

Birmingham Environment for Academic Research

Unix – Guide for Beginners (Part 1)

Alan Reed, Aslam Ghumra, Chris Bayliss, and Jenny Harrison

Edition 5.08

Unix – Guide for Beginners (Part 1) 1 | P a g e

Table of Contents
Part 1: Introduction ... 3

What is UNIX? ... 3

What is Linux? ... 3

Usernames and Passwords ... 3

Typing in Commands ... 3

Case Sensitivity ... 4

Using PuTTY to access BlueBEAR .. 4

Logging In/Out .. 5

Changing Passwords ... 6

Part 2 Directory Structure/Hierarchy .. 7

Files and Filenames ... 7

Directories ... 7

Pathnames .. 8

Symbolic Links ... 9

Access Control ... 9

Part 3: First Commands ... 10

pwd – print working directory or present working directory .. 10

cd – change working directory .. 10

cd “shortcuts” .. 10

ls - List files ... 10

ls “shortcuts” ... 11

du – Disk Usage ... 11

mkdir – Make Directory .. 12

more – view the contents of a file ... 12

less... 13

Part 4: Wildcards and a useful feature ... 14

Wildcards .. 14

The ~ symbol (tilde or “squiggle”) .. 14

Part 5: Copying and Moving Files .. 15

cp – copy ... 15

mv – move, or rename .. 15

rm -remove .. 16

rmdir – remove directory .. 16

Unix – Guide for Beginners (Part 1) 2 | P a g e

Part 6: More about more, cat, and piping .. 18

cat - concatenate .. 18

Redirecting input and output (>, >>, <) ... 18

Pipelines (|) ... 19

More about more .. 20

man (the manual command) .. 20

apropos ... 22

Part 7: Shells .. 23

Wildcards and Special Characters ... 23

Built-in Commands .. 23

Variables and Environmental Variables .. 24

numeric variables .. 25

Part 9: Text editors – ... 26

Nano .. 26

Ctrl + O (WriteOut) .. 27

Ctrl + G (Help) .. 28

Emacs .. 29

Overview of Emacs .. 29

Buffers ... 29

Text input and command input ... 29

Creating a file .. 29

Modifying an Existing File ... 30

Inserting a File ... 31

Accidental use of Features .. 31

Suspending Emacs ... 31

Command Mode .. 31

Applications which use Emacs... 31

Unix – Guide for Beginners (Part 1) 3 | P a g e

Part 1: Introduction

What is UNIX?
UNIX is a multi-user operating system; in other words it allows more than one user to have access to

a computer at the same time. The users share the computer’s various resources amongst them.

Although each user has only a small portion of the resources of the machine at their disposal, the

computer operates so fast that they have the impression of complete control over the resources

they need. There are versions of UNIX in use on microcomputers and mainframes at business and

academic sites all over the world.

What is Linux?
Linux is a free version of the UNIX operating system, primarily composed of tools developed over a

15-year period by Richard Stallman and Project GNU. Linux Torvalds wrote a kernel (completed in

1994) which launched the operating system. Its strengths are its open source and rapid

development, in addition to the traditional strengths of UNIX (stability, internet, networked

graphics, scripting) and the fact that it will run on a variety of hardware.

All the commands featured on this course run on all UNIX and Linux platforms, although there may

be a few minor differences (e.g. error messages, some command parameters).

Usernames and Passwords
In order to be able to use UNIX, you need a username and password. Your username is the unique

code to identify you and your files. Traditionally, usernames were limited to eight characters, but

most modern systems will support longer usernames.

Your password is used to control access to the system and your files. This password acts as a “key” in

order to allow you and no one else to create, examine, change or destroy your files.

As passwords are a major part of the UNIX security, it is important to choose a sensible one, which

would be difficult for others to guess, and to keep it secret. Many attacks on systems by “hackers”

have been due to bad choices of password.

The password consists of a minimum of six charact3rs. When choosing a password, avoid using

simple words, names, or personal information such as car registration or your telephone number.

