onto child system level context;
dummy context contains data allowing child process to recognize
itself, and start running from here when scheduled;

if (executing process is parent process)

change child state to "ready to run;"
return (child ID); /* from system to user */

else /* executing process is the child process */

initialize u area timing fields;
return (0); /* to user */

Figure 20. Algorithm for fork

- limit on number of processes for user and system
- the child "inherits" the parent process real an effective user ID, parent process group, parent nice.

104

Processes 1

- the kernel assigns the parent process ID field in the child slot, putting the child in the process tree structure,
initialises scheduling parameters such as priority, CPU usage, timing.

- the kernel increments reference counts for files. Both processes manipulate the same file table entries, the
effect of "fork" is similar to that of dup.

- the kernel allocates memory for the Parent Process

child process u area, regions and page UArea
i Per Process . File
tables. Parent | Region Table Open Files +) Table
- the kernel create a context layer for the Data Current Directory N -
child containing registers and sets the i AR
program counter. The child state is set " Changed Root 1 1

to "ready-to-run".

Kernel Stack '.
Shared
Text ‘.{.
* Inode
. Table
U Area 2 I
. Per Process - #
.'Region Table Open Files)
Child Current Directory} -’
Data

Changed Root

Kernel Stack

Figure 21. Fork Creating New Process Context

Child Process

#i nclude <fcntl. h>
int fdrd, fdw;
char c;
mai n(argc, argv)
int argc;
char *argv[];

if (argc !'= 3)
exit(1);

if((fdrd = open(argv[1l], ORDONLY)) == -1)
exit(1);

if((fdwt = creat(argv[2], 0666)) == -1)
exit(1);

fork();

/* both procs execute sane code */

rdwt ();

exit(0);

]Fdwrt()
Eor ()
if (read (fdrd, &c, 1) !'= 1)

return;
wite(fdw, &c, 1);

Figure 22. Example of Parent and Child Share File A

105

Processes 1

Although the processes appear to copy the source file twice as fast because they share the work load, the contents of
the target file depends on the order that the kernel scheduled the processes.

#i ncl ude <string. h>
char string[0] = "hello world";
main ()

int count, i;

int to_par[2], to_chil[2]; /* for pipes to parent, child */
char buf[256];

pi pe(to_par);

pi pe(to_chil);

if (fork() == 0)

{

/* child process executes here * /

cl ose(O;

close(l);
dup(to_par[l]);

/* close old standard i nput */

dup(to chil[Q); /* dup pipe read to standard input */

/* close old standard output */
/* dup pipe wite to standard out */

close(to_par[1]); /* close unnecessary pipe descriptors */
close(to_chil[Q);

close(to_par[Q);

close(to_chil[1]);

for (;;)

if((count == read (0, buf, sizeof(buf))) == 0)
exit();
wite(O buf, count);

}

/* parent process executes here * /

close(l); /* rearrange standard in, out */
dup(to_chi 1[1]);

cl ose(O;
dup(to_par[Q);
close(to_chil[1]);
close(to_par[Q);

close (to_chil[0]);
close(to_par[1]);

for (i =0; i < 15; i++)

wite(l, string, strlen(string));
read(O buf, sizeof (buf));

Figure 23. Use of Pipe, Dup and Fork

The processes thus exchange messages over two pipes.

Signals
Signals inform processes of the occurrence of asynchronous events. Processes may send each other signals with the
"Ki I'l " system call.
Use of Signals:
+ termination of a process
- "exit", "signal" death of child
process induced exceptions
- access memory outside address space
unrecoverable conditions
- running out of system resources
unexpected error condition
- making non existent system call — writing a pipe that has no reader — illegal reference to "Iseek"
originating from process in user mode

106

Processes 1

"alarm" after a period of time

arbitrary signal to another process via "kill
related to terminal interaction

hang up a terminal

-

User Running

- presses "break" or "interrupt" Ch::k
keys H.andle
. . -
*+ tracing execution of a process _.=TZ7 Signal
) syscall,/ /-~ return
A process can remember different types of interrupt, interrupt to user
signals, but it has no memory of how interrupt return return
many signals it receives.
The kernel handles signals only when a Kernel
process returns from kernel mode to user Running
mode. exit preempt
Zombie Rt Preeifipted
reschedule T el Check
sleep process _ _ _ ____ - IZz=- for
o Signals
' Ready to Run
3 In Memor
4 wakeup y
Asleep \ enough mem
In
Memor Created
swap| pwap
swap out in
out
not enough mem
(swapping system only)
6 wakeup

Figure 24. Checking and Handling Signals Sleep, Swapped

Ready to Run, Swapped

algorithm issig
input: none
output: true, if process received signals that it does not ignore, false otherwise

/* test for receipt of signals */

while (received signal field in process table entry not 0)

find a signal number sent to the process;
if (signal is death of child)
{

if (ignoring death of child signals)

free process table entries of zombie children
else if (catching death of child signals)

return (true);

>

H
else if (not ignoring signal)
return (true);
turn off signal bit in received signal field in process table;
H
return (false);

E

Figure 25. Recognizing Signals

107

Processes 1

Handling Signals

signum - signal number to specify action

process exists on receipt of signal, or
it ignores the signal, or

it executes a user function on receipt of signal
ol dfunction = signal (signum function);

function - address of user function to invoke

algorithm psig /* handle signals after recognizing their existence */
input: none
output: none
{
get signal number set in process table entry;
clear signal number in process table entry;
if (user had called signal sys call to ignore this signal)
return; /* done */
if (user specified function to handle the signal)
get user virtual address of signal catcher stored in u area;
/* the next statement has undesirable side-effects */
clear u area entry that stored address of signal catcher;
modify user level context:
artificially create user stack frame to mimic call to
signal catcher function;
modify system level context:
write address of signal catcher into program counter
field of user saved register context;
return;
H
i{f (signal is type that system should dump core image of process)
create file named "core" in current directory;
write contents of user level context to file "core";
H
invoke exit algorithm immediately;
t

Figure 26. Algorithm for Handling
Signals

If the signal handling function is set to its default value, the kernel will dump a "core" image of the process for

certain types of signals before exiting.

The Unix Model
C Language
Unix Networking is almost exclusively written in C.
Two flavors: ANSI C
Standard C
Standard C Library

/ 1ib/ libc. a
standard I/O library, mal | oc, etc
system calls - read, wite,
etc

ioctl, pipe,

Unix Versions

System V:

interprocess communication facilities:

message queues, semaphores, and shared memory
remote file system, streams,
transport layer interface (TLI),
transport provider interface (TPI),
file and record locking

Release 1 (1983), 2 (1984), 3 (1986), 4
(1989)

Berkeley Software Distributions (BSD)
source code implementation of TCP/IP,

Berkeley socket interface
Release 4.1 (1983), 4.3 (1988)

Kernel
Operating system provides services such as:
filesystem,
memory management,
CPU scheduling,
device 1/O.
Typically the kernel interacts directly with h/w

Program
Executable file created by the link editor.
Run by issuing the exec system call

108

Processes 1

Process
An instance of program being executed by operating system. A new process is created by issuing the fork
system call. A program may be executed by many processes at same time.

System Calls
The Unix kernel provides a limited number (60-200) of direct entry points for services from the kernel.

The standard Unix C library provides a C interface to each system call or function.
Most system calls return -1 if an error occurs, or a value >= 0

A global integer variable errno is provided by the C interface. The header file <errno.h> contains the names

and values of these error numbers.

Some system calls return a pointer to a structure of information, e.g. stat and fstat system calls.

C Start-up Function user
mai n()
{ _ . . user functions
printf ("hello world\n") or librar
exit(0); y
/* flush standard /0O buffers call | | return
] *
} & termnate */ user' s main
function
call | | |return.
C startoff . C exit . C exit
- routine XL routine CXIL_. routine
program invacation: exec system call

Argument List

kernel

Whenever a program is executed, a variable-length argument process. The argument list is passed to the process.

The argument list is an array of pointers to character strings (maximum size of 5120 bytes).

echo hello world ‘

mai n (argc, argv)
int argc; char *argv[];

{.}

argv. ------ ar gV[O] ------ echo\ 0
...... argv[1l] ------ hello\0
...... argv[2] ------ world\0

Environment List

mai n (argc, argv, envp)
int argc; char *argv[]; char *envp[];

{

int i;

for (i = 0; envp [i] !'= (char *) O;
printf("%\n", envp[i]);

exi t (0)

HOME=/user1/staff/neville
SHELL=/bin/ksh
TERM=vt100

i ++)

109

Processes 1

USER=neville
PATH=/userl/staff/joe/bin:/usr/local/bin:/bin:/usr/bin:

mai n (argc,

ar gv)

int argc; char *argv[];

{

extern char **environ;

0; environ[i] !'= (char *) 0; i++)

printf("%\n", environ[i]);

char *ptr, *getenv();
if ((ptr = getenv("HOWVE")) == (char *) 0)
printf ("HOMVE is not defined\in ") ;

printf("HOVE=%\n", ptr);

int i;
for (i =
exit(0);
}
main ()
{
el se
exit(0);
}

The argument list, environment pointers and character strings pointed to are in the data space of the process. The
process can modify these but this has no effect on the parent process.

The only value passed by the terminating process to its parent process by the operating system is the 8-bit argument
to the exit function.

The parent and child can exchange information using a disk file or by interprocess communication. A process can
modify its environment to affect any child processes it created.

+ Process

user context kernel context

stack kernel data

A

heap

uninitialized data

initialized read-
write data . read from program file

initialized read- " when program is executed
only data

text

user context
text

data

heap
stack

kernel context

portion of address space accessible to the process while it is running in user mode.

the actual machine instruction that are executed by hardware. Often set read-

only so that process cannot modify its instructions. It is read into memory from disk, unless as

supports shared text and it already is executing.

contains the program's data

- initialized read-only — ro while program executing. e.g. literal strings; not supported on many
OSs

- initialized read-write — modified during execution uninitialized - set to zero before process
starts, advantages — save disk space & time to read data

used to allocate data space dynamically to the process while the process is running.

used dynamically while process is running to contain stack frames that are used by the

programming language. Stack frames contain the calling arguments and return addresses.

is maintained and accessible only to the kernel. It contains information that the kernel needs to

keep track of the process and to stop and restart the process while other processes are allowed to

execute.

110

Processes 1

Example
i nt debug = 1; /* initialised read-wite variable */
char *prognane; /* uninitialised read-wite variabl e*/

mai n (argc, argv)
int argc; char *argv[];

{ int i; /* automatic variable stored on stack */
char *ptr; /* automatic variable stored on stack */
char *mal |l oc(); /* space allocated stored on heap */
prognane = argv[O0];
printf("argc = %@\ n", argc); /* read-only data */
for (i =1; i < argc; i++)
{ ptr = malloc(strlen(argv[i]) + 1);
strcpy(ptr, argv[i]);
i f (debug)
printf("%\n", ptr); /* read-only data */
} } /* functions main, printf, strlen, strcpy &
mall oc are all in the text segnent */
Process ID (PID) + Effective User ID
int getpid(); unsi gned short geteuid();
0- 30000 Set-user-ID program - file's owner ID is zero
PID 1 special process called the init process (superuser)
PID 0 kernel process called swapper/scheduler
PID 2 kernel process called pagedaecmon + Effective Group ID
unsi gned short getegid();
Parent Process ID Set-group-ID program
int getppid();
Superuser
Real User ID User ID zero - login name root
unsi gned short getuid(); Superuser can terminate any other process on system.

Each user is assigned an unique ID in /etc/passwd.

Password File
Real Group ID / et c/ passwd
unsi gned short getgid();

Groups of users are assigned an ID in /etc/group.

I ogi n- nane: passwor d: user -1 D: gr oup- I D: nmi sc: hone: shel I]

#i ncl ude <pwd. h>

struct passwd *get pwui d(int uid);
struct passwd *get pwnan(char *nane);

struct passwd {

char *pw_nane; /* 1 ogin-name */

char *pw passwd; /* encypted-password */

int pw._uid,; /* user-1D */

int pw._gid; /* group-1D */

char *pw_age; /* password age SystemV */
char *pw_gecos; /* mscellany */

char *pw_dir; /* hone directory */

char *pw_shel | ; /* shell */

1

111

Processes 1

Shadow Password
/ et ¢/ shadow set so that only superuser can read.
The encrypted-password field is set to an asterisk.

Group File
[etc/ group

lgr oup- nane: encypt ed- passwor d: gr oup- | D: user - i st]

BSD4.3: can be a member of up to 16 groups at login
System V: you change groups with the newgrp command

#i ncl ude <grp. h>
struct group *getgrgid(int gid);
struct group *getgrnan{char *nane);

struct group {

char *gr_nane; /* group-nanme */
char *gr-passwd; /* encrypted-password */
int gr_gid; /* group-1D */
char **gr_mem /* array of ptrs to user-list */
1
Shells
/ bi n/ sh Bourne shell

/ bi n/ ksh Korne shell

/ bi n/ csh C shell
/ bin/tcsh Enhanced C shel |

Filenames
limit of 14 to 256 characters
NULL ('\0') terminates pathname
slash ('/') separates filenames
characters interpreted by shell are not recommended *, [, 1, -

Pathname
relative — path begins at current directory
absolute — starts with a slash (from root)

File Descriptor
a small integer used to identify a file that has been opened for I/O
0 standard input
1 standard output
2 standard error
assigned by the kernel by a system call {open, creat, dup, pipe, fcntl}

Files
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int stat(char *pathnanme, struct stat *buf);
int fstat(int fildes, strut stat *buf);

struct stat {

ushort st_node; /* file type & access perns */

ino t st _dev; /* i-node nunber */

dev_t st_dev; /* I D of device containing directory entry for file */
short st _nlink; /* nunber of |inks */

ushort st _uid; /* user ID*/

ushort st_gid; /* group ID */

112

Processes 1

dev_t st _rdev; /* device ID, for character or block special files */
off t st _size; /* file size in bytes */

time_t st _atime; /* tinme of last file access */

time_ t st ntime; /* tinme of last file nod */

time t st _ ctime; /* tinme of last file status */

i

st _node

#define S_| FMI 0170000 /[* type of file */
#define S |FREG 0100000 /* regular */

#define S IFDIR 0040000 /* directory */

#define S IFCHR 0020000 /* character special */
#define S | FBLK 0060000 /* bl ock special */
#define S | FLNK 0120000 /* synbolic link */
#define S_| FSOCK 0140000 /* socket - BSD only */
#define S IFIFO 0010000 /[* fifo - SystemV only */

+ File Access Permissions

Every process has four IDs associated with it

- real user ID

- real group ID

- effective user ID

- effective group ID

Every file has the following attributes

- owners user ID (16 bit integer)

- owners group ID (16 bit integer)

- user read, write, execute permission (3 bits)
- group read, write, execute permission (3 bits)
- other read, write, execute permission (3 bits)
- setuser ID (1 bit)

- set group ID (1 bit)

- see file fstatus.c

Test to determine if process can access a file:

- if the effective user ID of process is zero (superuser)

- if the effective user ID of process matches the user ID of the file and the appropriate access permission bits are
set

- if the effective user ID of process does NOT match the user ID of the file and if the effective group ID of
process matches the group ID of the file and the appropriate access permission bits are set

- if'the other access permission bits for the file are set then access is allowed

+ File Access Mode Word
system calls: {access, chnod, creat, nknod, nsgctl, open,
senctl, shnctl, stat, fstat & umask}

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution "sticky bit"
00400 read by user

00100 write by user

00200 execute by user

00040 read by group

00020 write by group

00010 execute by group

00004 read by other

00002 write by other

00001 execute by other

113

Processes 1

If the "stick bit" is set, the executable program's read-only text is left in swap, so that it will start faster next time.
progr y p

File Mode creation Mask
i nt umask(int mask)

(This is one of the few system calls that cannot fail and does not have an error return
{exit, getpid, getpgrp, getppid, getuid,
geteuid, getgid, getegid, umask})

The file creation mask is used when a new file or directory is created. The mask specifies which bits in the new
file are to cleared. If the file mode creation mask is octal 022, the group-write bit is off giving an actual mode of
octal 0644.

Major and Minor Device Numbers
For disk drives the major number usually specifies the disk controller and the minor number specifies both the drive
and the partition on the drive.

For example a controller that supports up to 8 drives can use minor device numbers 0-7 for up to 8 partitions on
the first drive, 8-15 for partitions on the second drive, and so on.

Directories
i nt nkdir(char *pathnanme, int node); /* 14 byte name, 2 byte node */
i nt system(char *string);

char buff[1024], dirnane[1024];
sprintf(buff, "nkdir %", dirnane);
if (system(buff) !'=0) {

/* error handling */
}

Current Working Directory

Each process has associated with it a cwd. A process can change its cwd with chdi r.
i nt chdir(char *pathnane);

Process Group ID
Every process is a member of a process group. It is possible to send a signal using the kill system call to all
processes belonging to a specified process group.

The value of the process group ID is obtained by calling get pgr p system call. Under System V a process is only
able to change its process group ID to be equal to its process ID, effectively becoming a process group leader.
int setpgrp();

Terminal Group ID and Control Terminal
Each process can be a member of a terminal group. The terminal group ID is the process ID of the process group
leader that opened the terminal.

The terminal group ID identifies the control terminal for a process group. When the process group leader for a
terminal calls exit, a hangup signal is sent to each process in the process group.

Socket Group ID
BSD supports the notion of a process group of sockets. Each socket that is open has a socket group ID.

Time-of-Day
BSD provides get t i neof day system call
#i ncl ude <sys/tine. h>
int gettinmeofday(struct tinval *tvalptr, struct timnmezone *tzoneptr);

struct timeval {
| ong tv_sec; /* seconds since 00:00: 00 GvI, 1 Jan 1970 */
| ong tv_usec; /* and m croseconds */

},

114

Processes 1

System V provides t i mes system call
#i ncl ude <sys/types. h>
#i ncl ude <sys/tines. h>
long tines(struct tns *ptr);

struct tms (

time_t tns_utine; /* user time */

time_t tns_stine; /* systemtinme */

time_t tns_cutine; /* user tinme, children */
time_t tns_cstineg; /* systemtine, children */
1

long tine(long *ptr); /* seconds since 00:00: 00 GvI, 1 Jan 1970 */

Input and Output
- Unix system calls for /O
open, read, write etc
direct entry points into kernel
- Standard I/O library
higher level interface between process and kernel features: buffering, line-by-line input, formatted output

+ System Calls
#i ncl ude <fcntl. h>
i nt open(char pathnane int oflag[, int node]);

returns a file descriptor if successful, else -1

oflag
O RDONLY open for reading only

O WRONLY open for writing only

O RDWR open for reading and writing

O NDELAY do no block on open or read or write
O_APPEND append to end of file on each write

O CREAT create the file is it does not exist

O TRUNC if file exist, truncate to zero length

O EXCL error if O_CREAT & file already exist

int creat(char *pathnane, int node);
int close{int fildes);

int read{int fildes, char *buff, unsigned int nbytes);
returns number of bytes read if successful, else -1

int wite{int fildes, char *buff, unsigned int nbytes);
returns actual number of bytes written

ong | seek{int fildes, long offset, int whence);

whence
0 position offset from beginning of file current
1 position plus offset

2 position set to size of file plus offset

nt dup{int fildes);
returns a new file descriptor - same file position

nt fecntl{int fildes, int cnd, int arg);
used to change the properties of an open file cmd
F DUPFD duplicate file descriptor
F SETFD set the close-on-exec flag via arg
F GETFD return the close-on-exec flag via arg

115

Processes 1

#i ncl ude <ioctl.h>
ioctl (int fildes,

i nt

Notification to a process that an event has occurred "software interrupt” usually occur asynchronously.

F SETFL
F_GETFL

F GETLK, F SETLK, F SETLKW

set status flags via arg
return status flags via arg

record locking

device specific operations

intended for device specific operations

signals

- by one process to another process
- by the kernel to a process

#i ncl ude <signal . h>

unsi gned | ong request,

char *arg);

Nane Descri ption Default action
ISIGALRM Alarm clock Terminate
ISIGBUS Bus error Terminate core
ISIGCLD Death of child process Discarded
ISIGEMT EMT instruction Terminate core
ISIGFPE FPE instruction Terminate core
ISIGHUP Hangup Terminate
ISIGILL Illegal instruction Terminate core
ISIGINT Interrupt character Terminate
ISIGIOT 10T instruction Terminate core
ISIGKILL Kill Terminate
ISIGPIPE Write on pipe no one read it Terminate
ISIGPOLL Select event on stream device Terminate
ISIGPWR Power fail Terminate
ISIGQUIT Quit character Terminate core
ISIGSEGV Segmentation violation Terminate core
ISIGSYS Bad argument to system call ~ Terminate core
ISIGTERM Software termination signal Terminate
ISIGTRAP Trace trap Terminate core
ISIGUSRI User defined signal 1 Terminate
ISIGUSR2 User defined signal 1 Terminate

- How and when are signals sent?
kill system call (kill is a misnomer)
allows a process to sending process and send a signal to another process. To send a signal, the receiving

L.

W

process must both have the same effective user ID.

kill command

is also used to send signals

terminal-generated signals e.g. interrupt character AC generates SIGINT signal
hardware conditions e.g. floating point error generates SIGFPE error
software conditions

the kernel causes signals to be generated

- What can a process do with a signal?

1.
2.

Provide a function called a signal handler
Ignore a signal (except SIGKILL terminate any process)

3. Allow the default action to occur

- To handle a signal from within a process:
#i ncl ude <signal . h>

i nt

si gnal : is a function that returns a pointer to a function that returns an integer.

(*signal (int sig,

e.g. SIGURG out-of-band data arrives on a socket

void (*func) (in))) (int);

116

Processes 1

func: argument specifies the address of a function
- SIG_DFL handle in default way
- SIG_IGN signal is to be ignored
si g: 1is the signal name
eg.
signal (SIGUSRL, SIG IGN);

- Call nyi ntr function when SIGINT signal is generated:

#i ncl ude <signal . h>

extern void nyintr();

if (signal (SIANT, SIGIGN) !'=SIGIGN
signal (SIGANT, nyintr);

Reliable Signals
- Signals handlers remain installed after a signal occurs.
- A process must be able to prevent selected signals from occurring when desired.
- While a signal is being delivered to a process, that signal is blocked (held).

