Computing Science Technical Report No. 102:
The C Language Calling Sequence

S. C. Johnson
D. M. Ritchie

Bell Laboratories
September, 1981

Introduction

A calling sequence is the conventional sequence of instructions that call and return from a procedure.
Because programs tend to make many procedure calls, a compiler should ensure that this sequence is as
economical as possible.

A calling sequence is influenced by the semantics of the language and by the register layout, address-
ing modes, instruction set. and existing conventions of the target machine. It is closely connected with allo-
cation of storage for variables local to procedures.

This document sets forth the issues involved in designing a calling sequence for the C language, and
discusses experience with various environments. The system implementer and hardware designer might
find hints about the efficient support of C; the ordinary user might gain some sense of how hard it can be to
support even a simple language on today’s hardware. The first several sections discuss the requirements of
a procedure call and return forced by the C language and conventions, including the support of recursion
and variable-sized argument lists, and methods of returning values of various types (which might be
ignored by the calling procedure). Then some sample designs are presented. The last sections discuss vari-
ous topics, such as growing the stack, supporting structure valued procedures, and the library routines
setjmpandlongjmpAn appendix presents the Interdata 8/32 calling sequence in detail.

The Basic Issues

What features must be provided by the call of a C procedure? Procedures may call themselves recur-
sively without explicit declaration. Because procedures can pass the addresses of local variables and argu-
ments to subprocedures, keeping local variables in static cells is unacceptably complex. Thus, C run-time
environments are built around a stack that contains procedure arguments and local variables. The maximum
amount of stack space needed by a given program is data dependent and difficult to estimate in advance.
Thus, it is convenient to permit the stack to start small and grow as needed. When this cannot be done
automatically, stack overflow should at least be clearly signaled and stack size easily increased.

The C language definition does not contemplate the question of procedures whose formal and actual
argument lists disagree in number or type. Nevertheless, as a practical matter, the issue must be dealt with,
especially for theorintf function, which is routinely called with a variable number of arguments of varying
types. In general, only the calling procedure knows how many arguments are passed, while the called pro-
cedure does not. On the other hand, only the called procedure knows how many automatic variables and
temporary locations it will need, while the calling procedure does not. This issue of handling variable-
length argument lists can dominate the design of the calling sequence on some machines; often the hard-
ware support for procedure calls assumes that the size of the argument list is known to the called procedure
at compile time. This assumption is correct for many languages (e.g., Pascal), but in practice not for C.
(Interestingly, the assumption is also correct in theory for Fortran, but again not always in practice. Many
Fortran programs incorrectly call one entry point in a subroutine to initialize a large argument list, then
another that assumes that the old arguments are still valid. Were it not for the ubiquitous printf,

implementors of C would be as justified as many implementors of Fortran in adhering to published standard
rather than custom.)

The Basic Call/Return Process
The following things happen during a C call and return:

1. The arguments to the call are evaluated and put in an agreed place.

2. Thereturn address is saved on the stack.

3. Control passes to the called procedure.

4. The bookkeeping registers and register variables of the calling procedure are saved so that their val-
ues can be restored on return.

5. The called procedure obtains stack space for its local variables, and temporaries.

6. The bookkeeping registers for the called procedure are appropriately initialized. By now, the called

procedure must be able to find the argument values.
7. The body of the called procedure is executed.

8. The returned value, if any, is put in a safe place while the stack space is freed, the calling procedure’s
register variables and bookkeeping registers are restored, and the return address is obtained and trans-
ferred to.

Some machine architectures will make certain of these jobs trivial, and make others difficult. These
tradeoffs will be the subject of the next several sections.

Dividing the Work

Parts of the job of calling and returning can be done either by the calling or the called procedure. This
section discusses some of the tradeoffs.

As mentioned above, some of the status of the calling procedure must be saved at the call and
restored on return. This status includes the return address, information that allows arguments and local vari-
ables to be addressed (e.g. the stack pointer), and the values of any register variables. This information can
be saved either by the calling procedure or the called procedure. If the calling procedure saves the informa-
tion, it knows which registers contain information it will need again, and need not save the other registers.
On the other hand, the called procedure need not save the registers that it will not change.