On IT Service servers, UNIX passwords must include a number as well as letters. In addition, the

systems force you to change the password periodically in case it has become known to others. On

many systems, only the first eight characters are significant, but longer ones can be used as they can

sometimes be easier to remember.

On the IT Services Sun servers, new passwords must differ from previous ones in at least three

places and force at least two characters to be something other than lower case letters.

Typing in Commands
In order to use a UNIX system, you need to log in. This is described below, but there are one or two

important points common to all UNIX commands which are also useful for logging in.

Unix – Guide for Beginners (Part 1) 4 | P a g e

Some commands require additional information, others do not. In all cases, once the command line

has been typed, it must be followed by the use of the key. It is necessary to use the key

after any input into UNIX.

Sometimes, you will make a mistake when typing. Errors can be corrected by using the key.

This key may be different on different systems, but is normally on the top right of the main block of

keys.

Case Sensitivity
Unlike many other computer systems, UNIX makes use of the difference between upper and lower

case characters. This is important when typing commands, filenames, passwords, and usernames.

The system will not recognise any filename, command, or password which is given the wrong case.

Lower case is almost always used for usernames. Use of upper case can produce unwanted results

on some older versions of UNIX.

Using PuTTY to access BlueBEAR
Setup and configuration information can be found at

(https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/bluebear/accessing-

bluebear-using-putty-and-exceed.aspx#ConfiguringPuTTY)

Once installed, double-click on the icon on your desktop, or go to the Start button in

Windows¦ All Programs ¦ PuTTY ¦ click once on PuTTY to start the program.

https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/bluebear/accessing-bluebear-using-putty-and-exceed.aspx#ConfiguringPuTTY
https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/bluebear/accessing-bluebear-using-putty-and-exceed.aspx#ConfiguringPuTTY

Unix – Guide for Beginners (Part 1) 5 | P a g e

Double-click on bluebear to start the program or click once on bluebear and click Open.

Logging In/Out
Once you have access the system from a telnet session, the system will prompt you to log in with a

login: prompt.

Log in using your user ID and password.

Unix – Guide for Beginners (Part 1) 6 | P a g e

You should respond with your username. Note that the password is not displayed on the terminal

when it is typed. This is to help to keep your password secret.

If you make a mistake typing the password, you will receive a message stating that your login is

incorrect. At this point you can try your credentials again. In order to log out of the UNIX system,

type the “exit” command.

Changing Passwords
There are times when the system will ask you to change your password when you log in. On many

systems, this is done when you first log in and at regular intervals afterwards. You will be prompted

for your old password, then your new password twice. You can change your password at any time by

using the “passwd” command.

If you mistype your new password, you will receive the BAD PASSWORD: it is based on a dictionary

word message. You will have the opportunity to try again. The passwords will not be displayed on

the screen.

Unix – Guide for Beginners (Part 1) 7 | P a g e

Part 2 Directory Structure/Hierarchy

Files and Filenames
A file is a collection of information with a name.

All information on UNIX systems is stored in files. Typical examples that might be kept in files are:

computer programs, experiment results, address lists and documents such as this one.

Ideally filenames should allow you to identify the content of the file without opening it. Think about

using version information, and the ordering of the elements within a filename, e.g. YYYMMDD allows

chronological ordering of the files. An example would be the following:

FILENAME-YYMMDD-CATEGORY-VnMn-STATUS.EXT

Where:

FILENAME The name or title, preferably without
spaces or special characters

Mandatory

YYMMDD Version or publication date Highly Recommended

CATEGORY CONFIDENTIAL, RESTRICTED, or OPEN Mandatory for confidential items, use
capital letters for clarity

VnMm Version (n) and Modification (m) should be
numerical

Optional

STATUS ‘Draft’, ‘Published’, etc. Optional

EXT File extension Dependent upon the Operating System

Table 1. File Naming Conventions1

Directories
A UNIX system can contain thousands of stored files. For convenience, these files are stored

together in names groups called directories. These directories are organized in what is known as the

tree structure (or hierarchical structure). This begins from a single directory (root) which may

contain both files and other directories. Each directory may contain additional directories.

Directories have names which follow the same rules as files. The only exception is the root directory

which can be referred to by the ‘/’ (forward slash) character.