BSD4.3 supports the concept of a signal mask:
#i ncl ude <signal . h>
int mask; /* 32 signals one per bit */
i nt ol dnask;
mask = sigmask(SIGQU T) | sigmask(SI A NT);

Want to block signals in critical region of code:
ol dmask = sigbl ock(mask);
/* critical region */
si gset nask(ol dnask); /* reset to what is was */

System V use signal functions:
si ghol d(SIGQUIT) ;
si ghol d(SI G NT) ;
/* critical region */
sigrel se(SIGQU T);
sigrel se(SIA NT);

BSD4.3 release one or more signals that are blocked:
int flag = 0; /* gl obal set when SI G NT occurs */

for (; ;) {
si gbl ock(si gmask(SI G NT)) ;
while (flag == 0)
si gpause(0); /* wait for signal */
/* signal has occurred, process it */

}

System V version:
int flag = 0; /* gl obal set when SI G NT occurs */
for (; ;) {
si ghol d(SI G NT) ;
while (flag == 0)
sigpause(SIANT); /* wait for signal */
/* signal has occurred, process it */

-}

Process Control
Network programming involves the interaction of two or more processes. How are processes created, executed, and
terminated?

int fork(); /* systemcall */
Creates a copy of the process that was executing. The process that executed the fork is the parent and the new

117

Processes 1

process is the child process.

mai n()
{

int childpid;

if ((childpid = fork()) == -1) {
fprintf(stderr, "can't fork\n"); exit(1l);

} else if (childpid == 0) { /* child process */
printf("child: childpid=%, parentpid=%i\n",
getpid(), getppid()); exit(0);

} else { /* parent process */
printf("parent: childpid=%l, parentpid=%\n",
childpid, getpid()); exit(0);}

fork operation: fork .
parent process child process

child process
- Text segment can be shared.
- Child's copy of the data segment is a copy of the parent's data segment, not the program's disk file
1. Process makes a copy of itself
one copy can handle an operation while other copy does another task
- typical of network servers
2. Process executes another program
fork to make a copy of itself
issue exec to execute new program

exit System Call
- Process terminates
- exit status 0 to 255 (nonzero indicates error)
- _exit function avoids any standard I/O cleanup

exec System Call
- Replaces current process with new program .
- There are 6 version of exec

i nt execlp(char*file, char *arg, ..., NULL);

i nt execvp(char *file, char **argv);

i nt execl (char *path, char *arg, ..., NULL);

i nt execv{char *path, char **argv);

int execle{char *path, char *arg, ..., NULL, char **envp);
i

nt execve{char *path, char **argv, char **envp);

- Exec process inherits attributes: process ID, parent process ID, process group ID, terminal group ID, time left
until an alarm clock signal, root directory, current working directory, first mode creation mask, file locks, real
user ID, real group ID

- Attributes that can change: effective user ID, effective group ID

- If the set-user-ID bit is set then effective user ID is changed to the user ID of the owner of the program

wai t System Call
- A process can wait for a child process to finish
- Wait returns a process ID when a child process
- calls exit or
- is terminated by a signal or
- is being traced and the process stops
- Steps taken by kernel when a child process exits
if parent process has called a wait, then the parent is notified else the terminating process is marked as a
zombie process (kernel releases resources but keeps its exit status)
- If parent process terminates before child process then parent process ID is set to 1.

118

Processes 1

(init process)
- If process ID, process group ID, terminal group ID are all equal then hangup signal “SIGHUP” is sent to
each process with process group ID equal to terminating process

- To prevent a child process from becoming a zombie
signal (SICGCLD, SIG_IGN)

Process Relationships
For each terminal to be activated, init process forks a copy of itself and each child process execs the get t y program
which sets terminal speed, output greeting message and waits for login name.

get ty execs the program login which checks your login name and password in /etc/passwd

If the login is successful the login program sets the current working directory, chdi r sets the group ID and user
ID, setgid & setuid execs the shell program /bin/sh

PID=

init init getty login sh
fork exec exec exec

To execute a command the shell forks a copy of itself and waits for child to terminate, the child execs the program,
and when finished, it calls exit which terminates the child.

Job Control
- consider process groups with/without job-control
BSD4.3 supports job-control - need to check system

mai n()

printf ("lipid = %, pgrp = %\n ", getpid(), getpgrp());

exit(0);
a. out Bourne, C & Korn shells
a.out & a.out & twice in background

(a.out & a.out &) from a subshell

e.g.
BSD Cshell pid = 2530, pgrp = 2528 BSD Korn shell pid = 2530, pgrp = 2530

pid = 2529, pgrp = 2528 pid = 2529, pgrp = 2529
- process group leader

] kill with a pid argument of zero sends a parent process file table i-node table
signal to all processes in the sender's process table entry
group £do: current file . i-nodq
fdl: position information
File Sharing fd2: i-node ptr
There are 3 kernel tables used to access a file: fdi:
- every process has a process table entry)
- file pointers in the process table point to child process
entries in the file table (current file position) table entry
- i-node table (every open file has an entry) fdo: current file
fdl: position
Since the i-node table does not keep the file's — fd2: i-node ptr
current position, an i-node entry for a. file can be ~ fdi:

shared by any number of processes.
other process

e.g. When two or more processes are reading the table entry
same file at some point in time - the file position £4o-
of one process must be independent of the other fdl:

fd2:

fdi:

119

Processes 1

Rules about sharing of file pointers:

- the only time a single process table entry contains pointers to the same file table entry is from a dup system call

- if a single process opens the same file more than once, each open returns a file descriptor that points to a
unique file table entry, but all these file table entries point to the same i-node table entry

- afile table entry can only have more than one process table entry pointing to it from a fork operation

- if the parent and child do not coordinate the use of a shared file from a fork, then any changes made by one of
the two processes to the file position affects the other

+ Daemon Processes
A daemon is a process that executes in the background waiting for some event to occur, or waiting to perform a
task on a periodic basis.

A standard Unix process named cron performs periodic tasks at given times during
the day from/usr/lib/crontab /* cron table */.

Daemon process startup:

started at boot by initialization script /etc/rc

from system's /ust/lib/crontab on periodic basis
from user's crontab on periodic basis (System V)
by executing the at command - schedules a job
from user terminal - foreground or background job

A e

Typical system daemons characteristics:
(e.g. a line printer)
- started once, when system is initialized
- lifetime is the entire time system is operating . spend most time waiting from some event to occur
- spawn other processes to handle service requests
Close all Open File Descriptors

All unnecessary file descriptors should be closed.
#i ncl ude <sys/param h>
for (i=0; i<NOFILE; i+4+)

close(i);

Change Current Working Directory
chdir("/"); [/* allowroot to unmount fil esystens */

Reset the File Access Creation Mask
urnask(0); /* prevent nodification of created file */

Run in Background
If a daemon is started from a login session without being placed in the background, the daemon will tie up the
terminal while it is executing,

Disassociate from Process Group
By belonging to some process group, the daemon is susceptible to signals sent to the process group.

/* set process group ID equal to process ID */
set pgrp(); /* SystemV */
setpgrp(0, getpid()); /* BSD */

Ignore Terminal I/O Signals
On systems that support job control (BSD), you control the ability of a background job to produce output on the
control terminal with an st t y option.

& gsee file daemon.c

120

Processes 1

Signals, Process Groups and Control Terminals

Process structure
p-pid: % assigned by kernel

p-pgrp: set by setpgrp()

socket structure

£do:

. R —
fd2: . set by fentl
fdi: . socket structure ~ (F_SETOWN)
> so_pgrp: | L
control 5

LA —

process grvoup for delivery
of SIGIO, SIGURG signals

tty structure process group for delivery of SIGINT,
********* >t pgrp: | ., SIGQUIT, SIGHUP, SIGIO, SIGTSTP,
| SIGCONT, SIGWINCH signals

+ Disassociate from Control Terminal
if (fork () ! =0)
exit(0); /* parent process */
/* first child process */
set pgrp(); /* change process group and | ose control tty */

Don’t Reaquire a Control Terminal
signal (SIGHUP, SIGIGN);
if (fork() !'=0)
exit(); [/* first child process */
/* second child process continues as daenon */

System V inittab File
id:run-1level :action: command-|ine
ttyOl: 2: respawn: getty #termnal line 1

Daemon Termination
Both System V and BSD 4.3 use the SIGTERM signal to notify all processes that the system is going from
multiuser to single-user. If it doesn’t terminate after 20 secs, SIGKILL is sent to the the process.

Handle SIGCLD Signals
Tells kernel not to generate zombies form children.

121

Processes 11

9. PROCESSES (II)

FORK

/* fork.c */

#i ncl ude <stdi o. h>

mai n()

{

int pid;
printf("original process with PID %d and PPID %\ n",
pid = fork(); /* duplicate process */

if (pid!=0) {/* parent */

printf("parent process with PID % and PPI D %\ n",

getpi d(), getppid());
printf("child' s PIDis %\ n", pid);

}

el se{ /[* child */
printf("child process with PID %d and PPID %\ n",
getpid(), getppid());

printf("PID % term nates\n", getpid());

original process with PID 134 and PPID 120
parent process with PID 134 and PPID 120
child's PID is 135

child process with PID 135 and PPID 134
PID 135 terminates

PID 134 terminates

/* orphan.c */

#i ncl ude <stdi o. h>

mai n()

int pid;
printf("original process with PID %d and PPID %\ n",

pid = fork(); /* duplicate process */
if (pid!=0){ /* parent */

printf("parent process with PID % and PPI D %\ n",

getpi d(), getppid());
printf("child' s PIDis %\ n", pid);

}

el se { /[* child */
sl eep(5); /* term nate parent first */
printf("child process with PID %d and PPID %\ n",

getpid(), getppid());
printf("PID % term nates\n", getpid());

original process with PID 154 and PPID 140
parent process with PID 154 and PPID 140
child's PID is 155
PID 154 terminates
parent dies
child process with PID 155 and PPID 1 init adopts child
PID 155 terminates

get pi d(),

get pi d(),

get ppi d());

get ppi d());

122

Processes 11

A process that terminates cannot leave the system until its parent accept code. If its parent is already dead, it is

adopted by the "init" process

If a process's parent is alive but never executes a wai t () the process's will never be accepted and the process will

remain a zombie.

/* zonbie.c */
#i ncl ude <stdi o. h>

parent process

mai n()
{
int pid;
pid = fork(); /* duplicate process */
if (pid!=0) /* parent lives */
while (1)
sl eep(1000); /* child dies */
el se {
exit(2);
}
ps
PID TT STAT TIME COMMAND
160 pl S 0:00 -ksh
170 pl S 0:00 zombie
171 pl V4 0:00 <defunct>
180 pl R 0:00 ps
kill 170
[1] Terminated
ps
PID TT STAT TIME COMMAND
160 pl S 0:00 -ksh
190 pl R 0:00 ps

/* wait.c */
#i ncl ude <stdi o. h>

mai n()

int pid, status, childpid;

printf("original process with PID %l\n", getpid());

pid = fork(); /* duplicate process */

if (pid!=0)
{ /* parent */
printf("parent process with PID % and PPID %\ n", getpid(), getppid());
childpid = wait(&status); /* wait for child */
printf("child PID %d terminated with exit code %\ n", childpid, status>>8);
} else { /[* child */

printf("child process with PID %d and PPID %\ n", getpid(), getppid());

exit(2);

printf("PID % term nates\n",

original process with PID 190
child process with PID 191 and PPID 190
parent process with PID 190 and PPID 188
child PID 191 terminated with exit code 2

PID 191 terminates

getpid());

123

Processes 11

/* background.c */
#i ncl ude <stdio. h>

mai n(int argc, char *argv[])

{ if(fork()== 0){ [* child */
execvp(argv[1l], &argv[1]);}

fprintf(stderr, "could not execute %\n", argv[1]);
}

background cc wait.c

ps

PID TT STAT TIME COMMAND

664 pl S 0:00 -ksh (ksh)

710 pl R 0:00 ps

715 pl D 0:00 cc wait.c

/* redirect.c */
#i ncl ude <stdi o. h>
#i ncl ude <sys/file.h>

mai n(int argc, char *argv[])

{

int fd;

fd = open(argv[1l], O CREAT | O TRUNC | O WRO\LY, 0600);

dup2(fd, 1); /* duplicate standard output */

close (fd) ; /* close original descriptor */

execvp(argv[2], fprintf(stderr, &argv[2]); "main - should never execute\n");
}

redirect Is.out Is -1

cat |s.out
SIGNALS

- terminates process and generates core file (dump)
- terminates process without core (quit)

- ignores and discard signal (ignore)

- suspends process (suspend)

- resumes process

/* alarmc */
#i ncl ude <stdi o. h>

mai n()
alarm(3); /* schedule an alarmin 3 secs */
printf("looping forever ...\n");
while (1);

fprintf(stderr, "should never execute\n");

}

/* handler.c */
#i ncl ude <stdi o. h>
#i ncl ude <signal . h>

int alarnflag = 0;
voi d al armhandl er () ;

mai n()
signal (SIGALRM al armhandler); /* signal handler */

alarm(3); /* schedule an alarmin 3 secs */
printf ("looping. . . \n")

124

Processes 11

whil e (!al arnfl ag)
pause(); /* wait for signal */
printf("loop ends due to alarm signal\n");

}

voi d al ar mhandl er ()

{
printf("alarmclock signal was received\n");
alarnflag = 1;

}

/* critical.c - protecting critical code */
#i ncl ude <stdio. h>
#i ncl ude <signal . h>

mai n()

{
int (*ol dHandl er) ();

ol dHandl er = signal (SIG@NT, SIGIGN;

printf ("protected from”C nown");

sl eep(3);

signal (SIANT, ol dHandl er); /* restore old handler */

/* limt.c - death of children */
#i ncl ude <stdi o. h>
#i ncl ude <signal . h>

i nt del ay;
voi d chil dhandler();

mai n(i nt argc, char *argv[])

{
int pid;
signal (SI GCHLD, chil dhandler);/* signal handler */
pid = fork(); /* duplicate process */
if (pid == 0){ [* child */
execvp(argv[2], &rgv[2]); /* execute conmand */
fprintf(stderr, "limt - should never execute\n");
el se{ /* parent */
sscanf (argv[1], "%", &del ay);
sl eep (del ay);
printf ("child % exceeded |limt and is killed\n", pid);
kill(pid, SIGNT); [* kill child */
}
limt 51s -1

l[imt 4 sleep 40

/* pul se.c - suspendi ng and resum ng processes */
#i ncl ude <stdio. h>
#i ncl ude <signal . h>

mai n()
{
int pidl, pid2;
i f((pidl=fork())== 0){ [* first child */

125

Processes 11

while (1)({
printf("pidl is alive\n");
sl eep(1);
}
i f((pid2=fork())== 0){ /* second child */
while (1)({
printf("pid2 is alive\n");
sl eep(1)
}
sl eep(3);
kill(pidl, SIGSTOP) ; /* suspend first child */
sl eep(3);
kill(pidl, SIGCONT) ; /* resume first child */
sl eep(3);
kill(pidl, SIGNT) ; /* kill first child */
kill(pid2, SIG@NT) ; /* kill second child */

pidl is alive
pid2 is alive
pidl is alive
pid2 is alive
pidl is alive
pid2 is alive

pid2 is alive ... just second child runs
pid2 is alive
pid2 is alive ... first child is resumed

pidl is alive
pid2 is alive
pidl is alive
pid2 is alive
pidl is alive
pid2 is alive

Process Groups
Every process is a member of a process group. Several processes can be members of the same process group.

When a process forks, the child inherits its process group from its parent. A process may change its process group
to a new value by using set pgr p() .

Every process can have an associated control terminal. A child process inherits its control terminal from its parent.
When a process execs, its control terminal stays the same.

Every terminal can be associated with a single control process. When ~C is detected, the terminal sends the
appropriate signal to all processes in the process group of its control process.

/* proc_groupl.c */
#i ncl ude <stdio. h>
#i ncl ude <signal . h>

voi d si gintHandl er ();
main ()

signal (SIANT, sigintHandler); /* handle "C */

if (fork() == 0)

printf("child PID % PCRP % waits\n", getpid(), getpgrp(0));
el se

printf("parent PID %d PGRP % waits\n", getpid(), getpgrp(0));

126

Processes 11

pause(); /* wait for a signal */

}
voi d si gi nt Handl er ()

{
printf("process % got a SIANT\n", getpid());
}

parent PID 583 PGRP 583 waits
child PID 584 PGRP 583 waits
~C

process 584 got a SIGINT
process 583 got a SIGINT

/* proc_group2.c */
#i ncl ude <stdio. h>
#i ncl ude <signal . h>

voi d sigintHandl er();
mai n()
0
int i;
signal (SIGANT, sigintHandler); /* handle ~C */

if (fork() == 0)

setpgrp(0, getpid()); /* place child in own process group */
printf("process PID %d PGRP %d waits\n", getpid(), getpgrp(0));

sleep(5); /* tine to ~"C */
for (i=0; i<3; i++) {
printf("process % is alive\n", getpid());

sl eep(1);
}
}
void sigintHandler() {
printf("process % got a SIGA NN\n", getpid());
exit(1);
}

process PID 591 PGRP 591 waits
process PID 592 PGRP 592 waits
~C

process 591 got a SIGINT
process 592 is alive

process 592 is alive

process 592 is alive

If a process attempts to read from its control terminal and is not a member of the same process group as the

terminal's control process, the process is sent a SIGTTIN (suspend process).

/* proc_group3.c */

#i ncl ude <stdio. h>

#i ncl ude <signal . h>

#i ncl ude <sys/term o. h>
#i ncl ude <sys/file.h>

voi d si gintHandl er ();

mai n()

{
int status; char str[100];
if (fork()== 0)
{

127

Processes 11

[* child */
signal (SIGITIN, sigintHandler);

set pgrp(0, getpid()); /* place child in new process group */

printf("enter a string: ");

scanf ("9%", str); /* try to read from control
printf("you entered %\n", str);
} else
wait(&status); /* wait for child to termnate */
}
voi d si gi nt Handl er ()
{
printf("attenpted inappropriate read fromcontrol term nal\n");
exit (1)
}
enter a string: attempted inappropriate read from control terminal
PIPES

Interprocess communication mechanism that allow two or more processes to send information to each other.

Used to connect standard output of one utility to standard input of another.
$ who | we -1

Both the writer process and the reader process of a pipeline execute concurrently, a pipe automatically buffers the

output of the writer and suspends the writer if the pipe gets too full.

UNNAMED PIPES
pipe(fd) - unidirectional communication link
£d[0]
write end | . |--->pipe--->| . | read end
fd[1]

For bidirectional communication use two pipes

/* talk.c */
#i ncl ude <stdi o. h>

#defi ne READ 0

#define WRI TE 1

char* phrase = "a line of text for talk";
mai n() {

int fd[2], nread;
char str[100];

pi pe(fd); /* create unnanmed pipe */
if(fork()== 0){ /[* child witer */
cl ose(fd[READ]); /* close unused end */
wite(fd[WRITE], phrase, strlen(phrase)+l);
cl ose(fd[WRI TE]) ; /* close used end */
}
el se
{/* parent reader */
cl ose(fd[WRI TE]) ; /* close unused end */

nread = read(fd[READ], str, 100);
printf("read %l bytes: %\n", nread, str);
cl ose(fd[READ]); /* close used end */

128

Processes 11

/* connect.c - equivalent to conmmand |ine pipe */
#i ncl ude <stdio. h>

#defi ne READ 0
#define WRI TE 1
mai n(int argc, char *argv[])
{
int fd[2], pipe(FILE *fd); /* create unnanmed pipe */
if (fork()!= 0){ [* parent witer */
cl ose(fd[READ]); /* close unused end */
dup2(fd[WRI TE] , 1); /* duplicated used end to stdout */
cl ose(fd[WRI TE]) ; /* close original used end */
execl p(argv[1], argv[1], NULL); /* execute witer program?*/
fprintf(stderr, "connect"); /* shoul d never execute */
}
el se
{ /I* child reader */
cl ose(fd[WRI TE]) ; /* close unused end */
dup2(fd[READ], 0); /* duplicated used end to stdout */
cl ose(fd[READ]); /* close original used end */
execl p(argv[2], argv[2], NULL); /* execute witer program?*/
fprintf(stderr, "connect"); /* shoul d never execute */
}
}

connect who wc

NAMED PIPES - FIFO (first in first out)
Advantages:

- have a name that exists in file system
- may be used by unrelated processes

- exist until explicitly deleted

$ nknod nypipe p OR $ nkfifo nypipe
nknod(argv[l], S IFIFQ 0);
chrnod(argv[!l], 0660);

If a process tries to open a named pipe for read-only and no process writing, the reader will wait until a process
opens it for writing.
(If O_NDELAY is set then open succeeds immediately).

If a process tries to open a named pipe for write-only and no process reading, the writer will wait until a process
opens it for reading.
(If O_NDELAY is set then open fails immediately).