Program space considerations play a role in the decision. If the status is saveddajleéderoce-
dure, the save/restore code is generated once per procedure; if the saving is donealiinthprocedure,
the code is generated once per call of the procedure. Because nearly all procedures are called at least once,
and most more than once, considerable code space can be gained by saving the status in the called proce-
dure. If status saving takes several instructions, code space might be further reduced (at the expense of
time) by sharing the status saving code sequence in a specially-called subroutine (this is done on the PDP-
11). Similarly, branching to a common return sequence can further shrink code space. If the save or return
code is indeed common, the calling procedure’s status information must be in a known place in the called
procedure’s environment. Of course, the space gained by sharing save and return sequences must be bal-
anced against the time required to branch to and from the common code.

Passing Arguments

The calling procedure must assume responsibility for passing the arguments, since it alone knows
how many there are. However, these arguments must eventually be made part of the called procedure’s
environment.

Arguments can be passed in several ways. The calling procedure might establish a piece of memory
(in effect, a structure) containing the arguments, and pass its address. This requires an additional bookkeep-
ing register, and so increases the amount of status information to be saved, and slows down the call.

Most often. the caller knows the location of the called procedure’s stack frame. Then the calling pro-
cedure can store the arguments adjacent to (or part of) the new stack frame, where the called procedure can
find them. In practice, this requires that the stack be allocated from contiguous area of memory.

Because most calls pass only a few arguments, it is tempting to pass the first arguments in registers
and the rest in some other way. Although this approach might be effective, it requires an exceptionally reg-
ular register architecture, and has not yet proved practical.*

Good Strategy

With enough control of the operating system environment. it may be possible to place the stack in an
area that can be grown contiguously in one direction or the other. For the moment, assume that the stack is
growing backwards (from high to low memory), and that it is possible to index both positively and nega-
tively from registers (in particular, the stack pointer); other cases will he discussed later.

One simple layout for the stack frame uses only a single bookkeeping register, or stack frame pointer
(fp). The stack frame looks like:

incoming arg3
incoming arg?2
incoming argl
saved status information
fp—
automatic storage area
temporary storage,
including space for outgoing arguments

where high memory addresses are at the top of the page, and the stack grows downward. The amount of sta-
tus information saved is known to the called procedure; if thisagddressing units, then the arguments can

be addressed agfp), x+4(fp),etc. (the constants reflect the sizes of the arguments in the addressing units

of the hardware). Automatic variables can be accessed(fy, -8(fp)etc. The saved status information is

always addressable @ffp), in the same place in every procedure, facilitating debugging and a shared save
and return sequence.

The calling procedure first stores the arguments in order at the end of its stack area, and transfers con-
trol to the called procedure, passing the address of the arguments in a scratch register. The called procedure
then saves the status, including the old valuéppfind then uses the passed argument pointer to establish
the new value ofp. To return, the procedure value being returned is placed into a specific scratch register,
the status of the calling procedure (including the old fp value) is reestablished, and control returns to the
calling procedure.

A second bookkeeping registerseack pointer (sp)hat points to the end of the stack, may be useful.
If the outgoing arguments are built at the top of the stack,sihelready points to them, and no scratch
argument register need be computed. On many machines, a push instruction is available that adds outgoing
arguments to the end of the stack (§pmust be adjusted after a call to undo the effect of these pushes.) To
save the status, the called procedure saves thépabth the stack. and copies the dd into thefp. To
obtain stack space for automatics, etc.,9pis then set to the desired offset from e This is the organi-
zation used by the C implementation on the PDP-11.

On the PDP-11, stack overflow check is done as part of the usual memory protection mechanism: if a
reference to a stack location generates a protection violation, the operating system attempts to allocate more
memory and extend the stack segment downwards. If more memory is available, the offending instruction
is restarted. otherwise the process is aborted. This overhead is incurred only when needed, but the operat-
ing system must cooperate; on some models (e.g., the PDP 11/40) this restart represents a major software
investment in the kernel. When hardware support is lacking, an explicit test for overflow is only about two
additional instructions per call.