All directories may contain both files and other directories.

1
 Deighton, D., Guidelines – File Naming Convention Published,

https://intranet.birmingham.ac.uk/it/documents/public/Guidelines-File-Naming-Convention.pdf, retrieved
22/10/2015

https://intranet.birmingham.ac.uk/it/documents/public/Guidelines-File-Naming-Convention.pdf

Unix – Guide for Beginners (Part 1) 8 | P a g e

Pathnames
If you need to refer to a file in a directory other than your current working directory, you will need to

describe its position in the file hierarchy in addition to giving its name. This is called the “full path

name”, or “absolute path name” of the file.

A forward slash “/” is used both to indicate the root directory and separate the names of the

directories in the path name; the context always makes it clear which meaning is intended. An

example of the full path name of the file ‘report’ can be seen below (it is also shown in red):

/home1/ccc/simpsong/project1/docs/report

In some cases, it may be easier to give the “relative pathname”. This begins from the current

working directory instead of the root. For example, if the current working directory is:

/home1/cc/simpsong

And you wish to refer to the file ‘report’ in the above example, the relative pathname would be:

project1/docs/report

Any path name with starts with a “/” is a full path name, beginning at the root of the file system. Any

other path name is a relative path name and begins from the current working directory. A name

which does not contain a “/” such as report will always refer to a file in the current working

directory.

There are two abbreviations which can be used in path names:

. A single dot means your current working directory

.. Two dots mean the next directory up the path
towards root. This is called the parent directory

Unix – Guide for Beginners (Part 1) 9 | P a g e

Symbolic Links
There is one other type of file which you may need to be aware of. This is the “symbolic link”. This

contains no data other than a “pointer” to another file or directory in the system.

These have a variety of uses. When their name is used as an argument to a command, the command

normally operates on the file or directory being “pointed to” by the link.

Access Control
Every file on the system can be protected from, or made accessible to other users. Access controls

are implemented using file modes (sets of access permissions) which are associated with files.

Directory Permissions File Permissions

r (list contents of directory) r (read the file)

w (Create new files/folders) w (write to the file)

x (traverse, e.g. cd to the directory) x (execute or run)

These access controls apply to three classes of user (owner, group, and user) and may be set

differently for each. Groups are setup by the system administrator for the purpose of such selective

sharing of files.

u User/owner

g Group owner

o All other users

a All, user/owner, group owner, and all others

To show permissions on the home directory, type: ls –ld ~/

Unix – Guide for Beginners (Part 1) 10 | P a g e

Part 3: First Commands

pwd – print working directory or present working directory
The pwd command displays your working directory.

pwd print working directory
or present working
directory

cd – change working directory
To change your working directory, use the cd (change directory) command. This can be referred to

as “moving” to another directory.

cd change directory

To move to the unixfiles directory, type cd unixfiles instead of using the full path name:

cd /gpfs/bb/madisoj/unixfiles

cd “shortcuts”

cd.. In order to move to a “parent” directory – i.e. the directory above your
working directory

cd If no path name is specified, your home directory is assumed. You can get
directly back to your home directory by typing cd alone.

cd ../demo0 To move to another directory owned by your parent directory, combine ‘..’
with the name of the directory in order to avoid typing the full pathname.

cd ../.. To move up the directory structure by more than one level.

cd - To return to your previous working directory.

ls - List files
To list the files located within a directory, use the ls command. Optionally, this command will accept

a pathname which may be absolute or relative. This will cause the command to list the contents of

the directory specified by the path name. If the path name refers to a file and not a directory, the

details of the file are displayed.