/* reader.c */

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <sys/file.h>

int nkfifo(char *nane)

{
char str[100];
sprintf(str, "nkfifo %", nane);
return(systen(str));

}

/* read NULL termnated |ine into str fromfd */

129

Processes 11

int readline(int fd, char *str)

{
i nt nread,
while (((nread=read(fd, str, 1)) > 0) && (*str++ !'= NULL))
return (nread > 0); /* false if end of file */
}
mai n(i nt argc, char *argv)
{
int fd;
char str[100];
nkfifo (" PIPE");
if ((fd=open("PIPE", ORDONLY)) == -1){
fprintf(stderr, "%: can't open PIPE\n", argv[0]);
exit(1)
}
while (readline(fd, str))
printf("%\n", str);
cl ose(fd);
unl i nk(" Pl PE")
}

/[* witer.c */
#i ncl ude <stdi o. h>
#i ncl ude <sys/file.h>

mai n()
int fd,i;
char str[100];
nkfifo("PlIPE"); /* if it does not already exist */
while ((fd=open ("PIPE', O WRONLY) < 0))
sl eep(1); /* wait for reader */

sprintf(str, "hello fromPID %", getpid());
for (i=0; i<3; i++)
{

wite (fd, str, strlen(str)+i);

sl eep(1)

}
cl ose(fd);

reader & writer & writer &
[1] 698

[2] 699

[3] 700

Hello from PID 699
Hello from PID 700
Hello from PID 699
Hello from PID 700
Hello from PID 699
Hello from PID 700
[2] Done

[3] Done

[1] Done

Changing directories

/* chdir.c */
#i ncl ude <stdi o. h>

130

Processes 11

mai n()

{
chdir ("/") ;
systen("pwd");
chdir("/usr/local/bin")
systenm("pwd");

/* exchange.c - full duplex communi cati ons between processes */
#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#define IN O
#define QUT 1
char string [] = "hello world";
mai n()
L .
int count, i;
int pipe_to_parent[2], pipe_to_child[2];
char buffer[256];

pi pe(pi pe_to_parent);
pi pe(pi pe_to_child);

if (fork () == 0)
{/* child process */

close(IN); /* close old stdin */

dup(pi pe_to_child[IN); /* dup pipe read to stdin */
cl ose(QUT); /* close old stdout */

dup(pi pe_to_parent[QUT]); /* dup pipe wite to stdout *
cl ose(pi pe_to_parent [QUT]); /* cl ose unnecessary pipes */

cl ose(pipe_to_child[IN);
cl ose(pipe_to_parent[IN);
cl ose(pi pe_to_child[QUT]);

for (;;) {
if ((count = read(IN, buffer, sizeof(buffer))) == 0)
exit(0);
wite(OQUT, buffer, count);
}
}
/* parent process */
cl ose(QUT); /* close old stdout */
dup(pi pe_to_child[OUJT]); /* dup pipe wite to stdout */
close(IN); /* close old stdin */
dup(pi pe_to_parent[IN); /* dup pipe read to stdin */
cl ose(pipe_to_child[QUT]); /* cl ose unnecessary pipes */

cl ose(pipe_to_parent[IN);
cl ose(pipe_to child[IN);
cl ose(pi pe_to_parent [QUT]);

for (i=0; i<15; i++)

{
wite (QUT, string, strlen(string));
read (IN, buffer, sizeof(buffer));
}
}
/* process attached to its own directory */
#i ncl ude <stdi o. h> #i ncl ude <dirent. h>
#defi ne MAXLEN 80 #define DIRSIZ 14
mai n()

131

Processes 11

char process_nane[MAXLEN] ;
char |ine[MAXLEN] ;
sprintf(process_nane, "parent");
while (1) {
printf("%> ", process_nane);
fgets(line, MAXLEN, stdin);
if (strcnp(line, "dir") == 0)
di rectory(process_nane);
else if (strcnp(line, "start") == 0)
start (process_nane);
else if (strcnp(line, "exit") == 0)
exi t (0)
else if (strecnp(line, "") == 0)
conti nue;
el se
printf("there is no help yet\n");

}
}

directory(char *pname)
{
int fd, nread, size;
char *dnane, *pat h;
static struct dirent dlink;
get pat h(pnanme, path);

if ((fd=open(path, 0)) == -1)

fprintf(stderr, "no such directory\n");

exit(1);

}
dlink.d _nane[DIRSI Z] = '"\0";
size = sizeof (struct dirent);

whi l e((nread=read(fd, &dlink, size)) == size)

if (dlink.d_ino != 0){}
}

Interprocess Communication

- IPC between two processes on a single system

- IPC between two processes on different systems

There are several ways to implement IPCs:
- Pipes

- FIFOs

- message queues

- semaphores

- shared memory

user user
process process
L | kernel ‘—I
user user
process process
T T
[} [}
[} [}
1 1
kernel L----1 kernel

132

Processes 11

File and Record Locking

UNIX line printer

- Process has to place a job on the print queue.
- has to assign a unique sequence number to each job
- job exists long enough for process ID to be reused
- file for each printer contains sequence number

Each process that needs a sequence number

- reads the sequence number file

- uses the number

- increments the number and writes it back

The problem is that in the time it takes a single process to execute these three steps, another process can perform
the same steps. Chaos results.

Advisory Locking versus Mandatory Locking
Advisory locking means that the operating system maintains information about which files have been locked and
by which process. A process can ignore an advisory lock and write to it, if the process has adequate permissions.
This is fine for cooperating processes.

Mandatory locking means that the operating system check every read and write request to verify that the operation
does not interfere with a lock held by a process. (System V Release 3 only - turn group-execute bit off and turn
set-group-1D on for file)

File Locking versus Record Locking
File locking locks an entire file, while record locking allows a process to lock a specified portion of a file (on
UNIX several records are locked this is called range locking).

Other Unix Locking Techniques
1. The link system call fails if the name of the new link to the file already exists.
2. The creat system call fails if the file already exists and if the caller does not have write permission for the file.
3. Newer version of UNIX, support options to open system call that cause it to fail of the file already exists.
- techniques 1 & 2 work on any version of UNIX.

- all take longer to execute than actual file locking system calls.

- an ancillary lock file is required.

- remove ancillary lock files after a system crash

- /tmp? cannot create links across file systems.

- technique does not work for superuser.

- instead of waiting one second - process wanting lock should be notified when lock is available.

Simple Client-Server stdin
Example filename > . >
client IPC~ | server y —— file
file ——" > e |
contents st dout contents T
Or error Or error
message

user process

Plpes. . . read fd
- Pipe in a single process R writefd
kernel
pipe
->flow of data->

133

Processes 11

- Pipe in a single process, immediately after fork

- Pipe between three processes

who | sort |

| pr

- Pipe between three processes in a shell pipeline

- Two pipes to provide a bi-directional

flow of data

- create pipe I, create pipe 2

- fork

- parent closes read end of pipe 1
- parent closes write end of pipe 2
- child closes write end of pipe 1
- child closes read end of pipe 2

parent process fork> child process
readd read fd
,,,,,,,,,,,, write fd ' write fd .
,,,,, kernel
pipe
->flow of data->
parent process child process
77777777 read fd
writefd
kernel
pipe
->flow of data->
who process sort process Ipr process
,,,,,, read fd > read fd
write fd writefd ‘
,,,,,,,,,,, > pipe 1 kerne > pipe2
>flow of data-> >flow of data—>
parent process child process
readd read fd
,,,,,,,, «, write fd ' write fd

>

v
=
5
=
o
=8
&
9

->flow of data->

134

Processes 11

FIFOs
First In, First Out is similar to a pipe (System V). FIFOs are used by the System V line printer.
A FIFO is created by the mknod system call.

i nt nknod(char *pathname, int node, int dev); / et c/ nmknod nane p

Pipe/FIFO rules for reading and writing:
- read ask for less data than is in pipe
- returns requested data
- leaves remainder

- askformore - only return what is available

- nodata in pipe - read returns zero - EOF

- writes less than capacity of pipe (4096 bytes) - write is guaranteed to be atomic
- write to a pipe & no read process - SIGPIPE signal

Consider a daemon that uses a FIFO to receive client requests:

- Daemon opens FIFO for read-only & its typical state is waiting in a read system call for a client request.

- Client processes are started and they open the FIFO for writing, write their request, & exit.

- What happens is that the read returns zero to the daemon every time a client process terminates, if no other
clients have FIFO open for writing.

- Daemon has to then open the FIFO again and it waits here until client opens FIFO for writing.

- To avoid this, the daemon opens FIFO two times - once for reading & once for writing,

- File descriptor returned for reading is used to read the client requests & fd for writing is never used.

- By having FIFO always open for writing the reads do not return EOF, but wait for next client request.

Client-Server FIFO example

- nknod to create the FIFOs (may already exist). After fork both processes must open each of 2 FIFOs.
- Parent process remove FIFOs with unlink system call, after waiting for the child to terminate.

- The order of the open calls is important, and avoids a deadlock condition.

- With pipes the client and server had to originate from the same process - no restriction with FIFOs.

Streams and Messages
The data is a stream of bytes with no interpretation done by the system. Many UNIX processes that need to impose
a message structure on top of a stream based IPC facility do it using the newline character to separate messages.

Name Spaces
The name is how the client and server "connect” to exchange messages

IPC type Name space Identification
pipe (no name) file descriptor
FIFO pathname file descriptor
message queue key t key identifier
shared memory key tkey identifier
semaphore key t key identifier
unix socket pathname file descriptor
key t key

f t ok function converts a pathname to a IPC key

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
key t ftok(char *pathnane, char proj);

Guarantee a unique key
32-bit inode => 16-bits
8-bit major device number
8-bit minor device number => 8-bits
8-bit project => 8-bits

135

Processes 11

System V IPC
- message queues

- semaphores
- shared memory0

Message queue Semaphore Shared memory
include file <...> sys/msg.h sys/sem.h sys/shm.h
system calls

to create or open negget senget shnget

for control operations nmsgct 1 senct 1 shnct 1

for IPC operations nsgsnd senop shmat
nsgr cv shndt

/* <sys/ipc.h> */
struct ipc_perm{ /* <sys/ipc.h> */

ushort uid; /* owner's user id */
ushort gid; /* owner's group id */
ushort cuid; /* creator's user id */
ushort cgid; /* creator's group id */
ushort node; /* access nodes */
ushort seq; /* slot usage sequence nunber */
ket _t key; /* key */
1
Generating IPC ids ~ char *path key_t key nmBgget() int id
> ftok() > senmget() >
char proj shrnget () |
Logic flow for opening start here OK create new entry return ID
an IPC channel I lno yes
keyIPC PRIVATE? | ¥, systemtable full? ¢rrno= ENOSPC
___________________ o . e yes
Key already exists? ,,,,,{1,9,,> IPC_CREAT set? no .
T e T T errno= ENOENT
e e e ves error return
CREAT& EXCLset? 7 ermo=EEXIST
___________________ lno .
access permission? Jho,, o return
""""""""""""""""""""""""""""" errno=EACCES
| yes
OK return ID

Message queues

There is no requirement that any process be waiting for a message to arrive on queue before some other process is
allowed to write a message to that queue

For every message queue in the system, the kernel maintains the following structure of information:

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h> /* defines ipc_permstructure */

struct msqid_ds {

struct ipc_permnsg_perm /* operation permstruct */
struct nmsg *nmsg_first; /* ptr to first nsg on q */
struct nmsg *nsg_| ast; /* ptr to last nmsg on q */

ushort nsg_cbhytes; /* current # of bytes on q */
ushort nsg_qnuro; /* current # of nessages on q */
ushort nsg_qbytes; /* max # of bytes allowed on q */
ushort nsg_| spid; /* pid of |last msgsnd */

ushort nsg_Irpid; /* pid of last msgrcv */

tinme_t neg_stine; /* tinme of last msgsnd */

136

Processes 11

time_t nmsg_rtine; /* time of last nsgrcv */
time_t nmsg_ctine; /* time of last nsgctl */
/* that changed t he above */
}
Message queue . 3 A 3
structures in kernel ~ ™sqid 7 msgperm | 4 link link link
type=100 type=200 type=300
msg first —— | length=l length=2 length=3
msg last [
data_
data_
msg_ctime _data

A new message is created, or an existing message queue is accessed with nsgget system call.

i nt msgget (key_t key, int nsgflag);

msgflag

0400 MSG_R read by owner
0200 MSG W write by owner
0040 MSG R >>3 read by group
0020 MSG_W >>3 write by group
0004 MSG R >>6 read by world
0002 MSG_W >>6 write by world

IPC_ CREAT & IPC_EXCL

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>

int nsgsnd(int nsqid, struct nmsgbuf *ptr, int length, int flag);

struct nmsgbuf {

| ong ntype; /* message type, nust be > 0 */

char mext[I]; /* message data */

}

- The data nt ext can be binary data or text.

- The kernel does not interpret the contents of the message at all, so cooperating processes could define their own
structure.

- The length is in bytes.

- The flag can be set to [IPC_NOWAIT or zero.

int megrcv(int neqid, struct nmsgbuf *ptr, int length, long nmsgtype, int flag);
If MSG_NOERRGOR bit in flag is set, than data of received message is greater than length.

specify which message on queue is returned:

- if msgtype = 0 then first message on queue

- if msgtype > 0 then first with a type = msgtype

- if msgtype < 0 then first message with lowest type <= absolute of msgtype

If IPC_NOWAIT bit is set, msgrcv returns immediately if a message is not available.

Otherwise, caller is suspended until one of the following occurs:
- message of the requested type is available

- message queue is removed from the system

- process receives a signal that is caught

137

Processes 11

int megctl (int neqid, int crod, struct nsqid_ds *buff);
cmd of IPC_ RMID to remove message queue from system

Multiplexed Messages
client 1 client 21 client 3
id=123 ~ pid=4 - pid=789
P : pldl 56 P . Features:
type=1: 123 11456 11789 message - read in any order
““““““““““ PTTTTTTTTT T ueue - assign priorities
type=123/456/78911 1 - read any message
,,,,,,,,, server |

Semaphores
Semaphores are a synchronization primitive. We will use to synchronize access to shared memory segments.

A semaphore is a integer resource counter. If we have one resource, a shared file, then valid values are 0 & 1.

process A ~ process B

Since our use of semaphores is to provide resource synchronization between different processes, the semaphore
value must be stored in the kernel.

To obtain a resource that is controlled by a semaphore, a process needs to test its current value, and if value> 0,
decrement the value by 1.

If value = 0, the process must wait until value> 0 (wait for some other process to release resource).

To release resource, a process increments the value. System V implementation of semaphores is done in the kernel
- guarantee a group of operations is atomic.

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h> /* defines ipc-permstructure */

struct semd_ds {

struct ipc-permsem perm /* operation permstruct */
struct sem *sem base; /* ptr to 1lst semaphore in set */
ushort sem nsens; /* # of semaphores in set */
tinme_t sem oti ne; /* time of |ast senmop */
tinme_t sem cti ne; /* tinme of |last change */

b

struct sem {
ushort senval ; /* semaphore val ue, non -ve */
short senpi d; /* pid of |ast operation */
ushort semmcnt; /* # awaiting senval > cval */
ushort senecnt; /* # awaiting senval = 0 */

15

Kernel also maintains for each value in the set:

- process ID of process that did last operation

- number of processes waiting for value to increase
- number of processes waiting for value to = zero

138

Processes 11

Kernel data structures for a semaphore set semid sem-perm semval 0]

j sempid [0]

sem_base semncnt [0]

sem_nsems semzent [0]

sem_otime semval | [1]

em ctime sempid [1]

1

#i ncl ude <sys/types. h> semncnt H
#i ncl ude <sys/ipc. h> semzcent

#i ncl ude <sys/sem h>

int senget(key_t key, int nsens, int senflag);

semfla
0400 SEM_R alter by owner
0200 SEM_A read by owner

0040 SEM R >>3 alter by group
0020 SEM_A>>3 alter by group
0004 SEM R>>6 read by world
0002 SEM_A>>6 alter by world
IPC_CREAT
IPC_EXCL

int senmop(int semd, struct senmbuf **opsptr, unsigned int nops);

struct senbuf {
ushort sem num /* semaphore # */

short sem op; /* senmaphore operation */
short semflg; /* operation flags */
i

Semaphore operations:

- ifsem_op > 0, sere_val is added to semaphore value (release of resources)
- if sem_op = 0, caller waits until semaphore value = 0

- if sem op <0, caller waits until semaphore value >= absolute of sem op

int senctl(int semid, int seomum int cnd, union semum arg);

uni on semun {

int val; /* used for SETVAL only */

struct semd ds *buffi /* used for | PC_STAT & | PC SET */
ushort *arrar; /* used for | PC_ GETALL & | PC_SETALL */
} arg;

File Locking with Semaphores

To lock the semaphore call semop to do two operations atomically. First, wait for sem#0 to become 0, then
secondly increment sem#0 by 1.

To unlock the resource, call semop to decrement sen#0 by 1. Explicitly set IPC_NOWAIT, so that cannot wait if
"impossible condition" occurs.

With System V, it is hard to initialize a semaphore to a value other than zero.
If the process aborts for any reason while it has the lock, the semaphore value is left at one.

Any other process that tries to obtain the lock waits forever when it does the locking semop that first waits for the
value to become zero.

System V solution is to tell the kernel (when obtaining lock) that if this process terminates before releasing lock,
release it for the process.

139

Processes 11

For every semop operation that specifies SEM_UNDO:

- if the semaphore value goes up, the adjustment values goes down by the same amount;
- if the semaphore values goes down, the adjustment values goes up by the same amount;
- kernel applies adjustment on exist.

Simpler Semaphore Operations

System V semaphore facility is not simple to understand or use.

There are problems:

- creation of a semaphore with semget is independent of its initialization using semctl. This can lead to race
conditions if not careful.

- unless a semaphore is explicitly removed, it exists within the system, using system resources, until the system
is rebooted.

Shared Memory
Normal steps in client-server file copying:

- The server reads from the input file. Data is read by kernel into its internal block buffers and copied to the
server's buffer.

- The server writes this data in a message (via a pipe, FIFO, or message queue). Data is copied from user's buffer
into the kernel.

- The client reads the data from the IPC channel. Data is copied from kernel's IPC buffer to client's buffer.

- Finally the data is copied from the client's buffer to the output buffer. This might involve just copying the data
into a kernel buffer and returning, with the kernel doing the actual write operation to the device at some later
time.

Most Unix implementations try to speed up these copies as much as possible expensive in time.

Movement of data between client and server

server
FIFO, pipe = |~

output Or message input
file kernel ﬁ le 777777777

The problem with these forms of IPC - pipes, FIFOs and message queues - is that for processes to exchange data, it
has to go through the kernel.
Shared memory provides a way around this by letting two or more processes share a memory segment.

The steps for the client-server examples:

- The server gets access to a shared memory segment using a semaphore.

- The server reads from the input file into the shared memory segment. address to read into points into shared
memory.

- When the read is complete the server notifies the client, again using a semaphore.

- The client writes the data from the shared memory segment to the output file

Movement of data between client and server

client shared memory server

kernel

Data is only copied twice. Both of these copies involve the kernel's block buffers. For every shared memory

140

Processes 11

segment the kernel maintains.
#i ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h> /* defines ipc-permstructure */
struct shrnid_ds {

struct ipc_permshrn_perm /* operation permstruct */

int shrn_seqsz; /* segment size */

struct XXX shrn_YYY; /* hardware & inplenentation dependent information */
ushort shrn_I pid; /* pid of |ast operation */
ushort shrn_cpid; /* creator pid */

ushort shrn_nattch; /* current # attached */

ushort shrn_cnattch; /* in-core # attached */

time_t shrn_atine; /* last attach tinme */

time_t shrn_dtineg; /* last detach tinme */

time_t shrn_ctineg; /* last change tine */

1

int shrnget(key_t key, int size, int shrnflag);
/* used to create or open access to an existing shared menory segnent */

shrnflag
0400 SHM R read by owner
0200 SHM W write by owner
0040 SHM R>>3 read by group
0020 SHM W >>3 write by group
0004 SHM R>> 6 read by world
0002 SHM W >>6 write by world
IPC_CREAT
IPC_EXCL

char *shrnat(int shrnid, char *shraddr, int shrnflag);
/* returns the starting address of shared nenory segnent */

if shrnaddr == 0
system selects address for the caller
else
if value for shrnflag specifies SHM_RND,
shared memory is attached at the address specified by the shrnaddr
argument rounded down by SHMLBA (lower boundary address)
else
shared memory is attached at the address specified by the shrnaddr argument

i nt shrndt(char *shrnaddr);

/* detaches the segnment but does not delete the shared nenory segnent */
int shrnctl (int shrnid, int cmd, struct shrnid_ds *buf);

/* a cnd of IPC_RMD renoves a shared nenory segnent fromthe system */

See shared_nenory. c

The two process wait for access to the shared memory by waiting for a semaphore's value to become greater than
zZero.

This is the most efficient way to wait for the resource, since it is the kernel that does all semaphore operations and
the kernel puts a process to sleep when it has to wait for a semaphore.

Busy-waiting - instead of sleeping
- keep trying to obtain resource

/* server |oop */

mesgptr->mesg_flag = 0; /* signal client */

whil e (nmesgptr->mesg flag == 0)

; /* wait for client to process */

141

Processes 11

/* client |loop */

mesgptr->mesg_flag = 1; /* signal server */

while (mesgptr->nesg_flag == 1)

; /* wait for server to process */

Multiple Buffers
/* typical programloop */
while ((n = read(fdin, buff, BUFFSIZE» > 0) /* process the data */
wite (fdout, buff, n);

Sockets and TLI

Sockets are a form of IPC provided by BSD4.3

TLI, Transport Layer Interface is a form of IPC provided by System V.

Both provide communication between processes on the same system and between processes on different systems.

142

I/O Subsystem

10.

1I/0 SUBSYSTEM

device driver - disk and terminal
software devices e.g. memory
implementation via - streams

DEVICE INTERFACES

block device
character "raw" device

Device configuration data
hard code into files that are compiled into kernel, or
supply configuration information while system running, or

nknod / dev/ devi ce_nane c/b_speci al

self-identifying devices permit kernel
to recognize what is installed.