One advantage of this organization is that it makes efficient use of limited address space: the heap
data area grows upwards toward a downward-growing stack. Unfortunately, both the user instruction set
and the system-level memory protection and allocation strategies must support this: many machines do not

* Note added 2003: it did prove practical shortly thereafter.

support protection of backwards-growing segments, for example.

What can be done in environments where the stack is encouraged to grow upwards? Clearly, the
above organization could simply be turned on its head, and the result would still be an efficient and effec-
tive organization. The only incompatibility would be that arguments would now form an array running
backwards in memory! Nevertheless, the scheme is viable, provided the implementor accepts the cost of
modifying all procedures that (like printf) depend on variable-length calling sequences. Alternatively, the
argument array might be turned around to run forwards in memory: since the called procedure cannot know
(unless told) the address of the first argument, this requires yet another bookkeeping register.

A Five-per-cent Digression

Whenspis used to push arguments onto the stack, it must be readjusted after each call to throw away
the arguments. However, if an extra word is left at the end of the stack, calls with only one argument need
only move this argument top of the stack, aspheed not be adjusted after the call. Since many calls have
one argument, this is attractive. Moreover, there are special short instructions on the PDP-11 that are used
to bump thesp by two or four bytes; these instructions now apply to procedures with two and three argu-
ments, where before they applied to procedures of one and two arguments. Two bytes are saved for every
call with either one or three arguments; on the PDP-11, this amounts to about five per cent of the code
space.

When using this technique special care must be taken to handle nested calls and calls with active
expression temporaries.

Positive Offsets Only

The organization discussed above requires that it be possible to index both positively and negatively
from fp. Many machines (notably the IBM 360/370 series) take all offsets from base registers to be posi-
tive; this means that additional work is needed to preserve the good features of the above organization.

In such a scheme, the stack must almost certainly run forward in memory, because addressing loca-
tions below the current frame pointer is hard. If the saved status is to be kept at a universally known loca-
tion in the frame, it must be first. The inbound arguments must come next, just above the save area; then
comes the local storage. The revised organization is as follows (high memory addresses are at the top, and
the stack grows upwards):

outgoing arguments
next procedure’s status save area
automatic and temporary storage

incoming arg3

incoming arg?2

incoming argl

saved status for current call
fp—

To do a call, thecalling procedure establishes the arguments of the call at the end of its stack frame. sets a
scratch register to point to the beginning of the next procedure’s status save area, and transfers control. The
calledprocedure then saves the status (includingphand, if necessary, ensures that there is enough stack
space available to begin execution. It then $§et® the scratch register pointing to its status save area, and
begins. To return, the old status, including the return address, is loaded from the status save area, and a
return branch is done; tHp can often be automatically restored with the rest of the calling procedure’s sta-
tus. To share the return code. the saved status must either always contain the same information, or must be
self-describing.

Because thealledprocedure claims local storage at the end of the argument list, this scheme implies
a bound on the size of the argument list. Thus procedures that accept variable-length argument lists must
declare at least as many arguments as they will actually be called with.

Argument Pointers

There is increasing interest in coroutine environments for C programs. In such environments, it is
inappropriate to speak of ‘the’ stack, since there may be many stacks, and, in particular, the arguments to a
procedure may not be adjacent to the stack frame for that procedure. Even without coroutines, the peculiari-
ties of the previously-discussed argument passing may be discomforting. If one is willing to maintain an
extra argument pointer bookkeeping register, these problems go away.

In this scheme, a registap points to the argument list; in this version, it will also supply a status-
save area. The called procedure still does the save. The stack frame layout looks like:

Sp~
outgoing argument space
next procedure’s save area
automatics and temporaries

fp—
incoming arg3
incoming arg?2
incoming argl
status save area
ap—

Once again, high memory addresses are at the top, and the stack grows upward. The called procedure can
address its arguments without knowing how many there are, or declaring a maximum number.