Unix – Guide for Beginners (Part 1) 11 | P a g e

ls Displays a list of files
in a directory

ls “shortcuts”

ls Used without any arguments, this command lists the names of files,
directories, and links in a directory, except hidden ones (those whose names
begin with a dot).

ls -a Using the -a (all) option will list hidden files.

ls -l To obtain more information than just the list, the -l (long) option can be used.
The first character indicates whether the file is a directory (d) or symbolic link
(l), the next nine characters indicate the mode (access permissions) for the
owner, group, and others. This is followed by the number of links to the file,
owner, group, size, time of last modification, and finally the name.

ls -F To list the names in the directory with a character to denote whether they are
executable (*), a directory (/) or a link (@).

ls -m To list files in a compact form.

ls -l mushroom To list the details of the file called mushroom.

ls -l directory1 To list the contents of directory1.

ls -ld directory1 The -d option restricts the listing to the directory itself.

du – Disk Usage
The du command summarises disk usage. By default, this starts from the current directory and lists

how name 512K blocks are used in each directory beneath it. A directory can be specified if

required. Other options are available. This command is particularly useful if you wish to find out

where your filestore is being used when you are close to exceeding your quota. If you wish to display

sizes in friendlier quantities, such as Kilobytes and Megabytes, use the -h option.

du

du -h

Summarizes disk
usage.

displays sizes in
Kilobytes and
Megabytes

Unix – Guide for Beginners (Part 1) 12 | P a g e

mkdir – Make Directory
New directories can be created by using the mkdir command. Remember that this new directory is

created within your current working directory. You can use a full pathname to create one elsewhere.

mkdir Make a new
directory

more – view the contents of a file
The more command is the easiest way to look at the contents of a file containing simple ASCII text

(22 lines on a standard VDU). When you have read the first display, press the space bar to see the

next screen of text.

more View the
contents of a
file

Unix – Guide for Beginners (Part 1) 13 | P a g e

less
Less is similar to more but allows you to scroll backward and forward within the file using your arrow

keys. It also allows your to do basic searches within the file, Less does not have to read the entire

file so if you have a large file, it will start up faster

less less writes the
contents of a file to
the screen a page
at a time.

Unix – Guide for Beginners (Part 1) 14 | P a g e

Part 4: Wildcards and a useful feature

Wildcards
A wildcard is a symbol which can represent any character. The UNIX shell recognises two wildcard

symbols:

* Stands for zero or more characters

? Stands for exactly one character

Wildcards are interpreted by the shell and can be used in a variety of ways.

ls m* Lists all files in the current
working directory which
begin with the letter m.
Note that this will include
all files with one or more
dots (.) in them.

ls m? Lists all files in the current
working directory which
begin with the letter m and
consists of two characters

ls m*m Lists all files in the current
working directory which
begin and end with the
letter m and with one or
more characters in
between.

The ~ symbol (tilde or “squiggle”)
This symbol can be used in the Korn or Bash shell to specify the home directory of another user.

For example: cd ~demo0

Means move to the home directory of user demo0. This may be useful if you are accessing another

user’s files and have been given appropriate access.

Unix – Guide for Beginners (Part 1) 15 | P a g e

Part 5: Copying and Moving Files

cp – copy
The cp command creates an exact copy of a file. If the new pathname is the name of a directory, the

file is copied into that directory with its existing name.

For example, to make a copy of fred called fred 2, type: cp fred fred2

cp To create an exact
copy of a file.

BEWARE: If you choose a new file name that already exists, the existing file will be destroyed and

replaced by the copy you are making now.

cp can also be used to copy directories.

mv – move, or rename
To move a file, use the command mv (short for move).

For example: mv mushroom.txt myfile

mv To move a file
or entire
directory.

BEWARE: If a file called my file already exists, the mv command will overwrite it without warning,

losing the contents of the file.

If myfile is in the same directory as mushroom.txt, then it will simply be renamed.

mv can also be used to move entire directories.

As with cp, if the second argument is the name of a directory the file will be moved into that
directory keeping its original name.

The cp and mv commands can be made to check if the new file already exists by using the -i option.
In this case if the new file exists, mv will prompt you with its name and a question mark. Typing
anything beginning with y will allow the move to take place; typing anything else will prevent it.

Unix – Guide for Beginners (Part 1) 16 | P a g e

For example, suppose you have two files, myfile and newfile, and you want to change the name of

myfile to newfile:

rm -remove
To destroy a file, use the command rm (remove).

For example: rm olddata.txt

rm To remove a file.