File Subsystem

open close read write ioctl

open close
mount unmount

read write
|

Character Device Switch Table

uffer cache
calls

Block Device Switch Table

open

close

Driver

device interrupt handler

read write

ioctl| Driver open

Entry

Points

close

strategy

Driver

device interrupt handler

Interrupt Vector

maj or _no m nor _no

block device switch table

Interrupt Vector

Device Interrupts

Figure 27. Driver Entry Points

entry open close strategy
0 gdopen gdclose gdstrategy
1 gtopen gtclose gtstrategy

character device switch table

entry open close read write ioctl
0 conopen conclose conread conwrite conioctl
1 dzbopen dzbclose dzbread dzbwrite dzbioctl
2 syopen nulldev syread sywrite syioctl
3 nulldev nulldev mmread mmwrite nodey
4 gdopen gdclose gdread gdwrite nodev

Figure 28. Block and Character Device Switch Tables

143

I/O Subsystem

Drivers frequently sleep, waiting for hardware connections or the arrival of data.

algorithm open /* for device drivers */
input: pathname
openmode
output: file descriptor
{
convert pathname to inode, increment inode reference count,
allocate entry in file table, user file descriptor,
as in open of regular file;

get major, minor number from inode;
save context (algorithm setjmp) in case of long jump from driver;

if (block device)
{
use major number as index to block device switch table;
call driver open procedure for index:
pass minor number, open modes;

else
use major number as index to character device switch table;
call driver open procedure for index:
pass minor number, open modes;

if (open fails in driver)
decrement file table, inode counts;

} Figure 29. Opening a Device

Open with "no delay",

1 * 1 *
call returns immediately algorithm close /* for devices */

input: file descriptor
output: none
{

do regular close algorithm;

if (file table reference count not 0)

goto finish;
if (there is another open file and its major, minor numbers
are same as device being closed)

goto finish; /* not last close after all */
if (character device)

use major number to index into character device switch table;
call driver close routine: parameter minor number;

H
i{f (block device)

if (device mounted)
goto finish;
write device blocks in buffer cache to device;
use major number to index into block device switch table;
call driver close routine: parameter minor number;
invalidate device blocks still in buffer cache;
H
finish:
release inode;
Figure 30. Closing a Device }

144

I/O Subsystem

Close only for the last close of the device
- kernel searches the file table to make sure that no other processes still have the device open
- several process may access the device via different file table entry
- several device files may specify the same device different inodes but same device
- for block devices, kernel searches the mount table to make sure that the device does not contain a mounted file
System
- the kernel searches the buffer cache for blocks marked "delayed write" and writes them before
invoking the device close procedure.
- kernel releases inode of the device file

Kernel algorithms for read and write are similar to those of a regular file.

The kernel can transmit data directly between address space and the device, or device drivers may buffer data
internally e.g. terminal drivers use clist to buffer data.

- memory mapped - status registers
- programmed I/O - execute instructions
- direct memory access (DMA) - used for bulk data transfer in parallel to CPU operations.

- transfer data between device and user's address space faster (one less copy, no kernel buffers).

Strategy interface
To transmit data between the buffer cache and a device. The process must be locked in memory until the I/0O
transfer is complete.

ioctl(fd, command, arg)
Device specific

Interrupt handlers
Many physical devices can be associated with one interrupt vector entry, the driver must be able to resolve which
device caused the interrupt.

Disk Drivers

Partitioning the disk into sections, means that some
sections can be read-only, some read-write, and some | #include "fentl.h" #include <stdio.h>
unmounted (no access) main()

char buf1[4096], buf2[4096];

Section Name Start Length int fdl, fd2, i;
Block in Blocks
0 0s0 0 64000 if (((fdl =open("/dev/dsk5", O RDONLY)) ==-1) ||
1 0sl 64000 192000 ((fd2=open("/dev/rdsk5", O_RDONLY)) == -1))
2 0s2 256000 256000 e "
3 0s3 0 512000 prllntf(failure on open'\n");
exit();

Sections may overlap, but file systems must not. 1}seek(fdl, 8192L, 0);

Iseek(fd2, 8192L, 0);
$ Is -1 Idev/dskl5 |dev/rdskl5 if ((read(fdl, bufl, sizeof(bufl)) ==-1) ||
br------- 2 root root 0,21 Feb 12 15:40 (read(fd2, buf2, sizeof(buf2)) == -1))
/ dev/ dsk15 {
Crwrw-- 2 root root 7,21 May 7 09:29 printf("failure on read\n");
/ dev/rdskl5 exit(0);

H

The kernel loops internally 4 times to read 4096 bytes) o)
for (1= 0; i < sizeof(bufl); i++)

Programs that read and write the disk directly can if (buf[I] = buf2(i])

. . {
destroy the COHSIS'[ency Of the flle S'yStem data. printf("different at offset %d\l’l", 1)’
Therefore "fsck" should not run on active file system. exit(0);
f

printf("reads match\n");

Figure 31. Reading Disk Data - block & raw interface | 1

145

I/O Subsystem

Terminal Drivers

Internally implement a "line discipline”" which interprets the users' I/O.

In "canonical" mode, the line discipline converts the "raw" sequences typed by the user to a canonical form
(what the user meant) before sending them to the user process.

In "raw" mode, the line discipline passes data between the process and the user without conversion.

Functions of the Line Discipline

Parse input strings into lines.

Process "erase" (backspace-type) characters.
Process a "kill" character (all of present line).
Echo received characters.

Expand output e.g.: tab spaces

Generate signals e.g.: user hitting the interrupt key.

Allow a "raw" mode. Data Flow Control Flow
Process read/write Process read/write
N b Vo
output - | Line discipline " input Terminal driver read/write
¥ p v A
Terminal driver Line discipline

v A

Driver input/output

‘!

Device input/output

Figure 32. Data Sequence and Data Flow through Line Dicsipline

Terminal I/O is buffered

G | 7 | 14 | garbage ...

Line disciplines manipulate "clists" (character list).
Variable length linked list of CBlocks with a count of the number of characters on the list.

CBlock contains:

- Pointer to next CBlock on list
- Character array

- Start & end offsets for data

Next Start End Character Array
Ptr Offset Offset 0123456 ...

Kernel manages Clists and CBlocks

Keeps a list of free CBlocks

A Cist is a variable linked list of Cblocks

Can do the following:

1. Assign a free CBlock to a driver

2. Return a CBlock to the free list

3. Retrieve first character from a Clist (null if none)

146

I/O Subsystem

4. Put a character on the end of a Clist (allocates a new CBlock if needed).
5. Remove a group of characters from the beginning of a Clist one CBlock at a time.
6. Can place CBlock of characters onto the end of a Clist

Figure 33. Removing characters from a Clist

clist cblocks
[0% P[]
chars 08 FL I TeleI]
‘\[:-Wllll [oITIT]
03] CERL T
(a)
T8) [Tile] Tf[iTile] Figure 34. Placing characters on a Clist
s d//-i* 08| FT T Telo[r] st cblocks
ﬁ\:;osnu [(F I] R
ST EER IO 5 |- S —
281 [T Tl i1 Te] L] Ttfrfoff]] |
s T o8] (LTI eI] @
\\g””” — I 13| G N IC
S EER | 2 [N —
0% (T \(: ULt T
chars | | [%) [T [T
T~ 3] [ER[TTTT] O8] PRI
@ ey T LI T
[08 [L]
©
08] [pfife] TTTiTTTe]
ro PO e
Terminal Driver Data Structures clfasrs Ijr O8[I] [tfrfoffff] |

- Output Clist
'raw' input Clist
'cooked' input Clist

-HL_H_}
OVj[-1 11t i 11

(d)

147

I/O Subsystem

Canonical Mode

algorithm terminal write

while (more data to be copied from user space)

{
if (tty flooded with output data)

{

sleep (event: tty can accept more data);

}

copy cblock size of data from user space to output clist:
line discipline converts tab characters, etc;

}

start write operation to hardware with data on output clist;

}

start write operation to hardware with data on output clist;

continue; /* back to while loop */

Figure 35. Writing Data to a Terminal

If number of characters on output clist becomes greater than a high-water mark, the line discipline calls driver
procedures to transmit the data on the output clist to the terminal and puts the writing process to sleep.

When the amount of data on the output clist drops below a low-water mark, the interrupt handler awakens all

processes asleep on the event, the terminal can accept more data.

When multiple processes write out to a terminal, garbled output results but this is normally permitted.

char form[] - "this is a sample output string from child ";
main()
char output[128];
int i,
for 1=0;1<18;it++)
{
switch (fork())
{
case -1: /* error --- hit max procs */
exit();
default: /* parent process */
break;
case 0: /* child process */
/* format output string in variable output */
sprintf(output, "%s%d\n%s%d\n", form, i, form, i);
for (;;)
write(1, output, sizeof(output));
H
H
H

- Standard CBlock size is 64 bytes
- A Read may request N characters but get M characters

Figure 36. Flooding Standard Output with Data

148

I/O Subsystem

algorithm terminal_read
{
if (no data on canonical clist)
while (no data on raw clist)
{
if (tty opened with no delay option)
return;
if (tty in raw mode based on timer and timer not active)
arrange for timer wakeup (callout table);
sleep (event: data arrives from terminal);
H
if (tty in raw mode) /* there is data on raw clist */
copy all data from raw clist to canonical clist;
else /* tty is in canonical mode *'
while (characters on raw clist)
{
copy one character at a time from raw clist to canonical clist:
do erase, kill processing;
if (char is carriage return or end-of-file)
break; /* out of while loop */
H
H
H
while (characters on canonical list and read count not satisfied)
copy from cblocks on canonical list to user address space;
E

Figure 37. Algorithm

for Reading a
Terminal

If no data s
currently on either
input clist, the
reading process
sleeps until the

arrival of a line of
data.

When data is entered, the terminal interrupt handler invokes the line discipline interrupt handler, which places the
data on the raw clist for input to reading processes and on the output clist for echoing back to the terminal.

Character processing in input and output directions is asymmetric, two input clists and one output clist.

The use of two input clists means that the interrupt handler can simply dump characters onto the raw clist and

wakeup up reading processes, which properly incur the expense of processing input data.

The interrupt handler puts input characters immediately on the output clist, so that the user sees the typed character

with minimal delay.

Figure 38. Contending for Terminal Input

char input[256]; Data
main()
{
register int i;
for (i=0;1<18; it++)
{
switch (fork())
{
case -1: /* error */
printf("error cannot fork\n");
exitO;
default: /* parent process * /
break;
case 0: /* child process */
for (5;) The processes will spend most of their
{ 400, input, 256) 1% read line */ time sleeping in terminal read,
read(0, input, ; read line itine for input data.
printf("%d read %s\n", i, input); waiting for input data
} Intelligent terminals "cook" their
H input in the peripheral, freeing CPU
\ H for other work.

149

I/O Subsystem

Raw Mode

Raw mode is important for screen
oriented applications.

main()

{

Figure 39. Raw Mode - Reading 5 character | }
Bursts

#include <signal.h>
#include <termio.h>
struct termio savetty;

if (ioctl(0, TCSETAF, &newtty) == -1)
{ printf("cannot put tty into raw mode\n");
exit(0);
§
for (;;)
{
nrd = read(0, buf, sizeof(buf));
buf[nrd] = 0;
printf("read %d chars '%s"n", nrd, bur);
f
void sigcatch();

extern void sigcatch();
struct termio newtty;

int nrd;

char buf[32];
signal(SIGINT, sigcatch);

if (ioctl(0, TCGETA, &savetty) ==-1)

{
printf("ioctl failed: not a tty\n");
exit(0);

H

newtty = savetty,

newtty.c Iflag &=~ICANON;
newtty.c 1flag &= ~ECHO;

/* turn off character echo */
newtty.c_cc[VMIN] = 5;
newtty.c_cc[VTIME] = 100;

/* turn off canonical mode */

/* minimum 5 chars */
/* 10 see interval */

ioctl(0, TCSETAF, &savetty);
exit(0);

#inf:lude <fentl.h> Polling
I{nam() - Can "poll" terminals by opening with no-
register int i, n; int fd: delay, etc. but processing intensive.
char buf[256]; - BSD system has a select system call
/* open terminal read-only with no-delay option */
if ((fd=open("/dev/tty", O_RDONLY | O_NDELAY))—-1) | Seélect (nfds, rfds, wids, efds,
exit(0); ti meout)
n=1; nf ds = number of file descriptors
for (;;) /* for ever */ rfds, wids, efds = bit masks (read,
{ . . . write, exceptions)
for (i=0;1<n; it++) ti meout = how long to wait
if (read (fd, bur, sizeof(buf)) > 0)
{
printf("read at n %d\n", n);
n--;
H
else /* no data read; returns due to no-delay */
n++;
H
§ Figure 40. Polling a Terminal

150

I/O Subsystem

Control Terminal
Terminal on which the user logs into the system.

When a user presses DELETE, BREAK, RUBOUT, QUIT keys the interrupt handler invokes the line discipline,

which sends a signal to all processes in the control process group.

Indirect Terminal Drivers

/dev/tty - current terminal

/ dev/ consol e - console device

Login algorithm login /* procedure for logging in */
{

getty process executes:
set process group (setpgrp system calO;

open tty line; /* sleeps until opened */
if (open successful)
{

exec login program:
prompt for user name;
turn off echo, prompt for password;

{
put tty in canonical mode (ioctl);
exec shell;

H

else

if (successful) /* matches password in letclpasswd */

count login attempts, try again up to a point;

Streams
- different drivers tend to duplicate functionality
- a full-duplex connection between a process and a device driver

- aset of linear linked queue pairs, one for input and one for output

Each queue contains:

- open procedure

- close procedure

- put - to pass message into queue

- service - to execute queue

- pointer to next queue in stream

- pointer to list of messages awaiting service

- pointer to private data structure - maintains state of queue
- flags - high and low water marks - flow control
Stream Head Output Input
queue queue
[
Driver | Output | Input
queue queue

Figure 41. Loggin in

Inode of
device file

_.-"a queue pair

Figure 42. A Stream after Open

151

I/O Subsystem

Figure 43. Pushing a Module onto a Stream
| Inode of
device file
Stream Head Output |~ Input
queue queue
]
Line Output | Input
Discipline | queue queue
]
User Level [shl] [sh2 | I mpx l
Kernel Level [

\
Terminal [Qutput Input
Driver queue queue

ttyld ttyld
[
¥
pty
Figure 44. Windowing VT pair 1
on Physical Terminal tty
driver
/* assume file descriptors 0 and 1 already refer to physical tty */ Figur.e 45,' Psqudo-code for
for (;;) /* loop */ Multiplexing Windows
{
select (input); /* wait for some line with input */
read input line;
switch (line with input data)
{
case physical tty: /* input on physical tty line */
if (control command) /* e.g. create new window */
{
open a free pseudo-tty;
fork a new process:
if (parent)
push a msg discipline on mpx side;
continue; /* back to for loop */
}
/* child here */
close unnecessary file descriptors;
open other member of pseudo-tty pair, get stdin, stdout, stderr;
push tty line discipline;
exec shell; /* looks like virtual tty */
}
/* "regular" data from tty coming up for virtual tty */
demultiplex data read from physical tty,
strip off headers and write to appropriate pty;
continue; /* back to for loop */
case logical tty: /* a virtual tty is writing a window */
encode header indicating what window data is for;
write header and data to physical tty;
continue; /* back to for loop */
}
}

152

Interprocess Communication

11. INTERPROCESS COMMUNICATION

What are the limitations of the following?
- Pipes

- Named pipes

- Signals via kill

System V IPCs:

- messages

- shared memory
- semaphores

BSD sockets

Process Training

A debugger process, such as sdb, spawns a process to be traced and controls its execution with pt r ace system call.

if ((pid=fork()) == 0)
{

/* child -traced process */
ptrace(0, 0, 0, 0);
exec("nanme of traced process here");

}

for (;;) /* debugger process continues here */

{
wait((int *) 0);
read(i nput for tracing instructions)
ptrace(cnd, pid, addr, data);
if (quiting trace)
br eak;

ptrace

cnd reading data, writing data, resuming execution
pid = process ID of traced process

addr = virtual address to be read/written in child
data = integer value to be written

| e e e e e e e e o - * [
/* trace */
int data[32];

mai n()
Lt
int i;
for (i=0; i<32; i++)
printf("data[%l]=%\n", i, data[i]);

printf("ptrace data addr Ox%\n", data);

/* ______________________________________ */
/* debug */

#define TR SETUP O

#define TR WRITE 5

#define TR RESUME 7

i nt addr;
mai n(i nt argc, char *argv[])
{

int i, pid;

scanf(argv [1], "%", &addr);
if ((pid=fork ()) == 0)

153

Interprocess Communication

{
ptrace(TR_SETUP, 0, 0, 0);
execl ("trace", "trace", 0);
exi t (0)
for (i=0; i<32; i++)
{
wait ((int *) 0);
/* wite value of i into addr in proc pid */
if (ptrace(TR WRITE, pid, addr, i) ==-1)
exit(0);

addr += sizeof (int);

/* traced process shoul d resune execution */
ptrace(TR_RESUME, pid, 1, 0);

}

Disadvantages:

- kernel must do 4 context switches to transfer a word of data between debugger and traced process
- debugger can only trace child processes

- debugger cannot trace a process that is already executing

- impossible to trace setuid programs

Alternatives:

- users identify processes by their PID and treat them as files in /proc.
- users can examine the process address space by reading the files, and set breakpoints by writing files

System V IPC

Messages - allow processes to send formatted data streams
Shared Memory - allow processes to share parts of their address space
Semaphores - allow processes to synchronize execution

Share common properties:

- contains a table

- entry contains a numeric key

- '"get " systemcall (I PC_PRI VATE, | PC _CREAT, |PC _EXCL)
- index = descriptor modulo (number of entries in table)

- IPC permissions similar to file permissions

- status information such as process ID, time of last access/update
- "control" system call to set/remove/query table entries

Message Queues

$ ipcs

IPC status from /dev/kroem as of Mon May 3 22:27:34 1993

T ID KEY MODE OWNER GROUP
Message Queues:

q 2 0x4917ge95 --rw-rw-rw root root
q 3 0x4917dfel - TW-TW-TW root root
Shared Memory:

m 1 0x41441156 --rw-rw-rw root root
m 2 0x41442104 --rw-rw-rw root root
Semaphores:

s 0 0x41441f56 --ra-ra-ra

Creating a Message Queue
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>

154

Interprocess Communication

#i ncl ude <sys/nsg. h>
main ()

i nt nsqid;
nsqi d = nsgget ((key_t) 10, |PC_CREAT);

printf("Mssage queue created with key %\ n", nsqid);

$ipcs -q
IPC status from /dev/krnem as of Mon May 3 22:30:31 1993

T ID KEY MODE OWNER GROUP

Message Queues:

q 0 0x0000000a ---------- neville staff

struct ipc_perm{
ushort uid; /* owners user id */

ushort gid; /* owners group id */

ushort cuid; /* creators user id */

ushort cgid; /* creators group id */

ushort node; /* access nodes */

ushort seq; /* slot usage sequence nice nunber */
key t key; /* key; */

1

| * o e e e e e e e e e e e e e maaaaaa * [

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>

main ()
{
int nsqid;
key t key = 32769;
nsqi d = nsgget (key, | PC CREAT | | PC EXCL);
if (msqid < 0)
perror ("nmsgget failed");
el se
printf ("Message queue created with key %\ n",

$ipcrrn -q <id number> |

QUEUE PERMISSIONS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>

mai n()
{
int nsqid;
key t key = 15;
nsqi d = nsgget (key, | PC CREAT | 0644);
if (msqid < 0)
perror("nsgget failed");
el se
printf ("Message queue created with key %\ n",

nsqi d) ;

nsqi d) ;

$ipcs -q
IPC status from /dev/krnem as of Mon May 3 22:30:31 1993

155

Interprocess Communication

T 1D KEY MODE OWNER GROUP
Message Queues:

q 0 0x0000000a --------- neville staff

q 1 0x0000000f rw-r-r- neville staff

Queue Numbering System

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>
#defi ne PERVS 0666

mai n()
{
int i, nsqid;
key t key = 100;
for (i=0; i<50; i++)

{
nsqi d = nsgget (key, | PC CREAT | PERMVB);
if (nmegid < 0) {
perror("nsgget failed");
exit(1);
}
printf("msqgid = %\ n", nsqid);
if (nmsgctl(nsqgid, IPCRMD, 0) < 0) {
perror("nsgctl failed");
exit(1);
}
}

}

Whenever a message queue is created with the same name, the identifier value returned by nsgget () is
incremented by the maximum number of table entries that are held by the table, each time the entry is reused.

Message Queue Identifiers

KEY 1 2 3 4

100 0 50 100 150

200 1 51 101 151

300 2 52 102 152
Messages

nmsgqgi d = nsgget (key, flag);

- pointers to first and last messages on linked list
- number of messages and total number of data bytes
- maximum number of bytes on linked list
- process ID of last processes to send and receive messages
- time stamps of last msgsnd, msgrcv, msgctl
msgsnd(nsgqi d, nsg, count, flag);

nmsgqi d = descriptor of message queue

nmsg = pointer to message structure

count = size of message

f 1 ag = action if it runs out of internal buffer space

algorithm msgsnd /* send a message */
input: (1) message queue descriptor
(2) address of message queue
(3) size of message
(4) flags
output: number of bytes sent
{

156

Interprocess Communication

-

check legality of descriptor, permissions;
while (not enough space to store message)

{
if (flags specify not to wait)
return;
sleep(until event enough space is available);
H

get message header;

read message text from user space to kernel;

adjust data structures;

enqueue message header, message header points to data,
counts, time stamps, process ID;

wakeup all processes waiting to read message from queue;

}

Data Structures for Message

Queue Header Message Headers Data Area
,,,,,,,,,,,,, > —_—————

count = msgrcv(id, msg, maxcount, type, flag);

t ype = message type user wants to read

/*

Cient Process */

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/mnsg. h>
#defi ne MBGKEY 75
struct msgform {

| ong ntype;

char ntext[256];

}

mai n() {

}

struct mnsgform nsg;
int nsgid, pid, *pint;

nsgi d nsgget (MBGKEY, 0777);

pid = getpid();
pint = (int *) nsg.ntext;

pint = pid; / copy pid into nessage text */

msg. ntype = 1;
nsgsnd(nsgi d, &rsg, sizeof(int), 0);

nsgrcv(nsgi d, &sg, 256, pid, 0); /* pidis used as the nsg type */

printf("client: receive frompid %\ n",

/* Server Process */

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>
#defi ne MBGKEY 75
struct msgform {

| ong ntype;

char mtext[256];

157

Interprocess Communication

i
i nt nsgid;
mai n()
extern cl eanup();
int i, pid, *pint;
struct mnsgform nsg;
for (i=0; i<20; i++)
signal (i, cleanup);
nsgi d = nsgget (MBGKEY, 0777 | | PC_CREAT);
for (5;) {
nsgrcv(nsgi d, &rsg, 256, 1, 0);
pint = (int*) msg. ntext;
pid = *pint;
printf("server: receive frompid %\n", pid);
nsg. ntype = pid;
*pint = getpid();
nsgsnd(nsgi d, &nrsg, sizeof(int), 0);
}
}
cl eanup() {shnctl (msgid, IPCRMD, 0); exit(0); }
algorithm msgerv ~ /* receive message */
input: (1) message descriptor
(2) address of data array for incoming message
(3) size of data array
(4) requested message type
(5) flags
output: number of bytes in returned message
{
check permissions:
loop:
check legality of message descriptor;
/* find message to return to user */
if (requested message type == 0)
consider first message on queue;
else if (requested message type> 0)
consider first message on queue with given type:
else /* requested message type < 0 */
consider first of the lowest typed messages on queue,
such that its type is <= absolute value of requested type;
if (there is a message)
{
adjust message size or return error if user size too small;
copy message type, text from kernel space to user space;
unlink message from queue;
return:
H
/* no message */
if (flags specify not to sleep)
return with error:
sleep(event message arrives on queue);
goto loop:
§
nmsgct | (id, cnd, nstatbuf)
Shared Memory
Communicate directly by sharing virtual address space
shnget - creates a new region of shared memory or existing one

158

Interprocess Communication

shmat - attaches a region to virtual address space of process
shnet | - manipulates parameters associated with shared memory

shm d = shmget(key, size, flag):

- size is number of bytes in region
- data in shared memory remains intact even when no processes include it as part of their virtual address space

Shared Region Process Table Per
Memory Table Process Region Table
Table

vi rtaddr = shmat(id, addr, flags):

algorithm shmat /* attach shared memory */
input: (1) shared memory descriptor
(2) virtual address to attach memory
(3) flags
output: virtual address where memory was attached
{
check validity of descriptor, permissions;
if (user specified virtual address)

{
round off virtual address, as specified by flags;
check legality of virtual address, size of region;
H
else /* user wants kernel to find good address */

kernel picks virtual address; error if none available;
attach region to process address space (algorithm attachreg);
if (region being attached for first time)

allocate page tables, memory for region algorithm growreg);
return(virtual address where attached);

}

Where is the best place for shared memory?

/* __ */
/* attaching shared nmenory twice to a process */
#i ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/shm h>

#defi ne SHWKEY 75

#define K 1024

int shmd;

mai n()

t.
int i, *pint;

char *addrl1, *addr2;

extern cl eanup();

159

Interprocess Communication

for (i=0; i<20; i++)
signal (i, cleanup);

shm d = shnget (SHWKEY, 128*K, 0777 | | PC_CREAT);
addrl = shmat (shmid, 0, 0);
addr2 = shmat (shmid, 0, 0);

printf("addrl Ox% addr2 Ox%\n", addrl, addr?2);
pint = (int *) addrl;

for (i=0; i<256; i++)

*pint++ = i;
pint = (int *) addri;
*pint = 256;

pint = (int * addr2;
for (i=0; i< 256; i++)
printf("index %l\tvalue %\n", i, *pint++);

pause();

}
cl eanup() {shnttl (shmd, IPCRMD, 0); exit(0); }

SEMAPHORES

allow processes to synchronize execution by doing a set of operations atomically. Before semaphores, a process

would create a lock file.

+ Dijkstra

two atomic operations P and V

P operation decrements the value of a semaphore
if its value is greater than 0

V operation increments its value

- value of semaphore

- process ID of last process to change semaphore

- number of processes waiting for semaphore value to increase
- number of processes waiting for semaphore value to equal 0

senget - create and gain access to a set of semaphores
sentt | - control operations on the set
senop - manipulate values of semaphores
Semaphore Semaphore
Table Arrays
_____ > 0111213141516
> 01112
> 0
""" > 01112

id = senget (key, count, flag};
key, flag and id are similar to messages and shared memory

algorithm semop /* semaphore operations */
inputs: (1) semaphore descriptor
(2) array of semaphore operations

160

Interprocess Communication

/*

(3) number of elements in array
output: start value of last semaphore operated on
{
check legality of semaphore descriptor;
start: read array of semaphore operations from user to kernel
space; check permissions for all semaphore operations;

for (each semaphore operation in array)
{
if (semaphore operation is positive)
{
add "operation" to semaphore value;
if (UNDO flag set on semaphore operation)
update process undo structure;
wakeup all processes sleeping (event semaphore value increases);

else if (semaphore operation is negative)
{
if ("operation" + semaphore value >= 0)
{
add "operation" to semaphore value;
if (UNDO flag set)
update process undo structure;
if (semaphore value 0)
wakeup all processes sleeping (event semaphore
value becomes 0);
continue;

}

reverse all semaphore operations already done this system call

(previous iterations);
if (flags specify not to sleep)
return with error;
sleep(event semaphore value increases};
goto start; /* start loop from beginning */

else
{ /* semaphore operation is zero */
if (semaphore value non 0)
{
reverse all semaphore operations done this system call;
if (flags specify not to sleep)
return with error;
sleep(event semaphore value == 0);
goto start; /* restart loop */

}

/* semaphore operations all succeeded */
update time stamps, process IDs
return value of last semaphore operated on before call succeeded,;

}

Locki ng and Unl ocki ng Cperations */

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#defi ne SEMKEY 75

int semd,;

unsi gned i nt count;

/*

definition of sernbuf in file <sys/semh> */

161

Interprocess Communication

/* struct sembuf {

unsi gned short sem nurn;
short sem op;

short semflg;}; */

struct senbuf psernbuf, vsernbuf; /* ops for P and V */

mai n(i nt argc, char *argv[])

{

int i, first, second;

short initarray[2], outarray[2];

extern cl eanup();

if (argc == 1) {

for (i=0; i<20; i++)
signal (i, cleanup);
sem d = senget (SEMKEY, 2, 0777 | | PC_CREAT);
initarray[0] = initarray[l] =1
senctl (semid, 2, SETALL, initarray);
senctl (semid, 2, GETALL, outarray);
printf("seminit vals % %\ n", outarray[O], outarray[1]);
pause(); /* sleep until awakened by a signal */

}

el se

if (argv[1][0] == "a") {

first = 0;

second = 1;
el se{

first = 1;

second = O;

}

sem d = senget (SEMKEY, 2, 0777);

psernbuf.semop = -1;

psernbuf.sem flg = SEM UNDG

vser nbuf.semop = 1;

vsernbuf.sem fl g = SEM UNDO

for (count=0; ; count++)

{ psernbuf.semnurn = first; senop(sem d, &psernbuf, 1);
pser nbuf.sem nurn = second; senop(sem d , &sernbuf, 1);
printf ("proc % count %\ n", getpid(), count);
vsernbuf.sem nurn = second; senop(sem d, &vsernbuf, 1);
vsernbuf.semnurn = first; senop(semd , &sernbuf, 1);

}

}

cl eanup() {senttl(semd, 2, IPCRMD, 0); exit(0); }

Execute program three times in following sequence:

a.out &

a.outa &

a.outb &
Process creates a semaphore set with two elements and initializes their values to 1. Then, it pauses sleeps until
awakened by a signal, when it removes the semaphore in cleanup.

When executing with parameter 'a', the process (A) does four separate semaphore operations in the loop:
- decrements the values of semaphores 0 and 1,

- executes the print statement,

- increments the values of semaphores 1 and 0

The semaphores were initialized to 1 and no other processes are using the semaphores, process A will never sleep,
and the semaphore values will oscillate between 1 and 0.

When executing with parameter 'b', the process (B) decrements semaphores 0 and 1 in the opposite order from A.

162

Interprocess Communication

When processes A and B run simultaneously, a situation could arise whereby process A has locked semaphore 0
and wants to lock semaphore 1, but process B has locked semaphore 1 and wants to lock semaphore O.

Both processes sleep, unable to continue. They are deadlocked and exit only on receipt of a signal.

To avoid deadlock use multiple semaphore operations simultaneously:
struct senbuf psernbuf[?2];

psernbuf[0].semnnurn = O;
psernbuf[l].semnurn = 1;
psernbuf[0].semop = -1;
psernbuf[0].semop = -1;

senop(sem d, psernbuf, 2);

+ Undo Structures for Semaphores

Per process Undo Structures
Undo Headers

N desc N desc N desc

num num num
value value value

desc
_____ num
value

Each undo structure is an array of triples consisting of:
- asemaphore ID,

- asemaphore number in the set identified by ID,

- and an adjustment value.

Sequence of Undo Structures

+ After first operation + After third operation
semaphore id semid semaphore id semid
semaphore nurn 0 semaphore nurn 0
adjustment 1 adjustment 1

+ After second operation + After fourth operation
seamphore id semid semid empty
semaphore nurn 0 1
adjustment 1 1

BERKFELEY Sockets

The Application Program Interface (API) is the interface to a programmer. For UNIX there is Berleley Sockets and
System V Transport Layer Interface (TLI).

Network I/O includes File I/O system calls: open, creat, close, read, wite, & |seek
+ Network I/O considerations

- client or server?

- connection-oriented or connectionless

- process names are more important in networking

- more parameters for a network connection

- communication protocol record boundaries

- support multiple communication protocols

163

Interprocess Communication

Comparison of Sockets, TLI, and FIFOs

Sockets TLI FIFOs
Server
allocate space t alloc()
create endpoint ocket () t open () mknod ()
open()
bind address bind () t bind ()
specify queue listen()
wait for connection accept() t_listen()
get new fd t open () t bind ()
t accept ()
Client
allocate space t alloc()
create endpoint socket() t_open() open()
bind address bind() t_bind()
connect to server connect() t_connect()
transfer data read() read() read ()
write() write() write() write()
recv() t rev()
send() t snd()
datagrams recvirom() t rcvudata()
sendto() t sndudata()
terminate close() t close() close()
shutdown() t_sndrel()
| t snddis() |
| protocol\server iterative concurrent |
connection-oriented ~ eg Daytime typical 1
connectionless typical eg TFTP
Socket system calls connection- | Server
oriented protocol socket()
|
bind()
|
listen()
|
accept()

blocks until connection from client

| <

read() <--

process request|

write() <--

connection establishment

data(request)

data (reply)

Client
socket()
|

--> connect()
|

--> write()
|
|

|
> read()

164

Interprocess Communication

Server Socket system calls connectionless protocol
socket()

|
bind()

|
recvirom()

| Client
blocks until connection from client socket()

| |

| <-- data (request) --> connect()

| |
process request| |

| |
sendto() <-- data (reply) -->recvirom()

Unix Domain Protocols
Provide a feature that is not currently provided by any other protocol family: the ability to pass access rights from
one process to another.

The name space used by unix domain protocols consists of pathnames, for example:
{ unixstr, O /tnp/log.1528, 0, /dev/logfile }

uni xstr unix stream connection oriented

0 local address

/tmp/ 1 og. 1528 local process

0 remote address

0 /dev/logfile remote process
Socket Addresses

/* defined in <sys/socket.h> */

struct sockaddr {

u_short sa_famly; /* address fam|ly: AF_xxx */
char sa_data[14];} /* protocol specific addr */

/* defined in <netinet/in. h>*/

struct in_addr {

u_l ong s_addr; /* 32-bit netid/ hostid */
}; /* network byte ordered */

struct sockaddr_in {

short sin_famly; /* AF_INET * /

u_short sin-port; /[* 16-bit port nunber */
struct in_addr sin_addr; /* netid/hostid */

char sin_zero[8]; /* unused */

1

/* defined in <sys/un.h> */
struct sockaddr _un {

short sun_famly; /* AF_UN X */

char sun_path[108]; /* pathnanme */

}s

Socket address structures struct sockaddr in | struct sockaddr un |
| family family |
| 2 byte port
4 byte net ID, host ID pathname
© (umsed) (upto 108 bytes)

struct sockaddr _in serv_addr;

165

Interprocess Communication

connect (sockfd, (struct sockaddr*) & serv_addr, sizeof(serv_addr));

Socket System Calls
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socket(int famly, int type, int protocol);

family AF_UNI X unix internal protocols
AF_I NET internet protocols

type SOCK_STREAM stream socket }
SOCK_DGRAM datagram socket} VALID
SOCK_RAW raw socket }
SOCK_SEQPACKET sequenced packet socket
SOCK_RDM reliably delivered message

protocol | PPROTO_UDP }
| PPROTO TCP } AF _| NET family

| PPROTO | CWP}
| PPROTO_RAW }
For an association (5-tuple):
{protocol, |ocal-addr, |ocal-process, renote-addr, renote-process}
socket pai r System Call - only for Unix domain

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socketpair(int famly, int type, int protocol, int sockvec[2]);
similar to the "pipe" system call, but bidirectional

int rc, sockfd[2?];
rc = socketpair(AF_UNI X, SOCK _STREAM 0, sockfd);

bi nd System Call - assigns a name to an unnamed socket
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
int bind(int sockfd, struct sockaddr *nyaddr, int addrlen);

connect System Call - establish connection with a server
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int connect(int sockfd, struct sockaddr *servaddr, int addrlen);

li sten System Call - server is willing to receive connections
int listen(int sockfd, int backl og);

accept System Call
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int accept(int sockfd, struct sockaddr *peer, int *addrlen);

accept takes the first connection request on the queue and creates another socket with the same properties as

sockf d. If there are no connection requests pending, this call blocks the caller until one arrives.
int sockfd, newsocketfd;

166

Interprocess Communication

if ((sockfd = socket (...)) <0)
err_sys("socket error");

if (bind(sockfd, ...) < 0)
err_sys ("bind error");

if (listen(sockfd, 5) < 0)
err_sys("listen error");

for (;;) { /* concurrent server */
newsockfd = accept (sockfd, ...); /* blocks */
if (newsockfd < 0)
err_sys ("accept error");
if (fork () =0) {

cl ose(sockfd); /* child */
doi t (newsockfd); /* process request */
exit(0);
cl ose(newsockf d); /* parent */
}
oR
for (;;) { /* iterative server */
newsockfd = accept(sockfd, ...); /* blocks */
if (newsockfd < 0)
err_sys("accept error");
doi t (newsockfd); /* process request */
cl ose(newsockfd); /* parent */
}

send, sendto, recv, recvfrom System Calls
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int send(int sockfd, char *buff, int nbytes, int flags);

int sendto (int sockfd, char *buff, int nbytes, int flags,
struct sockaddr *to, int addrlen);

int recv(int sockfd, char *buff, int nbytes, int flags);

int recvfron(int sockfd, char *buff, int nbytes, int flags,
struct sockaddr *from int *addrlen);

flags MSG_COB send or receive out of band data
MBG_PEEK peek at incoming message
MSG_DONROUTE bypass routing

close System Call
int close(int fd);

Byte Ordering Routines
#i ncl ude <sys/types. h>
#i ncl ude <netinet/in. h>

u_l ong ht onl (u_l ong host| ong); /* host to network */
u_short htons(u_short hostshort);
u_l ong nt ohl (u_l ong netl ong); /* network to host */

u_short ntohs(u_short netshort);

Byte Operations

bcopy(char *src, char *dest, int nbytes);
bzero(char *dest, int nbytes); /* wite null bytes */
int bcnp(char * ptr1, char *ptr2, int nbytes);

System V has functions: mentpy, menset, and mentnp

167

Interprocess Communication

Address Conversion Routines
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <arpa/inet. h>

/* convert character string in dotted decimal notation to/from 32-bit Internet
address */

unsi gned | ong inet_addr(char *ptr);

char *inet_ntoa(struct in_addr inaddr);

A Simple Example
1. The client reads a line from its standard input and writes the line to the server.
2. The server reads a line from its network input and echoes the line back to the client.
3. The client reads the echoed line and prints it on its standard output.
4. This is known as an echo server. The example shows a concurrent server using connection-oriented
Internet.

Utility Routines
Read or writing n bytes to or from a stream socket.
int readn(int sockfd, char *ptr, int nbytes);
int witen(int sockfd, char *ptr, int nbytes);
int readline(int sockfd, char *ptr, int naxlen);
Note that readline function issues one read system call for every byte of data.

Would like to buffer the data using a read system call to read as much data as it can, and then examine the
buffer one byte at a time.

Read a stream socket one line at a time, and write each line back to the sender.

str_echo(int sockfd);
Read contents of FILE, write each line to stream socket, then read line back from socket and write to standard
out.

str_cli(FILE *fd, int sockfd);

Stream Pipes
int s-pipe(int fd[2]); /* unnamed stream pi pe */
int ns-pipe(int fd[2]); /* naned stream pi pe */

168

Process Scheduling

12. PROCESS SCHEDULING

The Scheduler
The kernel is responsible for sharing CPU time between competing processes.
Multi-Level Priority Queue

- linked list of runnable processes

Processes are allocated CPU time in proportion to their importance. Time is allocated in fixed size units called
"time quantums" (~ 1/10 second).

Process Table
Next PID PPID Stat
MLPQ --->. 36 12 R . --=>Process 34
| - free entry
0.- | - 18 1 S
.- | free entry
2 - | >-12 1 R . --=>Process 12
3- | free entry
4 - | >-48 1 S
—-> -1 - R . —-->Process 1
Scheduling Rules
- Every second, scheduler recalculates priority of all runnable processes - organizes them into priority
queues.

Every 1/10 sec, the scheduler selects highest priority process in priority queue and allocates it the CPU.

If process is runnable at end of time quantum, it is placed at end of its priority queue.

If process sleeps on an event during time quantum, the scheduler selects next runnable process.

If process returns from system call during time quantum, and higher priority process is ready to run, the
lower priority process is preempted.

Every hardware clock interrupt (1/100 second), the process's clock tick count is incremented, every 4th
tick, scheduler recalculates priority.

priority = KL / (recent CPU usage) + K2 / (nice setting)

- Aprocess's priority diminishes if it uses a lot of CPU in a window of time.
- An interactive process waits for a user to press a key, it uses no CPU time and thus its priority level rises.
Thus interactive processes obtain good response times.

Memory Management
Sharing of RAM between processes (secure, efficient)
Memory Pages

Allow processes bigger than RAM capacity to execute. RAM (code, data, stack) divided into fixed-size pages,
analogous to, disk divided into fixed-size blocks.

The size of memory page is set to size of disk block. Only pages of process, currently accessed or recently
accessed are stored in RAM pages, the rest are on disk.

169

Process Scheduling

Page Tables and Regions

User area
- Code page table
Region table N .
tocodepage | | | | S RAM/disk
_______________ .5 pages of code
to data page [
Process Data page table
_______________ IS
Table to atack nace [T 7 | mmmmmmmmmeem | > RAM/disk
—| 7 T pages of data
. Process Info -
. current dir Stack page table
unmask value >] e >)
pending signal | | | | - S RAM/dl;k .
controlterm | | | T L -, pages of stac

Process Scheduling

The kernel allocates time slices/quantum, preempts the process & schedules another when time slice expires, then
reschedules.

Clock time 50/100 times a second - interrupt

UNIX uses "round robin with multilevel feedback", process through many iteration of feedback loop.

algorithm schedule_process
input: none
output: none

while (no process picked to execute)

{
for (every process on run queue)
pick highest priority process that is loaded in memory;
if (no process eligible to execute)
idle the machine;
/* interrupt takes machine out of idle state */
H

remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

}

Figure 46. Process Scheduling

It makes no sense to select a process if it is not loaded in memory, cannot execute until swapped in.
If several processes tie for highest priority, pick the one that has been "ready to run" the longest.

Each process table entry has a priority field. The priority of a process in user mode is a function of its recent CPU
usage (recently used lower priority).

User & Kernel mode priority - The kernel does not change the priority of processes in kernel mode.

170

Process Scheduling

Kernel Mode Priority Levels Processes
Priorities
Swapper —O
Not Waiting for Disk 10 O O O
Interruptible] ~ Waiting for Buffer —O—O
Waiting for Inode —O
Waiting for TTY Input __O O O O
Interruptible| Waiting for TTY Output
v Waiting for Child Exit [—()——()
f User Level 0 _"'O“ﬂ-_.______h
User Level 1 —O—O—C-j-u'o
1
l
|
U;::iz rl?‘tlge User Level n —O

Figure 47. Range of Process Priorities

The kernel does not allow processes
with user level priority to cross the
threshold and attain kernel level
priority, unless they make a system
call & goto sleep.

priority dependent on reason for
sleeping

- A process sleeping and waiting
for completion of disk I/O has a
higher priority than a process
waiting for a free buffer.

- Process waiting for I/O already
has a buffer, when it wakes up it
may release the buffer. The more
resources free, the better chance
processes will not block waiting
for resources.

- Fewer context switches, thus
process response time and system
throughput are better.

- Process waiting for a free buffer
may be waiting for buffer held by
process waiting on I/O.