NOTE: you cannot reverse the effect of this command. Once a file is destroyed, it cannot be

retrieved except from a backup tape.

rmdir – remove directory
The rmdir command removes a directory. It normally requires the directory to be empty.

For example, to remove the directory dataold, you would type:

rmdir dataold

If the directory is not empty, an error message is generated.

Unix – Guide for Beginners (Part 1) 17 | P a g e

The files within the directory must be deleted before the directory can be deleted. For example:

A slightly more drastic command that will delete all files within a named directory before deleting

the directory itself is rm –r.

For example: rm -r data2

If given enough access, the rm command with the -r option can be used to destroy an entire file

system, so use this with caution.

In each case, rm can be used with the -i (interactive) option to check if you really want to delete

each file before you actually do so.

Thus, running the last example again with the -ir option:

NOTE: The results of the -i differ slightly between different UNIX implementations. All of them

generate queries, but not all versions ask if you want to examine files at the directory level.

Unix – Guide for Beginners (Part 1) 18 | P a g e

Part 6: More about more, cat, and piping

cat - concatenate
The cat command has the simple function of listing the specified file or files to the standard output,

in this case, the screen, e.g.:

cat pickles.txt

The more command is convenient to use for simply displaying files of more than one page, but the

cat command is useful in conjunction with other commands. The cat command has other useful

features. A very popular option is to display all characters including nonprintable ones:

cat -vet pickles.txt

Redirecting input and output (>, >>, <)
All information stored for you by the system is organised into files. UNIX considers any collection of

information to be a file, and also regards every device attached to the computer as a file, even your

terminal is a file to UNIX.

Unless you instruct UNIX otherwise, commands will read input from your terminal and will write

output to your terminal. By default, your terminal is connected as the “standard input” and the

“standard output” files. This action can be changed by redirecting input and output from and to any

other file.

The > (greater than) character redirects the output to a specific file, e.g.:

date > file1

Unix – Guide for Beginners (Part 1) 19 | P a g e

This will write the output from the date command to file1. If you then use the cat command to list

this file, you would see the following:

Redirecting output to a file creates either creates a new file with the date information, or if a file

already exists with the same name, it will be overwritten with the new information. If you wish to

avoid overwriting the file, you can use the >> operator (two greater than signs) and the output will

be added to the end of the file if it already exists.

> overwrites
>> appends

The < (less than) character is used to change where the input comes from an example would be to

send a file as email to another user using the mail program. In order to send the file pickles.txt to

demo0, you could type:

mail demo0 < pickles.txt

The use of email will be covered later in this course. In general, we would not recommend the use of

mail, but alternatives such as elm or pine.

Pipelines (|)
As an extension to the facilities described above, UNIX has a feature called piping which allows you

to connect the standard output from a command on the left-hand side of the pipe (the | character –

this character is often displayed as a broken vertical bar on keyboards) to the standard input of

another command on the right-hand side of the pipe. The two commands run concurrently.

For example, the command ls -l gives a list of the files you have with full details, which is often more

than can fit on one screen. The command more allows text to be displayed one screen at a time.

Unix – Guide for Beginners (Part 1) 20 | P a g e

Thus, if you were to put the list of file names produced by ls into a file, you could use more to view

the output of a page at a time. However, this would require you to create an extra file to contain the

list of file names and, to be tidy; you would want to destroy that file again after it was used.

UNIX pipes can often be used to avoid the use of temporary files like this. For example, you can pipe

the output from the ls command directly into the more command, allowing you to see the output

one page at a time.

ls -l | more

It is worth noting that if the output from ls is piped, each file normally appears on a separate line

whether or not you are using the -l option, but the -m option suppresses this feature.

More about more
Previously, we used the more command in a simple way. There are many options to the command.

When you have read a page, several commands can be used:

Space bar Displays the next screen of text

RETURN Displays the next line of text

q Exit from more (this can be done at
any time)

d Scroll forward about have a screen
of text

b Skip backwards one screen of text

h Display a list of commands (help)

Note that the b option does not work when piping output from another command into more.

man (the manual command)
When you are using UNIX, you will need help from time to time on the commands and facilities

available to you. You can consult written documentation or you can use the UNIX on-line help

system.