The kernel adjusts the priority of a process that returns from kernel mode to user mode. The kernel recomputes the

priority of all active processes once
a second. At every clock interrupt,

the clock handler increments the 0~
recent CPU usage.
decay (CPU) = CPU_usage /2
priority = decay (CPU + ; _|
base level priority
2 —
3 —
4 |
5 —

Figure 48. Process Scheduling

Time

Example

Proc A

| Priority Cpu Count :
60 0
1
2
- 60
75 30
67 15
63 7
8
?
| 67
76 33
68 16

Proc B Proc C
Priority Cpu Count Priority Cpu Count
60 0 60 0
60 0 60 0
1
2
60
75 30 60 0
: 1
2
60
67 15 75 30
63 7 67 15
8
9
671
76 33 63 7

171

Process Scheduling

60|
Higher
Priority
A
(a)
60 B
A
(G))

Real Time Processing

hard-coded into kernel
not standard UNIX

(b)

(e)

Figure 49. Tie breaker rule
B priority = (CPU usage / 2) +
60
A
(©
B (A runs first)
Process B has an initial higher user
level priority. Process A runs first
"ready to run" for longer time.
(f)
Time Proc A Proc B Proc C
0 Priority CPU Group : Priority CPU Group :Priority CPU Group
T 60 0 0 i 60 0 0 : 60 0 o0
1 | S :
2 2
| 60 60 :
T 9% 30 30 : 60 0 0 i 60 0 o
: 1 | B 1
2 2 2
) : 60 60 60
T 74 15 15 @ 90 30 30 75 0 30
16 16 : :
17 17
, 75 15 :
T 9 37 37 ¢ 74 15 15 : 67 0 15
: 16 : 1 16
17 2
L : 75 60 75
78 18 18 : 81 7 37 93 30 37
19 19 : :
20 29
s 78 78 :
98 39 39 70 3 18 : 76 15 18

Figure 50. Fair Share Scheduler

173

Process Scheduling

System Calls for Time

#include <sys/types.h>
#include <sys/times.h>
extern long times();
main()
{ . .
int 1;
/* tms is data structure containing the 4 time elements */
struct tms pbl, pb2;
long ptl, pt2;

ptl = times(&pb1);
for i=0;1<10; i++)
if (fork() = 0)
child (i);
for 1=0;1<10;i++)
wait((int *) 0);
pt2 = times(&pb2);
printf("parent real %u user %u sys
%u cuser %u csys %u\n",
pt2 - ptl, pb2.tms_utime - pbl.tms_utime,
pb2.tms_stime - pbl.tms_stime,
pb2.tms_cutime - pbl.tms_cutime,
pb2.tms_cstime - pbl.tms_cstime);

child(n)
int n;

int i,
struct tms cbl, cb2;
long tl, t2;

tl = times(&cbl);
for (i = 0; i < 10000; i++)

t2 = times(&cb2);
printf("child %d: real %u user %u sys %u\n",
n, t2 - tl, cb2.tms_utime - cbl.tms_utime,
cb2.tms_stime - cbl.tms_stime);
exit(0);

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/signal.h>

main(argc, argv)
int argc;
char *argv[|;

extern unsigned alarm();
extern wakeup();

struct stat statbuf;
time_t axtime;

if (arge 1=2)

printf("only 1 arg\n");
exit(0);
}
axtime = (time_t) 0;
for (;;)
{
/* find out file access time */
if (stat (argv[1], &statbuf) == -1)
{
printf("file %s not there\n", argv[1]);

Figure 51. Program Using Timer

exit(0);
}
if (axtime != statbuf.st atime)
{
printf("file %s accessed\n", argv[1]);
axtime = statbuf.st_atime;
}
signal(SIGALRM, wakeup); /* reset for alarm */
alarm(60);
pause(); /* sleep until signal */

}

wakeup()

{
}

Figure 52. Alarm Call

174

Process Scheduling

Clock

restart clock
invocation of internal
kernel functions
execution profiling
system & process
accounting

track time

alarm signals
wakeup swapper
process

control process
scheduling

Figure 53. Clock Handler

algorithm clock
input: none
output: none
{
restart clock; /* so that it will interrupt again */
if (callout table not empty){
adjust callout times;
schedule callout function if time elapsed;

if (kernel profiling on)

note program counter at time of interrupt;
if (user profiling on)

note program counter at time of interrupt;
gather system statistics;
gather statistics per process;
adjust measure of process CPU utilitization;

if (1 second or more since last here and interrupt not in critical region of code){

for (all processes in the system) {
adjust alarm time if active;
adjust measure of CPU utilization;
if (process to execute in user mode)
adjust process priority;
H

wakeup swapper process is necessary;

#include <signal.h> #include <stdlib.h> #include <stdio.h>

int buffer[4096];
main(){

}

int offset, endof, scale, eff, gee, text;
extern void theend(), (), g();
eextern void signal(SIGINT, theend);

endof = (int) theend;
offset = (int) main;

/* calculates number of words of program text */
text = (endof - offset + sizeof(int) - 1)/sizeof{(int);

scale = Oxffff;

printf("offset %d endof %d text %d\n", offset, endof, text);

eff = (int) f;
gee = (int) g;

printf("f %d g %d fdiff %d gdiff %d\n", eff, gee, eff-offset, gee-offset);
profil (buffer, sizeof(int) *text, offset, scale);

for (;;){
g(); £0);

fO{ }

g0{}
theend()

{

int i,

for (i = 0; i < 4096; i++)

if (bufferfi])

Figure 54. Invoking Profil system call

Figure 55. Output for Profil Program

offset 212 endof 440 text 57

buf[48] = 8585216

w0 A1 — o "o . buf[49] = 151
xit(0) printf("buf[%d] = %d\n", i, buffer[i]; buf]51] = 12189799
Y ’ buf[53] =65
buf[54] = 10682455
buf[56] = 67

£416 g 428 {diff 204 gdiff 216 buf[46] = 50

175

Process Scheduling

Memory Management Policies
+ swapping - transfer entire processes between primary and secondary memory

+ demand paging - transfer memory pages

- entire process does not have to reside in main memory
- allows process to be greater than physical memory

- more processes to fit simultaneously in memory

* swapping

- managing space on swap device

- swapping processes out of main memory
- swapping processes into main memory

+ Managing Swap Space

The kernel maintains free space for the | algorithm malloc /* algorithm to allocate map space */
swap device in an in-core table, called a | input: (1) map address /* indicates which map to use */
map. (2) requested number of units
output: address, if successful
0, otherwise
{
for (every map entry)
if (current map entry can fit requested units)
{
if (requested units == number of units in entry)
delete entry from map;
else
adjust start address of entry;
return (original address of entry);
}
Figure 56. Algorithm for Allocating Space return(0);
from Maps i
Initial Swap Map Address Units
1 10000
allocate 100 101 9900
allocate50 151 9850
allocate100 251 9750
free 50 @101 101 50
251 9750
free 100 @ 1 1 150
251 9750
allocate 200 1 150
451 9550

- freed resource completely fill a hole in the map
- freed resource partially fill a hole in the map
- freed resource partially fill a hole but are not contiguous to any resources in the map

* Swapping Process Out

- fork system call must allocate space for child process
- brk system call increase the size of a process

- process becomes larger as stack grows

- kernel wants free space to swap in a process

176

Process Scheduling

Layout of Virtual Addresses

Figure 57. Mapping Process Space

i to the S Devi
Virtual, Physical Addresses Swap Device onto the Swap Device
Text | 0 278K-|--------oceooo 6841 - >
1K 432K-|------cccmocooo-] - >
empty =
: - -] 5 =
—",—‘- "”-" = =7
Data |64K ST3K-I-~~ _---7 __--"7[
65K 647K-" _.--7 6994"”
66K 595K-|" "~ e
empty L7 Layout of Virtual Addresses
: 7 . Virtual, Physical Addresses
o Text | 0 401K ===-=-==co==-
Stack [128K 401K-[1K 370K<----------
empty empty
Theoretically, all memory space occupied by a -
process, including its u area and kernel stack, is Data [64K 788K<4"~
eligible to be swapped out, al.though the kernel.may 65K 492K4- "~
temporarily lock a region into memory while a P e
sensitive operation is underway. 66K 647K
empty
+ Fork Swap :
The fork systems call assumes that parent process ,
found enough memory to create the child context. I
The parent places the child in the "ready-to-run" Stack [128K 955K4
state and returns to user mode. empty

+ Expansion Swap
Process requires more physical memory than is allocated (user stack growth or brk system call).

Original Layout

Expanded Layout

Figure 58. Swapping a Process into Memory

Swap Device

Figure 59. Adjusting Memory Map for

Expansion Swap

Swapping Processes In

When the swapper wakes up to swap
processes in, it examines all processes
that are in the state "ready to run but

Virtual, Physical Addresses Virtual, Physical Addresses Swap Device
Text | 0 278K 0 278K------- 6841 - >
1K 432K 1K 432K{--------4{ -
empty empty 41
' ' ey
Pid g -7 -7 f - Z
Data |64K 573K 64K 573K-|” VLA ",
65K 647K 65K 647K -~ "690 .,
66K 595K 66K S9sK-"" 61 .7
empty empty , . ,/
Stack 128K 401K 128K 401K’
empty New Page 129K - [
empty

swapped out" and selects one that has
been swapped out. the longest.

177

Process Scheduling

algorithm swapper /* swap in swapped out processes,
* swap out other processes to make room */
input: none
output: none
{
loop:

for (all swapped out processes that are ready to run)
pick process swapped out longest;
if (no such process)

{
sleep (event must swap in);
goto loop;
i
if (enough room in main memory for process)
{
swap process in;
goto loop;
}

for (all processes loaded in main memory, not zombie and not locked in memory)

if (there is a sleeping process)
choose process such that priority + residence time
is numerically highest;
else /* no sleeping processes */
choose process such that residence time + nice
is numerically highest;

if (chosen process not sleeping or residency requirements not satisfied)
sleep (event must swap process in);

else
swap out process;

goto loop; Figure 60. Algorithm
} for Swapper

No "ready-to-run" processes exist on swap device: swapper goes to sleep

Swapper finds an eligible process to swap in but system does not contain enough memory: swapper attempts to
swap another process out.

Zombie processes do not get swapped out, they do not take up any physical memory.

The kernel swaps out sleeping processes rather than II ready-to-run II processes, they have a greater chance of
being scheduled soon.

A "ready-to-run" process must be core resident for at least 2 seconds before being swapped out, and a process to be
swapped in must have been swapped out for at least seconds.

The swapper awakens
- once a second by the clock
- if another process goes to sleep

The swapper swaps out a process based on its
- priority

- memory residence time

- nice value

Swap out groups of processes only if they provide enough memory for the incoming process.

If the swapper sleeps because it could not find enough memory to swap in a process, searches again for a process to
swap in although it had previously chosen one. Other swapped processes have awakened in the meantime.

If the swapper attempts to swap out a process but cannot find space on the swap device, a system deadlock could
arise if:

- all processes in main memory are asleep - there is no room on the swap device for new processes

- all "ready-to-run" processes are swapped out - there is no room in main memory for incoming processes.

178

6L1

A
mc%h m
ut dems no dems
I Tt [4 I [4 —19
Sunl

0 0
1o dems ut dems

(4 [4 I £ I —18&

O m—&—.-.—
1no dems ur dems
I 1 [4 [4 [4 —¥
mco-: 0

d no dems

updeas | no den 1 I 1 e
suni
0 0 0 0
ur dems ut dems mo dems 1no dems 4
[4 (4 4 [4 [4 -1
sunJ 1
I I I I I .
0

0 no dems 0 suni
o dems ¢z 201U 1no dems 0 0 Q

d a 0 4 VvV 9014 auwry,

Surddemg 03 onp Surysenyy, ‘19 om31|

suoneradQ Surddemg Jo aouanbog ‘79 om31|

A
sunl
0 0 0 0
no dems ur dems ur dems o dems
[4 [4 T . C 19
sunt
I I I € ! 1<
sunl
0 0 0 0
ur dems mo dems Jno dems ur dems
14 [4 [4 [4 4 _1¥
suni
€ I I I I —E
sunJ
0 0 0 0
ur dems ut dems 1no dems jno dems ré
[4 4 [4 [4 [4 -1
sunl I
I [I [I N
0 0 0 sunt
no dems no dems 1no dems 0 0 0
Hq a D ;| vV 20id swiLp

Surmpayog ss9001q

Buffer Cache

13. BUFFER CACHE

The Buffer Cache

When a process wants to access data from a file, the kernel brings the data into main memory where the process
can examine it, alters it and requests the data to be saved in the filesystem.

The kernel attempts to minimize the frequency of disk access by keeping a pool of internal data buffers, called the
buffer cache, which contains the data in recently used disk blocks.

When reading data, if data is already in cache (pre-cache), the kernel does not have to read from disk. Otherwise
the kernel reads the data from disk and caches it.

When writing data, data is written to cache to minimize disk writes (delay-write).
Buffer Headers
A buffer consists of two parts:

- the memory array that contains data from the disk and
- the buffer header that identifies the buffer.

The buffer is an in-memory copy of the disk block. A disk block can never map into more than one buffer at a time.

The buffer header contains:

- device number - logical filesystem number
- block number - from the disk
- status

- locked/busy

- valid data

delayed-write

currently read/write buffer to disk
waiting for buffer to free

pointer to data array for the buffer
pointer to next buffer on hash queue
pointer to previous buffer on hash queue
pointer to next buffer on free list

pointer to previous buffer on free list

Structure of the Buffer Pool

The kernel caches data according to least recently used: i.e. it cannot use the buffer until all other buffers have been
used more recently.

f d The free list 1s a circular list
orward ptrs of buffers linked both ways,

frc;eaziist : buf 1 : buf 2 q:n_ bt n Ke};idc?r.uses a dummy buffer
Q back ptrs)
before
after
(r forward h
free list =1 yufa e > ouf

head e @rerninannes
L back ptrs _/_J

Figure 63. Free List of Buffers

180

Buffer Cache

The kernel takes buffers from the head of the free list, removes them from the list, and returns a buffer to the buffer
pool by attaching the buffer to the tail of the free list.

Hence buffers closer to the head have not been used as recently as those towards the tail.
When the kernel accesses a disk block, it searches for a buffer with appropriate device-block number.

Rather than search entire buffer

pool, it organizes buffers into hash queue headers
separate queues, hashed on ' 428
device-block number. eenen Lblkno O mod 4 -+ """

The kernel links the buffers on a

hash queue into a circular, Ay g A 17 Ll s L) 97 Ll
doubly linked list, similar to the <=---- blkno 1 mod 4 17 : o7 =

free list.

Each buffer always exists on a
hash queue. Every disk block in
the buffer pool exists on one and
only one hash queue and only _...... blkno 3 mod 4 }-.......
once on that queue. A buffermay | | T
be on the free list as well if its
status is free.

oo blkno 2 mod 4 peeeererereonen O8 feeveers 50 teeceee 10 }----e .

Figure 64. Buffers on the Hash Queues
5 Scenarios for Retrieval of a Buffer

When the kernel is | algorithm getblk
about to read data | input: file system number, block number

. output: locked buffer that can now be used for block
from a particular | %P

disk block, it | ' while (buffer not found)
checks whether the !

block us in the irf (block in hash queue)

18

buffer pool, if it is i{f (buffer busy) /* scenario 5 */
not there, assigns it
a free buffer £ sleep (event buffer becomes free);
) continue; /* back to while loop * /
mark buffer busy; /* scenario 1 */

remove buffer from free list;
return buffer;

else /* block not on hash queue * /

if (there are no buffers on free list) /* scenario 4 */

sleep (event any buffer becomes free);
continue; /* back to while loop */
H
remove buffer from free list;
if (buffer marked for delayed write) /* scenario 3 */
{
asynchronous write buffer to disk;
continue; /* back to while loop */

}

/* scenario 2 -- found a free buffer * /
remove buffer from old hash queue;
put buffer onto new hash queue;
return buffer;

Figure 65. Algorithm |
for Buffer Allocation

181

Buffer Cache

"get bl k" to allocate a buffer for a disk block, the kernel:

(1) finds the block on its hash queue, and its buffer is free.

(2) cannot find the block on the hash queue, it allocates a buffer from the free list.

(3) same as (2), but finds a buffer on free list marked "delayed-write", must write to disk and allocate another.
(4) same as (2), but free list is empty

(5) finds the block on its hash queue, but its buffer is busy.

In (1) the kernel marks the buffer busy and p.cp queue headers
removes it from the free list. If other m 64

processes attempt to access the block, they blkno O mod 4 f------

sleep until it is released. %
blkno 1 mod 4 ¢...... 17 5 -

97
50 C 10
blkno 3 mod 4 }.--... o

’_f—i- 35
freelist header

(a) Search for Block 4 on First Hash Queue

J

blkno 2 mod 4 {-..... 98

%

hash queue headers

blkno O mod 4 }.....- % 64
blknO lmod4}-...... 17 5 97
50 C 10

blkno 2 mod 4}------ 98

—

Figure 66. First Scenario in Finding a Buffer: freelist header |
Buffer on Hash Queue
(b) Remove Block 4 from Free List
algorithm brelse "brel se" to release buffer when
input: locked buffer kernel is finished using it.
output: none
{

wakeup all procs: event, waiting for any buffer to become free;
wakeup all procs: event, waiting for this buffer to become free;

raise processor execution level to block interrupts;

if (buffer contents valid and buffer not old)

enqueue buffer at end of free list
else

enqueue buffer at beginning of free list lower processor
execution level to allow interrupts;
unlock(buffer); Figure 3.6. Algorithm for Releasing a
! Buffer

It wakes up processes that had fallen asleep because the buffer was busy, and processes that fallen asleep because
no buffers remained on the free list.

182

€81

81 01 UBIsSY ‘ISIT 901 WOIJ Yo0[g 1SI1] IA0WSY (q) uoneIO[[Y 81 01 p uBisseay ‘s ‘¢ syoolg Sunup (q)

Ioyng 10J oLIeUd0S

Jopeay 1s1[el)

¥ pow € ouyq

p pour Z oux[q

Funyum

Jopeay 1s1[a31j pay[‘g9 am3rg
Sunrim
¥ pow ¢ ouy[q 66 St €
¥ poul Z owyiq 81 01 U 0S 86
v pouw [ou[q L6 S LY | f eeeeee v pow [oux|q

$9 J 8z —~ ppowrgowyq(... 1 N_ I /] ... $ pous (ouy[q

= i L=
slapeay ananb ysey IS 934 siopeay ananb ysey

o3 Jo peay Ay 38

11 saoed pue ynq
ayose) ul J0N - 8] Y00[g I0J YoIeas (¥) o) SOSBOJRI [OUIDY ISIT 931 U0 SY20Ig NM pake[e(‘81 Jo0[g I0j YoIeas (E)
oy ‘sojorduioo

~| 1opesy ysijeay 9)L1M SNOUOTYOUASE > 1opeoy 1S1[90.1)
H Ay uayM Kejap Al\||
66 5t EE { % pow ¢ ouxiq 66 t ET e { ¥ pows ¢ owiiq
01
L6

0S 86 | --e-- ¥ pow Z ouy[q 01 0 86 | reenes 1 ¥ pow 7 ouy|[q
Qb Aejap
S Ll L6 g Ll

—ng,Ho—HxﬁD —~ ~—1 < P | /1 | ssuunus *g:.-ﬁc:x.—ﬁ—

Uuonedo[[y
9 ¥ H 87— T ¥ pour () ouy|q Iopng JIoJ OLIBUIOS +9 b H ez — p pow () ouy[q

: 3
[s19peay snanb ysey PHooas L9 oMo E s1apeay ananb ysey

‘s1ojurod 191ynq 9y Jo uondniiod Sunuasdid Aga1oy) Is1] 903y o) Sunendiue [IYM SIANLIOIUL YSIP JUSASId 0] [9A] UOTINIIXD JOSSI0Id o) SISTRI [OUIOY I [
ISI] 9213 9y} Jo Suruui3oq oy e Jognq oy sooe[d 31 9Sed YOIyM Ul ‘p[o PISIBW ST JO PALINIO0 JOLID ()/] UB SSI[UN ‘ISI] 301J Y} JO PUd 3 Je Jojng oy} saoe[d [outoy Y.

Jyoe) Ioyng

Buffer Cache

hash queue headers

Figure 69. Forth Scenario for Buffer Allocation

blkno O mod 4 |------ ‘1_ 64
™~ No buffers available so process goes to sleep.
blkno 1 mod 4 }----.- 17 5 97
blkno 2 mod 4 f------ 98 50 10
blkkno3mod 4¢}:----- 3 35 %
I) busy
freclist header Figure 70. Race for Free Buffer
Search for Block 99, Block Busy Process A Process B
Cannot find block b

If process A attempts to read a disk block and
allocates a buffer as in (2), then it will sleep while it
waits for the I/O transmission from disk to complete.

While process A sleeps, suppose the kernel
schedules a second process B, which tries to access
the disk block whose buffer was just locked by
process A.

hash queue headers

on hash queue
No buffers on free list
Sleep

Cannot find block b
on hash queue

No buffers on free list

Sleep

Somebody frees a buffer: brelse

Takes buffer from free list

Assign to block b

C28 4:

Search for Block 99, Block Busy

blknoOmod 4 f-.---- 1 64
blkno 1 mod 4 {--.--. 17 5 l 97
blkno2mod 4}.----. 98 50 10
blkno3 mod 4}.----- 3 - o

I’ busy
freelist header

Figure 71. Fifth Scenario for Buffer Allocation

184

Buffer Cache

Process B will find the locked block on the hash queue. Process B marks the buffer "in demand" and the sleeps.

Another process C, may have been waiting for the same buffer, if C is scheduled before B, B must check the block

1s free.

Process C may allocate the buffer to another block, so when process B executes it must search for the block again.
With contention for a locked buffer need to start search again.

Process A Process B

Process C

Allocate buffer
to block b

Lock buffer
Initiate 1/O
Sleep until I/0 done

Find block b
on hash queue

Buffer locked, sleep

1/0 done, wake up

brelse(): wake up others

block b

start search again

Time
U}

buffer does not contain

Sleep waiting for
any free buffer
(scenario 4)

Get buffer previously
assigned to block b

reassign buffer to block b’

Figure 72. Race for a Locked Buffer.

The kernel guarantees that all
processes waiting for buffers will wake
up, because it allocates buffers during
the execution of system calls and frees
them before returning.

Processes in user mode do not control the allocation of kernel buffers directly, so they cannot purposely "hog"

buffers.

The kernel does not guarantee that a process get a buffer in the order that they requested one.

Reading and Writing Disk Blocks

algorithm bread * block read */
input: file system block number
output: buffer containing data

{ get buffer for block (algorithm
getblk);
if (buffer data valid)
return buffer;
initiate disk read;
sleep(event disk read complete);
return (buffer);

Figure 73. Reading a Disk Block Bach, "bread".

If the disk block is not in cache, the kernel calls the disk driver to "schedule" a read request and goes to sleep

awaiting the event that the I/O completes.

185

Buffer Cache

algorithm breada /* block read and read ahead */ Figure 74. Algorithm for Block Read Ahead
input: (1) file system block number for immediate read "breada".

(2) file system block number for asynchronous read
output: buffer containing data for immediate read

if (first block not in cache)

get buffer for first block (algorithm getblk); If the second block is not in buffer cache, the

if (buffer data not valid) kernel instructs the disk driver to read it
initiate disk read; asynchronously.
H
if (second block not in cache) algorithm bwrite /* block write * /
. input: buffer
get buffer for second block (algorithm getblk); output: none
if (buffer data valid) {
release buffer (algorithm brelse); initiate disk write;
else if (I/O synchronous)
initiate disk read; {
} sleep(event I/O complete);

if (first block was originally in cache) release buffer (algorithm brelse);

H
read first block (algorithm bread); else
return buffer; if (buffer marked for delayed write)

mark buffer to put at head of free list;
sleep(event first buffer contains valid data); }

return buffer;

Figure 75. Writing a Disk Block Bach, "bwri t e".

If the write as asynchronous, the kernel starts the disk write but does not wait for the write to complete. The kernel
will release the buffer when I/O completes.

The kernel marks the buffer "delayed-write" and releases the buffer using "brelse". The kernel writes the block to
disk before another process can reallocate the buffer.

Advantages and Disadvantages of Buffer Cache

- use of buffers allows uniform disk access, (data is part of a file, an inode, or a super block) (simpler system
design).

- system places no data alignment restrictions on user processes doing I/O (because the kernel aligns data
internally).

- use of buffer cache can reduce the amount of disk traffic (increasing throughput and decreasing response time)
("delayed write" avoids unnecessary disk writes) (amount of memory available for buffers).

- buffer algorithms help insure file system integrity (serialize process access - preventing data corruption).

- reduction of disk traffic (vulnerable to crashes that leave disk in an incorrect state).

- use of buffer cache requires an extra data copy when reading and writing to and from user processes (for large
amounts of data - slows down performance) (small amounts - improves performance - cache, delayed write).

Summary

The kernel uses least recently used replacement to keep blocks in buffer cache, assuming that blocks that were
recently accessed are likely to be accessed again soon.

The hash function and hash queues enable the kernel to find particular blocks quickly, and use of doubly linked
lists makes it easy to remove buffers from the lists.

The kernel identifies the block it needs by logical device and block number. "getblk" searches buffer cache for a
block, if present and free, locks the buffer and returns it.

If the buffer is locked, the requesting process sleeps until it becomes free.

If the block is not in the cache, the kernel reassigns a free buffer to the block, locks it and returns.

If kernel determines that is not necessary to copy data immediately to disk, it marks the buffer "delayed-write". A
process is not sure when the data is physically on disk.

186

Unix Administration

14. UNIX ADMINISTRATION

Administration Topics

O POXPAN B W=

Day-to-Day Tasks
File System
Backup

Startup & Shutdown
Cron

Printing

Networks

Mail

News

Accounting
Performance tuning
Epilogue

Systems Administrator tasks

install & maintain system

install & maintain applications

upgrade software & hardware

monitor hardware operation & performance
support & maintain system software

create new system software

manage file system

monitor system security

backup system data

for users

put users on the system solve user problems
establish user groups

educate users

educate operations staff

for management

interact with management
state of the system reports advise on
technical aspects

Also make all machines run whatever version of UNIX
AT&T, BSD, XENIX ==> Standards, POSIX, SVID

Day-to-day Administration

Between meetings and user interrupts

First tasks of the day:

test local network loading

check life of file servers

check file systems (block & inode limits)
read "root's" mail for error messages
status of system daemons

look for large user files

process console log and restart

Critical file systems

/ # check disk space
/ usr # contains accounting
/usr/spool, /var/spool # log files, prints, etc

for network (upto 50% of time)

maintain all network files

caring for network daemons domain name
servers

file servers

printer servers

mail servers

monitoring network security

187

Unix Administration

[tmp, [var/tmp, [fusr/tmp # scratch pads fill up fast
/usr/ spool / consol e, /usr/adm nessages,

UBUNTU: /usr/spool/ does not exist
/usr/adm/ is /var/log/messages

Other tasks:
cl eanup
(
find / -type f \(-name core -0 -nane a.out \
-0 nane dead.letter \) -atine +1 -exec rm-f {} \;
find /usr/spool/console -type f -ntinme +7 -exec rm-f {} \;
find /usr/preserve -type f -ntinme +15 -exec rm-f {} \;
find /usr/mil -type -f -atinme +28 -exec rm-f {} \;
) > /dev/console 2>&1

Performance Watch + User Administration

- buffer cache hit ratios - making user directories

- buffer cache write-behind ratio - creating password and group entries

- kernel time versus user time - getting disk space

- page wait - taking care of all login functions

- pagerate - handling group permissions

- fullness of process table - changing ownerships and permissions
- fullness of file table - moving users and user files

- fullness of inode table - updating YP data base source file

- fullness of clists

User password administration on multiple machines without YP requires the creation of a user-ID data base.
User-ID from 0 to 100 are reserved for non-humans, User-ID from 101 to 999 are system staff

Identity Files — not enough info in passwd, group
- logname

- user ID number

- real name

- group

- group ID number

- phone number

- location

- department number

- misc

File Systems
Disks are split into partitions

A partition is then mounted as a subtree of the Unix directory structure

Example Configuration

Drive 0 Drive 1

/ root partition / 2n d root partition
/tmp temporary files /usr system libraries
swap space /home user directories

- root partitions are small and near the outer edge of the drive to reduce risk of failure

- 2nd root partition to fix things if drive 0 fails (Harder without swap space)

- Essentials are kept on one drive (drive 0)

- /tmp can fill up and not interfere with /

- /tmp on different drive to user files to reduce disk head seeking when creating temporary files from user files

188

Unix Administration

Example output from df (bdf command on the HP):

Filesystem Kbytes used avail capacity Mounted on
/dev/dsk/6s0 309006 202692 75413 73% /
/dev/dsk/5s0 560974 236720 268156 47% /student
earth:/modula 271847 162451 82212 66% /modula
boulder:/db 338394 159221 145333 52% /db
snow:/pub 23175 7850 13007 38% /pub
sleet:/nfs 560974 142822 362054 28% /nfs
sleet:/staff 560974 482958 21918 96% /staff
ice:/tech 560974 498445 6431 99% /tech
dust:/project 560974 311816 193060 62% /project

Example of mount command
$ nount |dev/dsk/5s0 /student

- Disk configurations also specify the number of blocks and inodes for each filesystem
- partitions may be mounted read only

+ Remote Mounted Filesystems
NFS and RFS can be included in UNIX kernel to allow mounting disk partitions from other hosts, NFS can mount
non-UNIX filesystems - VAX/VMS, DOS

"/" Root filesystem

- The bare essentials for booting & patching

- As small as possible to minimize chances of corruption

- Preferable in the outer edge of the disk, where disk blocks are more reliable

Must include:

/bin Frequently used commands and those required to boot, restore, and repair system
(include C compiler and assembler)
/lib Essential C library files
letc System configuration and accounting management tables and some admin programs
eg. init, inittab, rc, passwd, group,
/ dev Home of the device files that are used by the device drivers to interface kernel and hardware

/tmp Temporary files only
/1 ost +f ound (This exists on each filesystem) Missing files found during filesystem consistency checking,
see man on fsck

"/ust" File system
/usr/ 1 ost +f ound
/usr/adm
/usr/bin
fusr/lib

/fusr/ mail/<user>
/usr/spool /I p/*
/usr/include
/usr/includel/sys
[usr/ man/ man[1- 8]
/usr/ man/ cat [1- 8]
fusr/tnp
/usr/uch
/fusr/local/bin
fusr/local/lib

same as /lost+found
administration files

non-essential system programs most commands are here

non-essential libraries, less frequently used object code libraries, related
utilities, miscellaneous data files, X11, terminfo -terminal database, etc

mail boxes
line printer spooling directories

C-language header files
kernel related C header files

chaps 1..8 of online manuals
formatted version of manuals
more temporary files
berkeley extensions

local versions of commands

local object code libraries, etc

Unix Administration

/var linked to /usr contains all files that vary

Backups

security in case of damage to disks, viruses

restore files accidentally lost/damaged

Principles of backup security

Files are worth far more than equipment in terms of man hours and irreplaceable resources

Full, partial & Incremental backups UNIX dump command provides multilevel backups (increments of
increments).

Keep multiple versions of full backups. Don't just write over your last version. The system might fail and then
you have nothing !!!

Keep long term backups. Files may be lost/corrupted but not noticed for a long period. Recent backups are then
useless.

Keep a full backup in another distant building. Fire insurance may restore the machine but not the files 11
(Your boss will be grateful...).

Keep dump tapes in a safe cool environment, preferably the same room (i.e. temperature) as the tape drive (1/2
hr to acclimatize tapes).

Backup considerations

Nonarchive (No Header File) - copies everything, external label on tape
Archive (Header File) - writes header first
Catalog (Online Data Base) - contents, dates, media name, locations

Unmounting a disk for even a short period is expensive day or night, in terms of work hours lost and programs
killed or maimed.

Tape Drive Devices
/[dev/rnt0 - rewinds when closed
/[dev/nrntO - won't rewind when closed

Unix Backup Programs

dd program

Easy to use dd to treat devices (disk partition, other tapes) as a file and copy it to tape. Hence useful for quick
backups of filesystems. Using dd, only whole filesystems can be restored, not individual files.

dd if = backup.tar of=/dev/rnt0 bs=20k

tape.

tar (Tape Archiver)
Archives or restores a subtree of files. Cannot handle anything larger than the tape. Cannot allow multiple writes to
tar cvf /dev/rntO /usr/local /etc > backup.|og
tar xv /usr/local/bin
cpio

Similar to tar, reads a list of file names from stdin to be copied to tape, cannot detect end of tape.

I's /fuser/bill | cpio -oc > /dev/fl oppy
find . -print } cpio -ocv > /dev/rnt0

Unix "fi nd" command can search for all files modified since a given date and hence be used with "cpio" for
incremental backups. No rewind is permitted.

find / -depth -print | cpio -odlnv > /dev/nrntl
find /etc -depth -print | cpio -odlnv > /dev/nrm1

incremental /full backup each user directory separately

TYPE=$|
case $TYPE in
full)

IN= 5,

190

Unix Administration

*

)

IN=-nmtime -2 -type f; TYPE=increnental;

esac

for dir in '"awk -F:' $3>100 { print $6 }' /etc/passwd do
echo "$dir \n"
find $dir -depth $IN -print | cpio -ovdum > /dev/nrmO

done

echo "\ n$TYPE backup conplete -- rew nd tape"

exit O

To recover a file:

cpi o -i vdum <pat hnanme> < /[dev/tape
1 -in, v - verbose, d - directory
u - unconditional copy old files over new
m - modification time

dump

"dunp" only writes from device to device Berkeley UNIX - not available on vanilla System V.

dunp O /dev/rdsk/0s5 # sent to default tape
dunp 9udf 6250 /dev/rmt1 /dev/rdsk/ Gs6

A full dump, level 0; An incremental dump, level 9,
u - update note in /etc/dumpdates,
d - density 6250,
f - device file /dev/rmtl

friendly dunp backup
TAPE=/dev/rm 1
DI SK=/ dev/ rdsk/ Gs5

if [$# -ne 1]; then
echo "usage: backup [daily] [weekly]™"
exit 1
fi
case $1 in
daily)
dunp 9udf 6250 $TAPE $Dl SK ;;
weekl y)
dunp Oudf 6250 $TAPE $Dl SK ;;
*
)

echo "usage: backup [daily] [weekly]"
exit 2

esac

exit O

restore
interactive mode - BSD version
fete/restore -if /dev/irntl
restore> cd hone/bill/bin
restore> |s
ar bart chkdsk
restore> add bart
rest ore>extract

backup & restore - SVR4 version

fine & free
fast incremental backup - no catalog, listing or index
fine -m-7 /dev/dsk/0s5 /dev/rnt0
fast recover: p - pathname, 21 - inode, name - adm

191

Unix Administration

free -p /usr/local/bin /dev/rnt0 21:adm

vol copy /usr/local /dev/dsk/0s5 tapel /dev/rnt0

Backup Strategies
Unix dump has a "level" option for control of incremental backups.
Level 0 is a full backup
Level 1 is a incremental since the last level 0
Level 2 is a incremental since the last level 1 or 0
Level 3 is a incremental since the last level 2, 1 or 0

Level N is a incremental since the last level <N

Example Strateqy:

Full backup is done every week.
Incremental backups are done every day.

Mon |0

Tue 1
Wed 2
Thu 3
Fri 4

Another Example:
Week-1 0
Week-2 1
Week-3 2
Week-4 1
Week-5 3
Week-6 1
Week-7 2
Week-8 1
Week-9 0

This permits recovery of files lost anytime over the past 8 weeks.
We can combine these two strategies using levels 4, 5, 6, 7 during Tuesday to Friday and performing levels 0..3
each Monday.

Boot up & Shutdown
Booting the System
- Specify the disk and partition to boot from
- Unix kernel is loaded from /unix
- Can specify if single user or multi-user. System maintenance for level 0 backups.
- If space permits, keep minimal root partition on another disk in case the primary disk fails
- Booting executes /etc/rc shell script to fire off lots of daemons and initialize things
- Can boot off tape if necessary

Shutting down

- /etc/shutdown - shuts down the system cleanly

- Jletc/sync; /etc/halt -minimum after all users logoff

- Jetc/init S - go single user

- Jetc/reboot - shutdown and restart as, some versions do not sync

Does the systems administrator have to process more interrupts than an operating system?

UNIX Startup Sequence
Turn on peripherals, Turn on computer Start bootstrap from ROM

192

Unix Administration

Load /Unix kernel - swapper (process 0)
- init (process 1)

Set date - date mmddhhmm[yy]
- TZ=EST10

Go into single user - init s

Check filesystems - fsck /dev/root

Go into multi-user - init 2

Boot ROM passes control over to the UNIX kernel
- find the root file system
- start the init process then go to run-level 2, i.e. multi-user

The init process has ID = 1, has no parent. It reads the /etc/inittab configuration file.
Look atthe/ et c/inittab file on "water".

i d:runstate:action: process
where "action" is either:
- initdefault - set default run-level
- boot
- boot wai t
- wait
- respawn - when process dies run it again
- process
- off

Run-level 2 entries include /etc/rc initialization script and letc/getty for each terminal line.

letc/rc
- speed up startup
- check filesystem
- start system accounting
- start daemons
- recover files after crash
- start printer spooler

System Shutdown
Shutdown vs Reboot
- users logged on

- how quickly need system down shut down uses ki || -14 on processes
r eboot uses ki | [=9 on processes
sync writes memory out to disk

File System Consistency
Only use "fsck -y" on the root partition.

Phase:

1. Checks Blocks and Sizes
i.e. checks inode types, examines the inode block numbers for bad or duplicate blocks, and checks the inode
format.

2. Checks Pathnames
Removes directory entries pointing to files or directories modified by Phase 1.

3. Checks Connectivity
Cleans up after Phase 2 - making sure that there is at least one directory entry for each inode and that multiple
links make sense.

4. Checks Reference Counts
List errors from unreferenced files, missing or full "lost+found" directories, incorrect link count, bad or
duplicate blocks, or incorrect sum for free inode count.

5. Checks Free List

193

Unix Administration

Compares free block count with free block list.

6. Salvage Free List
Only if Phase 5 error.

If any errors occur for root file system then
w#xx BOOT UNIX (NO SYNC) *##*

i.e. do a cold start by pressing restart button.
ncheck -i inode_nunber /dev/dsk/2s6

There should be a "lost+found" directory for each mounted file system.

nkl ost +found - creates a "slotted directory"

if [$# -1t 1]; then

echo "usage: nklf /path/dirnanme"

exit 1
fi
if [-d$1] ; then
N _SLOTS=254
cd $1
nkdir | ost +f ound
cd | ost +f ound

i =0
while ["expr $i' do -le $N _SLOTS]
do
>$i # create $i
rm $i
i="expr $i + 1
done

el se

echo "$(1) is not a legitimte directory"

exit 1
fi

/* nklf.c - nakes | ost+found */

#i ncl ude <stdio. h>
#i nclude <fcntl. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

mai n(i nt argc, char *argv[]){

int i, fd;
char f_nane[128];

if (argc '= 3){

fprintf(stderr,"usage: nklf /path/dirname /dev/special\n");

exit(1);

}

if ((mknod (argv[1l], S IFDIR 0700, argv[2])) == -1) {
fprintf(stderr, "nklf: can't nake directory %\n", argv[1]);
exit(2);

}

for (i=0; i<=254; i++){
sprintf(f_name, "%/%l", argv[l1l] , i);
if((fd = open(f_nane, O _CREAT, 0600)) == -1)

fprintf(stderr,
cl ose(fd);

"nklf: can't create %%\ n", argv[1], i);}

194

Unix Administration

for (i=0; i<=254; i++) {
sprintf (f_name, "%/%", argv[1], i);
if (unlink (f_name) == -1)
fprintf(stderr, "nklf: can't renove %\n", f_nane);
}
}
sinple create file from paraneter |i st
for i
do
>&i
done

Sync
The superblock exists both in memory and on disk.

The "sync" command flushes memory to disk. This is done by the kernel or /etc/update at regular intervals.

#define TRUE 1
mai n() /* update.c */

{

while (TRUE) {
sync(); sleep(30);
}

}

Cron

Cron - from the greek "chronos" meaning "time".

/ et ¢/ cr on executes commands at specified dates and times. Regularly scheduled commands can be specified by
instructions in /etc/crontab. Cron is started by / et c/ r ¢ at boot time and from then on wakes up each minute to
determine if any commands are scheduled to be run.

/ et c/ cront ab record fields:

- minute (0-59),

- hour (0-23),

- day of month (1-31),

- month of year (1-12),

- day of week (0-6 with 0=Sunday),
- command-to-execute

Any of the time fields can be a pattern.

Examples:

Automatically shutdown at 8am each Friday
08 * * 1 /etc/shutdown "shutting down for backup"

Order some milk at midnight every Monday - Friday
00* * 1-5 echo "I need nore mlk" | mail mlkman

Run suidcheck every 20 minutes Mon-Fri, 9am - Spm
0, 20, 40 9-16 * * 1-5 suidcheck
0 17 * * 1-5 suidcheck

Printing
$ lpr filenane # BSD
$ Ip filenane # System V

A "spooler" is a method of buffering data on its way to a specific destination. i.e. hold files to be printed until line
printer is ready to process them.

A "daemon" program wakes up to do the task when required, and then goes back to sleep again. These daemons
reside in/ usr/ i b or /et c called | pd (BSD) or | psched (SYS V).

BSD printing

195

Unix Administration

/etc/printcap is a table similar to termcap

"1 pc" is used to start and stop the printer
[usr/spool /| pd is the spool directory
"1 pg" to examine print queue
"I prnt remove print requests
SYSTEM V printing
become Ip administrator

sulp

shutdown printer scheduler
fusr/1lib/lpshut

create a new laser printer on serial port 00
fusr/lib/lpadm n -plaser

-v/ dev/terni 00 - mhpl aser

copies the model hplaser from /usr/spool/lp/model and
renames it

/ust/spool/lp/interface/laser, this is a script file which you
should edit

set default print request to the epson printer
usr/lib/l padm n -depson

start line printer scheduler
fusr/lib/lpsched

allow request for laser printer to be spooled
fusr/lib/accept |aser

enable printer to process spool
enabl e | aser

Testing devices
cat /etc/notd > /dev/lp
stty < /dev/ttyOl
stty 9600 < /dev/ttyOl
In /dev/ttyOl /dev/epson

display settings
change settings

Ipstart
#!/ bi n/ sh

| pstart - opposite | pshut

e.g. /binfsulp -c "/usr/local/etc/Ipstart”

until ["$status" = "scheduler is running"]
do
fusr/lib/lpshut > /dev/null 2>&1
while true
do

test printer
Ip -dlaser filenane (laser -1)

if you protect your directory use
Ip -dlaser < fil enane

status of print queue
| pstat -t

paper jam
di sabl e —r"paper jamed" epson

printer broken
fusr/lib/reject -r"l aser
gone for repairs" |aser

printer

redirect existing spooled requests
| phrove | aser-562 draft

remove print request
cancel | aser-562

line='ps -e | grep |psched | grep —v grep | head -1

if ["$line"]; then
kill -9 "echo $line | cut
el se
br eak
fi
done
rm/usr/spool /| p/ SCHEDLOCK > /dev/ nul
/fusr/lib/lpsched

line='ps -e | grep |Ipsched | grep -v grep'

if ["$line"]; then
status='|pstate -r'

196

Unix Administration

fi
done
echo $status

Compression
tar cf dirnane.tar dirnane; compress dirname.tar
(tar cf- dirname) | conpress > dirnanme.tar.Z

tar xvi dirnane.tar uncompress dirname.tar
cat dirnane.tar.Z | unconpress | tar xvf-
zcat dirname.tar.Z | tar tf -

Networks

NFS or RFS Network File System or other TCP/IP Services

TCP Transmission Control Protocol Transport - data packaging
IP Internet Protocol Network Layer - routing
Ethernet Link Layer - Ethernet Address

Physical Hardware

Distributed Filesystems
NFS and RFS provide facilities for distributed filesystems. This means that users can have a host on their desk but
still access shared disks

Backups and software updates can be more reliably administered in one place.