The UNIX help system is based on the UNIX system manuals, which are held on-line. These manuals

are generally intended for the more experienced user and especially the programmer, but

comprehensive descriptions of all the usual commands are included. This guide only attempts to give

you enough information for you to start using the on-line help information. As you become more

experienced, you will be able to interrogate the system yourself to find new features.

The command for accessing the manual information is: man

Unix – Guide for Beginners (Part 1) 21 | P a g e

This is short for manual which gives you the page of the UNIX manual describing a particular

command.

In addition, some UNIX commands give a very brief summary of their intended usage when you type

the command name without any arguments or with erroneous arguments. This facility should be

used with caution unless you know what you are doing since just typing commands at random can

have unpredictable effects.

To get help about any particular command, you should type man followed by the command name.

For example, to get help about the GNU Emacs editor, type:

man emacs

You will see a screen of information (22 lines) about the command emacs. At this point, you can use

the options of the more command to proceed.

Each command has a one line summary. These can be searched using keywords. For example:

man -k copy

This will list all commands which have the word ‘copy’ in their one line summary. This can be useful

if you are unsure about the name of the desired command.

Unix – Guide for Beginners (Part 1) 22 | P a g e

apropos

Apropos is a command that can be used when searching for commands when you aren’t exactly sure

of their names. For example, by typing:

apropos emacs

a single line is returned for every instance of emacs that is found in each man page. Apropos is not

case sensitive which makes searching easier.

apropos cat | less

would return a window similar to the one below:

Unix – Guide for Beginners (Part 1) 23 | P a g e

Part 7: Shells
Upon logging into UNIX, you are presented with a prompt, inviting you to issue commands. The

prompt is issued by a “shell”. Shells are programs which allow you to communicate with the UNIX

system. Shells read your input from the command line, interprets the input, and submits your

commands to the system so that they can be run. Commands are run as separate processes that are

initiated by your shell.

In addition to allowing you to input commands, shells are programming languages. Files containing

commands can be written and run just as if they were programs. In addition, shells support

variables, parameter passing, and a variety of programming control structures (loops, if-the-else,

etc.), allowing sophisticated programs to be written. However, many of these features will not be of

interest to the basic user.

There are numerous different shells which can be used in UNIX systems. The most common are the

Bourne shell (sh), Bourne again shell (bash), the C-shell (csh) and the Korn shell (ksh).

Traditionally, the Bourne shell was considered to be good for programming and the C-shell for

interactive use. The Korn shell is intended to provide the best environment for both types of use.

The Korn shell is very rich in features and arguably the most “user friendly”. There are many other

shells available from a variety of sources, the Bourne-again shell (bash), the Korn and Bash of the

shells have a lot of features in common from the end user’s perspective. Bash is the most commonly

used shell in Linux.

By default, IT Services Sun servers offer users the Korn shell (ksh), and the Korn shell will be covered

in this course. BlueBEAR uses bash. If you wish to use a different shell from the one allocated at

login, you may do so by giving the name of the shell you wish to use as a command.

Sometimes, it is difficult to tell which functions are provided by the shell and which are provided by

UNIX. Most of the time it doesn’t matter to the users; however, in some cases it is worth being

aware, particularly when problems arise and documentation needs to be consulted. Some of the

shell features are documented as part of the shell, so in order to find information about these, you

would type:

man ksh

The following sections describe some shell features in more detail.

Wildcards and Special Characters

Wildcards (*,?) and other special characters (|><) are interpreted by the shell and not the

commands themselves. These are documented as part of the shells.

Built-in Commands

Some commands are provided by the shells and not the UNIX system. These are known as built-in

commands and functions. The most commonly used is: cd

This is documented on its own manual page.

Unix – Guide for Beginners (Part 1) 24 | P a g e

Other commands, such as set and read, are documented with other shell features.

Variables and Environmental Variables
As has been stated earlier, shells support variables. The variables of most interest are the

environment variables. These can be displayed by giving the following command: env

The variables contain information about terminal type, preferred editor, name and a variety of other

attributes.

Individual variables can be accessed by using the echo command. When accessing the value of a

variable, a $ is added to the name of the variable. For example, to see the value of PATH, you can

type:

echo $PATH

Each time you type a command that is not built into the shell, all the directories in the PATH variable

are searched and the first matching program is used. You may sometimes need to change some of

the variables. In the Korn and BASH shells, this can be achieved by assigning a new value. This can

replace the current value or you can use the existing value of a variable if you wish to append to it.

For example, in order to add the directory /opt/sfw/bin to PATH, you would type the following:

PATH=$PATH: /opt/sfw/bin

You can check what this has done by using the echo command.

Environment variables are available to commands and processes initiated by your shell. Not all

variables are available in this way by default. In order to make sure that the variable is available to

other processes started by your shell, the export command is used. For example:

export TERM=vt100

Unix – Guide for Beginners (Part 1) 25 | P a g e

numeric variables

Numeric integers can be used in Korn and Bash, however, if you wish to perform arithmetic

operations on them, they must be declared as such first. This can be done using the typeset

command. For example, if we wanted to set a variable called x to be used as an integer, we would

type:

typeset -i x

In Korn shell, we could alternatively use the integer command which some people find easier to

remember

integer x

Having set the variable up as a number, we can perform simple arithmetic operations. For example:

x=2
x=$x+4
x=$x-1
x=$x*6
x=$x/2
echo $x

You can check the results with the echo command. The above should give a value of 15.

Unix – Guide for Beginners (Part 1) 26 | P a g e

Part 9: Text editors

Many system applications require you to input text (e.g., email, news). Rather than force you to use

a potentially different method for each application, most such applications on UNIX allow a choice of

text editor. This can be selected on a per user basis. The disadvantage to this approach is that it is

necessary to learn to use some form of text editor. However, the basics of most text editors are

fairly simple.

Text editors create basic text files. They are similar in respect to word processors, but traditionally

differ in that text editors do not handle different fonts or other advanced formatting features.

However modern versions of some text editors give the functionality of a good word processor.

Two text editors that we recommend are Nano and Emacs.

Nano
Nano is a versatile, easy-to-use text editor that can be used with little training.

To open a new file called testfile1, type:

nano testfile1

Unix – Guide for Beginners (Part 1) 27 | P a g e

The default window will look something like this:

Ctrl + O (WriteOut)

After you have typed your document, + will allow you to Save or WriteOut and continue

working.

Unix – Guide for Beginners (Part 1) 28 | P a g e

Ctrl + G (Help)

 + will open the Help documentation. Scroll down with the arrow key to see more

information.

To close Help, press + .

List of commands

 +
Go to the end of the current working line.

 +
Go to the beginning of your current working line.

 +
Search your text.

 +
Check the spelling of your text.

 +
Uncut (or Paste) text

 +
Cut text.

 +
Display the current cursor position

 +

Read a file into your current working file. This enables you to add text from

another file while working from within a new file.

 +

Exits the editor. If you are in the middle of editing a file the exit process will ask

you if you want to save your work.

Unix – Guide for Beginners (Part 1) 29 | P a g e

Emacs
Emacs is widely available on many systems (e.g., UNIX, VMS, DOS, Windows, Mac, Amiga), and is

generally considered to be easier to use than vi, which is the standard UNIX text editor.

Overview of Emacs
Emacs has often been described as the most powerful text editor available. It has many features

which can be very useful in the editing, manipulating, and reformatting of text files. These files can

contain anything and could be part of an email message or a large amount of data for processing by

an application program.

There is not enough time in this course to cover every feature of using such a flexible and

comprehensive editor, but there should be time to learn how to create and modify a simple file,

insert an existing file and try out a few of the other features. There will be an opportunity to use the

built-in emacs tutorial.

Buffers
Emacs works with the concept of “buffers”. Buffers are areas which hold the text being edited.

Emacs has a capability of working with more than one buffer at a time, which allows editing of

multiple files at once and transferring text between different files. Most of the time you will be

working with a single buffer, as you will be editing one file at a time.