Super User permissions do NOT work across remote mounted filesystems - prevents broke security propagating
over the network.

Electronic Mail (E-mail)
Mail is spooled in a queue area and then if necessary sent to other hosts. Communications with these hosts may be
either immediate (for close neighbors) or until some regular time specified in / et ¢/ cr ont ab.

To: fred@water.fit.qut.edu.au
Subject: | need help ...
<t ext >

sendnai | . cf - is the configuration file for BSD
el m & pi ne - are agents that create and queue requests in/ usr/ mai | or/usr/spool / mai |

News - (available via VAX/VMS locally)

- Keep up to date with industry as it happens

- Ask your problem to THE experts world wide
- Heaps of free software

- Public domain Unix news readers: "tin"

Network Domains
Used throughout the Internet:

fred@water fit.qut.edu.au . :
A@ AN q ANAA Australian domain

Education sub-domain
QUT sub-domain
Faculty sub-domain
Host "water"

User name

Domains & sub-domains are used to prevent naming conflicts with other domains. So we can invent our own host
names without worrying about host names at other sites.

Things to Remember
Don't be superuser more than necessary. Always re-read what you type when using commands like:

197

Unix Administration

rm-rf /tnp/ *, atypo could involve several hours

Optimizing Performance

+ Rebuilding the filesystem

Over time, files on the system become fragmented and spread their data over distant parts of the filesystem. To
optimize system performance, the system should ideally be copied onto tape and rebuilt from scratch to enhance
performance. The drives should also be reformatted to enhance reliability. (Only if you know what you're doing!!)

+ Super User
- login as "root"
- "su" - preferred

+ AT&T System V

sar - system activity reporter (-a all)

crash

+ BSD

i ost at - number of chars (kbytes) read, written to term, disk, and cpu time as user mode, niced,
in-system mode, idle mode.

upti me - display time, system up time, number of users, number of jobs

Vr nst at - virtual memory statistics - procs, memory, page, faults, cpu

pst at - process statistics

+ Tunable Parameters

NBUF - number of system buffers 250 (3 x number of ttys)
NHBUF - number of hash buffers 64

NPROC - number of process table entries/slots 250

MAXUP - number of process a user can have 20

MAXPROC - maximum number of system processes

NCLI ST - character minibuffers are called clists.

TEXT - number of slots in text table

NSWAP - swap device should be at least size of memory

FI LES - each process has 3: stdin, stdout and stderr
MOUNTS - size of mount table

CALLS - callout table - so that UNIX can operate in as close to real time as possible for applications
Accounting

Unix provides facilities for monitoring system performance, network traffic etc. The administrator may need to tune
the system by reorganising filesystems or network links.

ut mp & wt np_- used by accounting
struct utnp {

char ut_user[8]; /* user login nanme */

char ut_id[4]; /* Jetc/line id */

char ut_line[12]; /* device name (console) */
short ut-pid; /* process id */

short ut_type; /* type of entry */

struct exit_status {

short e_terrnrnination; /* process term nation status */
short e_exit; /* process exit status */
b

ut _exit;

time t ut _tine /* time entry was nade*/

}

od -c /etc/utnp | nore

198

Unix Administration

New Software
Purchasing

For major equipment & software purchases ask to see things working before you commit yourself. This includes

hardware AND software.

+ Installing

- Backup previous version of system

- Installation may need root privileges. If shareware or network software — use source code from moderated
news groups.

- Keep software packages in separate directories to handle future releases.

- Test basic features.

- Check software works in non-privileged accounts.

- Liaise with customer support from company supplying the software if problems occur.

= IS YOUR SYSTEM HUNG?
A hung system is kernel resident with no kernel activity. Down and disabled system is kernel active but no results.
A dead system the kernel has gone, processes are stopped.

= FILES THAT WOULDN'T DIE

f oorH \H Hbar, *, "- *", other assorted control sequences

rm-i ? # confirmation for a single character file

Is -ilb * # list strange file names

od -xc <parent_directory> # octal dump of parent directory
clri # clear an inode

/etc/unlink # or system call

= WON'T WORK

Common problems that usually appear when a user complains "the system does not work properly".
e.g. pr .profile | I'p #nolonger works

The x bit has been removed for the owners home directory

e.g.
System administrator performs chmod 666 recursively from root, thus no traversal privileges - end of system.

= NO DISK SPACE

df -t # show no disk free
sed -n '$p' /usr/spool/consol e/ May19 # print last line
find / -type f -size +100000c —print # find large files
(fuser -uk /dev/dsk/0s5; unount /dev/dsk/0s5)

fsck /dev/dsk/ 0s5 # no errors now

The in-core inode table had been corrupted

= TERMINAL WON'T GET PAST LOGIN
Warning some terminals have the ability to map characters. If in doubt reset back to factory defaults first.

tset -mansi:ansi -mtvi910: 910 # BSD command

echo AT > /dev/tty03 # possible problem

Is -1 /dev/tty?? # may reveal a nondevice
remove it and make device knowing major and minor numbers

nmknod /dev/tty03 c 1 3 # remake device

199

Unix Security

15. UNIX SECURITY

Philosophy of Security

-

Computer systems must be accessible

- easy to access ("open")

- able to communicate with other hosts

Trade off between openness & security

Depends on attitudes of administrators and users

- an investment by both

Unix tries to be more open. Full on-line manuals, Unix source available
Experience has shown that non disclosure of information does not assure security.
Unix philosophy is to be more open so that security holes are found and fixed!

Unix Super User

User "root"

Has access to everything

Can change permissions of anything
Use with caution - not for beginners
Minimum of 6-12 months experience
Double check everything

"root" account used to install software, configure system, backing up, managing accounts etc.

Password Security

Minimum of 6 chars (Unix allows 8 chars)

Not personal (e.g. girl/boy-friend name)

Never dictionary words

Include non-alphabetic characters or mixed upper/lower case (any printable character)
Can be remembered without writing down e.g. 1st letters of a sentence

Different for computer different systems

Change regularly (but not predictably!)

Don't reuse old passwords - always invent a new one.

Don't write it down or store it in the function keys of your terminal.

Password File: /etc/passwd

-

-

-

Readable by anyone !!! But passwords encrypted
Passwords are encrypted and then compared with the correct encrypted password in /etc/passwd.

Modern systems put a ! in the password field and store the encrypted password in a protected file called
/etc/shadow.

Maps user-name to uid number.

Text file, one line per user (a record). Each record field is separated by a colon

", "

Examples:

user name:encrypted password:user uid:group gid: name, room, phone comment:home dir: login shell:

root: h6HOf s*k: 0: 1: Super User: /root: /bin/sh

| pstat: 10: 10: : : [usr/ bin/l pstat
accts: f7J8gs6/ : 80: 100: Account s: [tp: [/ db/accmenu
fred: Ef 597s&3: 500: 300: Fred Hill, A501, 1900: /user/fred: /bin/sh

Super user account (UID is zero)
No command shell, only access to the Accounting system provided the accounting system can't create a shell.
No password, shows status of line printer queue

Group File: /etc/group

Similar to / et ¢/ passwd
Maps group names to group ID numbers
Specifies group members other than those implied by the GID stored in /etc/passwd

200

Unix Security

Example: group name:group password:group GID:group members (list of user names)

source: *: 50: joe,fred,jill
staff: *: 105:
users: *: 300:

- Group members can be implied by the default GID in / et ¢/ passwd. All users must therefore be members of
at least one group.

- User "fred" is a member of group "users" because his default GID in / et ¢/ passwd is 300 which is group
"users" in/ et ¢/ gr oup.

Yellow Pages
Manages files such as / et ¢/ passwd, etc/ group ...across computer networks.
ypcat passwd

ypcat group
ypcat hosts

User IDs and Group IDs
- Each process on the system has:
an effective UID, and a real UID
an effective GID, and a real GID
- For most processes, real == effective
- Forked processes will inherit UIDs and GIDs from parent process.
- The parent process is often a login shell like /bin/ksh which is set up to have the UID and GID from
/ et c/ passwd.
- File permissions of a process are controlled by it's effective UID and GID (System V Unix)
- New files created by a process inherit it's effective UID and GID (System V Unix)
- Aprocess can set the real UID equal to the effective or the effective equal to the real (Similarly for GID's)

Privileged Access

Often a non-privileged user needs a system program to be able to access or update files which are otherwise
inaccessible. To be able to access these privileged files there must exist a process with an effective UID and/or GID
which provide the permissions required.

Unix provides two methods:
- setuid (and set gi d) programs
- daemons

Set ui d and Set gi d Permissions
In addition to read/write/execute, a file also has setuid/setgid/sticky permissions bits. These permissions were only
intended for use by executable programs.

When a set ui d program executes, it's effective UID is changed to be the owner of the program file.
Similarly, when a setuid program executes, it's effective GID is changed to be the group of the program file. The
original user & group can still be determined by examining the "real" UID and GID.

Note: Set ui d programs are frowned upon by most systems programmers as likely security holes unless written by
experts.

chnod u+s nyprog <== adds setuid permissions
chnod g+s nyprog <== adds setgid permissions
Example:
-1-S--S--x 3 mail spool 219136 Mar 22 12:16 mailq
[y
I I S mailq is world executable
| mailq is setgid
b mailq is setuid

sendrnail process is f or k() / exec() 'd by /bi n/ sh

201

Unix Security

uIiD GID
Process Eff. Real Eff. Real
/bin/sh fred fred student student
[300] [300] [200]
sendrnail mail fred spool student

[6] [300] [3]

Sendmail Process
- has permissions of the user "mail"
- has permissions of the group "spool"

- creates files owned by "root" and in the group "mail"
- can change back to permissions of user "fred" or group "student" by making effective UID/GID equal to real

UID/GID

Daemons
are alternatives to the setuid/setgid programs for
providing secure access to system files.

User's Client
Process
(Unprivileged)

Daemon Server
Process
(Privileged)

Socket Connection

Daemon run's permanently, waiting to service requests from other non-privileged client processes.

Unix Host 1 Unix Host 2 Via sockets, dagmons can also provide source
access across Unix hosts.
User's Client Daemon Server
Process Process
(Unprivileged) (Privileged)
P
Socket
Changing UID or GID

su command
/ bin/su [user] creates a new shell with UID & GID set to that of user's /etc/passwd record
Always type the full path "/bin/su" to avoid trojans, especially when changing to super user.

newgr p command

newgrp group changes effective GID of the current shell "newgrp" is implemented within the shell

File Encryption

$ crypt < exanB20 > exanB20. encrypted
$ rm exanB20

Crypt is unavailable outside USA (officially)
Breakable by a public domain toolkit called "crypt Breakers Workbench" !!

Use data compression for safest encryption.
$ conpress exanB20 ==> creates file "exanB820.Z"

202

Unix Security

$ crypt < exanB20.Z > exanB20. Z encrypted
Better Unix versions have "vi -x" option.

A Horse named "su"

stty —echo # turn off character echo

echo -n "Password: " # -n = no new line

read PASSWORD

echo # Linefeed

echo "Password of $1 is $ PASSWORD " | nmil nasty & sleep 1

echo Sorry

rmsu # Leave no trace of the Trojan, next time the real "su" will run
Spoof

- Run by "nasty-user"
"nasty" is still logged in
- Typically tricks unsuspecting user into thinking they're logging on and giving away their password

Trojan Horse
- Program executed by unsuspecting user

- Tricks the unsuspecting user into thinking that the program only performs a safe function
- Usually the same name as a safe program or as a program to perform some other function
- On Unix, it's usually in a $PATH directory

Special Trojans
Viruses

- Modifies other programs to make them into similar Trojans, hence "infecting" other programs
- Can spread throughout a system

Time bombs

- Waits until a given time before it performs the nasty deed e.g. 1st April

Worms

- Virus that can spread across a network

- The Internet Worm

Hints for good security

- Do not have a guest account (has no password)

- Ensure all users have an initial password

- Check filesystem regularly for Setuid/Setgid programs

- Disallow ' w permissions on directories

- Use "/bin/su" to become root. (Ideally only permit su to work for "sysprog" group members)
- Device files should be protected (esp. disk, memory)

- To avoid Trojans, put "." at end of your SPATH (Don't include "." at all you're root)

- Educate your users well in basic security

- Hire staff you can trust!! - Especially systems programmers

Summary of Major Unix Security Weaknesses
- Super User omnipotence

- setuid/setgid if abused or unaccounted

- Special files (/dev)

- Temporary files

- Spoofs/Trojans

Secure Versions of Unix

Orange Book

- US Defense standards of computer security
Al, A2, A3 Highest Security
BIl, B2, B3
Cl C2, C3 Lowest Security

203

Unix Security

- HP-UX V7.0 1s C2 level
- OSF will soon use Mach kernel = B2 security

Sushi

- first thing a bad person might try once root
cp /bin/sh /own/ bad/ sushi
chnod 4755 /own/ bad/ sushi

- untraceable access via super-user shell interactive
$ cd /own/ bad
$ sushi
#

- never let anyone use root password or login

- no program that is SUl Droot should be writable
- don't use any SUI D shell programs

- checks for SUI D programs

- donot use SUl D on programs with a shell escape
- usechnod 4755 not chnod +s

- restrict chown to root

find / -user root -perm-4000 -exec Is -1 () \; \
| mail root # setuid
find "echo $PATH | tr ":" " "' -perm-0002 —-exec Is -1 ()\; \
| mail root # witable
Crontab
{fusr/lib/crontab
fusr/lib/atrun is started by cron every 10 minutes

User Protection
- Horne directories should not be writable
find "awk -F: '{print $6}' /etc/passwd' \
-prune -perm-02 -exec Is -Id "{}" \;

- Users.profile, .cshrc, .login,etc
find "awk -F: '{print "%/.profile\n", $6}' /etc/passwd \
-prune -perm-022 -exec Is -1 "{}" \;

- Users .rhosts not readable or writable
find "awk -F:. "(print "%/.rhosts\n", $6)' /etc/passwd' \
-prune -perm-066 -exec Is -1 '"{}" \;

Device Files
- Protect memory and swap files: mem krnem swap.

- All devices should be in /dev
find devices outside /dev
find / -hidden -nane /dev -prune -o -type b -exec Is -1 {} \;

before mounting disks check for SUD files
ncheck -s /dev/dsk/[device nane]

disable SUID files
/etc/nount -0 nosuid /dev/dsk/[device nane] [nount point]

- Write protect all disk special files to stop corruption

- Read protect disk special files to prevent disclosure
- Individual users should never own a device file other than a terminal device

Network Security

204

Unix Security

- exported filesystems and access to files
/etclexports
/ et c/ net group

- equivalent password data bases
/ et c/ hosts. equi v

- each node is in an administrative domain

- control root and security on every node

- consistent user name, uid and gid among nodes
% rcp node2:/etc/passwd /tnp/ passwd2

%awk -F: ' (printf "% % %\n", $1, $3, $4)'

[t np/ passwd2 > /tnp/ node2

%awk -F: ' (printf "% % %\n", $1, $3, $4)'

/ et c/ passwd> /t np/ nodel

% di ff /tnp/ node2 /tnp/nodel

- permission settings on network control files
/ et ¢/ net wor ks
/etc/ hosts
/ et c/ hosts. equi v
/etc/services
/etc/exports
/etc/protocol s
/ et c/ netgroup
/etc/inetd. conf

Perspective on Security

Access controls and auditing to prevent unauthorized access attempts (reading, modifying, deleting).

Threats to computer security:

- simple electronic intrusion

- trust of authorized personnel

- physical intrusion

- persistent espionage by expert agents
- tapping of communication lines

physical security - locked doors, guards, alarms
logical security - passwords, file permissions, audits

Weak Points:
- computers, networks, users, administrators

Checklist on computer security:

- who has access to passwords

- remote access authorization

- system administrator monitoring

- assume worst about sensitive files
- user responsibility for own actions

Security packages:
- repeated login attempts
- monitor files requests

Security for Users

- Password security - /etc/passwd

- File Permissions - directory, umask
- Set User Id & Group ID

\

\

205

Unix Security

- Implications for cp, mv, In, cpio
- suand newgrp

- File Encryption & Compression

- Profile & PATH

- atrojan horse compromises users security
- aspoof imitates something e.g | ogi n

once only "l ogin" program

echo "Login: \c"; read USER

stty -echo

echo "Password: \c"; read PASS

stty echo; echo ""

echo $USER $PASS | mail user@ffsite > &
sleep 1

echo Sorry

rmlogin

- never run other user programs when root
- don't leave your terminal unattended

- intelligent terminals have memory

Security for Programmers

System routines:

+ 1/0 -creat, fstat, open, read, wite

Once a process opens a file, changing the permissions of the file or directory the file is in will not affect file.
Process Control -exec, fork, signal

real and effective UIDs and GIDs are inherited by child, file mode creation mask (unmask) is inherited by child, all
open files are inherited by child

File Attributes - access, chown, stat, umask

UID and GID - getuid, getgid, geteuid, getegid, setuid, setgid

Standard I/O - fopen, fread, getc, fgetc, gets, fgets, scanf, fscanf,
fwite, putc, fputc, puts, fputs, printf, fprintf, getpass,
popen

/ et ¢/ passwd Processing - get pwui d, get pwnam get pwent, setpwent, endpwent

/ et c/ group Processing - getgruid, getgrnam getgrent, setgrent, endgrent

Who's Running a Program - getui d, getlogin, cuserid

pwentry = getpwii d(getuid());
printf("Hello, 9%\n", pwentry->pw _nane);

Writing Secure C Programs

Secure Files
/* make files read/wite only to you */
umask(Or7) ;

/* call chnod() when you want file readable by others */

/* create an "invisible" tenporary file */
creat ("/tmp/ xxx", 0);

file = open ("/tnp/xxx", O _RDRW;

unlink ("/tmp/xxx") ;

/* but storage associated with it will not be renmoved until the last file descriptor
referring to file is closed */

Executing commands
/* want to edit first argunent fromwithin program */
sprintf(cndstr, "ed %", argv[l]);

206

Unix Security

system(cndstr);

$ echo "/bin/cat /etc/private" > ed
$ chnod +x ed

$ PATH=":"; export PATH

$ smart idiot

/* al ways specify full pathnane */
systenm("/bin/ed"):

/* or specify path */
systen("PATH=/ bi n: /usr/bin:/etc ed");

$ cp ed bin
$ PATH=: 1 FS=/ smarter idiot

/* solution */
system("I FS=' \t\n'; export |FS: /bin/ed");
system("I FS=' \t\n'; export |FS;, PATH=/bin:/usr/bin:/etc ed");

$ smarter "idiot; cat /etc/private"

/* check argv[l] for special shell characters */
if (strpbrk(argv[!l], "|"; & <>*?[]1$/\\'"\"\n") = (char *) NULL)
{

fprintf(stderr, "snartest: bad character in argunment\n"):
exit(2);

Shell Escapes
saveeuid = geteuid();
setuid(getuid());
systenm("/ bi n/ed")
set ui d(saveeui d):

Executing SUI D programs from inside SUl D programs
When you run a SUl D program from inside a SUl D program the new program runs with the effective Ul D of its
owner. "nkdi r" & "rndi r " commands are SUID and owned by root.

$ cat nmkrndir. c

main ()

{
systenm("/bin/nkdir foo");
system("/bin/rndir foo");

}

$1s -1 nkrndir
-rwsr-xr-x 1 pat |TB100 2048 May 26 17:01 nkrndir

$I1s -Id

drwxr-xr-x 2 pat |TB100 320 My 26 17:02
$ who ami

greg tty08 May 26 17:05
$ nkrndir

nkdi r: cannot access.
rndi r: foo non-existent

$ su pat
Passwor d: XXXX

$id

207

Unix Security

ui d=10(pat) gi d=10000(| TB10O)

$ nkrndir

+ Programming as root
- some routines can only be called from a process whose effective UID is zero (a root process)
- setuid() & setgid() -behaves differently for root

The "init" program is started when the system is started. It is run as a root process with both its effective and
real UIDs set to zero. init starts "getty" on a terminal which starts "login" once a user begins logging in.

Thus, both getty and login run as root processes. So when login is started, it runs with effective and real UIDs of 0.
After the password is validated, login must be able to set effective and real UIDs to that of the user logging in
before the user's shell is started (i.e. setuid(user's UID)).

- chown() - does (not) remove the SUID permissions
- chroot () -changes a process's idea of what the root directory is.

$ cat chrt.c
/* chrt nmust be SUDto root */
main ()

chdir("/restrict");

chroot("/restrict");

setui d(getuid));

execl ("/bin/sh", "sh", 0);
}

$ grep chrt /etc/passwd
ruser::900:900:restricted:/restrict:/usr/local/bin/chrt

- nknod() & unlink() - make and remove special files
- nmount () & unount () - access to filesystem

Security for Administrators
+ Preventing unauthorized access:
user awareness, password management, login activity and reporting, periodic audits of user and network use

+ Preventing compromise:
keeping users from accessing each other's sensitive information, file system audits, su logging and reporting, user
awareness, and encryption

+ Preventing denial of service:
should be implemented by OS, disk quotas, process limits

+ Preventing loss of integrity:
periodic backups of file systems, running fsck, and s/w testing

System Security Officier

- initiates and monitors auditing policy

- determines which users and events are audited

- maintain secure password system

- initialize directory access privileges on files authorizes new user accounts
- checks file system for SUID/SGID programs

- verifies integrity of system executable files

System Administrator

- implements auditing procedures

- inspects and analyzers audit log

- administers group and user accounts

208

Unix Security

- repairs damaged user files and volumes
- updates system software

- sets system configuration parameters

- collects various system statistics

- disables and deletes accounts

- makes periodic system checks

- monitors repeated login attempts

- periodically scans line permissions

- deals with invalid su attempts

Limiting SETUID

- use only when absolutely necessary

- make not writable

- use setgid instead of setuid

- periodically search for new setuid programs
- know what the setuid and setgid programs do

- write setuid programs so that they can be tested on non-critical data, without setuid attributes, only add setuid

after checking security
- if in doubt remove setuid and rebuild program.

209