Text input and command input
Normally, any characters typed into emacs will appear in the current buffer, so will be added to the

file being created or modified. However, it is sometimes necessary to issue a command to emacs in

order to save a file or search for a sequence of characters, for example. In order for emacs to

recognise the commands as separate from the text, these commands are often either control

characters or start with control characters. In addition, some are prefixed by the escape key, which is

referred to as “meta” in emacs documentation.

In X-windows and Windows versions of emacs, some of these functions are available as buttons or

pull down menus.

Creating a file
In order to create a new file called testfile.txt, type

emacs testfile.txt

You will be presented with a screen which is blank, apart from the highlighted line towards the

bottom of the screen which gives basic information about the file being edited.

Unix – Guide for Beginners (Part 1) 30 | P a g e

At this point, you can type in any text you wish. Before the end of every line, it is necessary to use

the key. Failure to do this results in very long lines. These are difficult to read and to edit. The

 key can be used to correct any mistakes.

Once you have finished typing, you need to save the file by typing + followed by + .

On some terminal emulations, the + character can cause problems, so you may need to use

the “Save As” option. This can be achieved by typing + followed by + . At this

point, the cursor moves to the bottom of the screen and prompts with the following:

write file: ~/

If you press at this point, the file will save to whatever filename you used when starting

emacs (in this example, testfile.txt). Some systems will ask you to confirm that you want to save the

new version of the file, overwriting the existing file. You may give a new filename instead of pressing

.

Having saved the file, you need to exit from the editor. This is done by typing + followed by

 + .

Modifying an Existing File
An existing file can be altered in much the same way as creating a new file. For example, to modify

the file testfile2.txt, you would issue the following command:

emacs testfile2.txt

The file would then be displayed on the screen, with the status and command lines at the bottom.

The curser (arrow) keys can be used to move about within the file, and the delete key can be used to

delete any text. The key can be used to split or add lines as necessary.

Once the modifications are complete, you can save the file and leave emacs in the way described

above.

Emacs automatically creates a backup file each time the modified file is saved. This is useful in case

major mistakes are made and you need to recover from the last saved copy. The backup file is

named using the original filename followed by a tilde (~).

In the example testfile2.txt, the backup file would be called

testfile2.txt~

If you leave emacs without saving the file, emacs gives the opportunity to save any changed files.

Unix – Guide for Beginners (Part 1) 31 | P a g e

Inserting a File

In order to insert a file at any point when editing a file, type + followed by (i). Emacs

then prompts for a pathname, assuming the current working directory.

Insert file: ~/

would be displayed if you are working in your home directory. You may simply type in a filename.

For example, to insert the file called letter.txt, you would type letter.txt at the prompt.

Insert file:~/letter.txt

Alternatively, if you are unsure of the filename, you can type in part of the filename and emacs will

display a possible list of files. If you wish to type in a complete pathname, delete the /~ if necessary

and type in the new pathname.

Accidental use of Features
Emacs is very rich in features. As with all word processors and text editors, it is easy to accidentally

activate features that you do not wish to use by accidentally typing in control characters, for

example. The following are common pitfalls for the new user.

Suspending Emacs

This can be achieved by typing + . Using the above file example, the system generates the

message

[1] + Stopped (user) emacs testfile2.txt

The command prompt is then displayed, allowing input of UNIX commands. Emacs will still be there,

but in the “background”. To restart issue the command

Fg

This puts emacs back in the “foreground” and allows continued use of emacs. No text or alterations

will be lost.

Command Mode

Accidental use of + , followed by and some other sequences will put emacs into a

mode which will allow command input. Normal use can be restored by use of + .

Applications which use Emacs
If you are using emacs with a mail system or news reader, for example, there is no need to specify a

filename as the system will generate one automatically. Use of emacs to edit and save text is in

other respects the same.

Unix – Guide for Beginners (Part 1) 32 | P a g e

Learning more about emacs
Emacs has a tutorial system built in which enables anyone to learn more about using the editor at

their own pace. In order to activate the tutorial system, issue the emacs command without a

filename, and then type followed by . Full instructions are given.