The overhead is modest. Another bookkeeping register is needed tahaldd this register must be
saved and restored across calls; before a call, the new argument pointer must be established, and then, in the
called procedure, the new argument pointer must be copied into ap. These operations can be done quickly
on many machines, and this organization is attractive on machines with enough registers, such as the Inter-
data 8/32 (see the appendix) and the VAX.

Register Allocation

C compilers use registers in three different ways:
1. Bookkeeping: stack pointer, etc.

Register Variables
3. Scratch Registers

Register variables are usually allocated as the result of an ex@gister keyword in the source,
although experimental compilers that make this allocation automatically are under construction. Because
register variables are used to store variables, they must be preserved across procedure calls. Scratch regis-
ters, on the other hand, are assumed to be overwritten by called procedures; they are used for expression
evaluation, and are available for passing information to called procedures (e.g., the location of the argu-
ments) or to receive the values returned by the called procedures.

Part of the engineering of the environment involves deciding how many registers should be devoted
to each of these purposes. Few scratch registers are needed for expression evaluation; two to four is ade-
guate on almost all machines. Although one might think that the more register variables the better, if all
potential register variables are saved at each call (and this is attractive for other reasons) time is lost saving
and restoring unused registers. Some operations (e.g., block copy) may require particular registers to be
free; such registers are usually best made scratch registers. Finally, which particular registers are allocated
to scratch and register variables is often determined by the properties of the ‘save multiple’ instruction, if

any; it may be desirable to have the register variables adjacent to the bookkeeping registers so they can all
be saved by one instruction.

Alignments

Many machines require alignment of some data on specified addressing units. For example, on the
Interdata 8/32, integers must be placed on 4 byte boundaries, and doubles on 8 byte boundaries. Such a
restriction forces the frame pointer and the frame size to be a multiple of 8 bytes. Alignment requirements
may also generate holes in an argument list and force these lists to begin in aligned locations.

The nargsfunction, and related topics

Early implementations of C on the PDP-11 suppliedaags function that purported to return the
number of actual arguments with which a procedure was called, to facilitate processing of variable-length
argument lists. Many difficulties ensued. First, the function never did work: it actually returned the number
of words in the argument list; iB doubles take four wordsgstake two, and structures take any number.
Second, the advent of separated instruction and data space and of optimization made the implementation
problematical. Third and most important, the difficulty of specifying, either formally or pragmatically, the
meaning of calls in which formal and actual arguments disagree became painful enough to discourage the
practice.

Nevertheless, variable-length argument lists must be dealt with in prapticgf, has already been
mentioned. The desired behavior is:

1. If the calling procedure supplies fewer arguments than are declared by the called procedure, andif the
called procedure does not (in its execution) access the unsupplied arguments, no harm should result.

2. If a calling procedure supplies more arguments than are declared by the called procedure, no harm
results. Moreover, if the called procedure has knowledge of the types of these extra arguments, there
should be some mechanism by which it can access them.

These rules place the burden of handling variable argument lists on the called procedure; such proce-
dures cannot be portable, but they must be possible.

Unwinding

It is desirable that the structure of an active stack be interpretable without reference to the code that
created it.

First, consider a debugger that wishes to produce a stack trace, including the values of register vari-
ables in each active procedure. Unless care is taken to make the save area of each frame either self-
describing or uniform, the debugger’s job may be difficult or impossible. In particular, if the number of reg-
isters saved at each call varies, recovering the register variables will be hard, because they may be stored at
a considerable distance from the frame that last uses them.

Similarly, the implementation dbngjmprequires unwinding the stack to recover the values of the
registers in the procedure that callsetjmp. The task is hard enough that several systems botch the job; the
values restored are not those at the time of the call leading to the dalhgjimp,but instead those at the
time of the call tasetjmp(which is not correct).*

The problems posed lsetimp/longjmm@mppear in other contexts. For example, the multiprogramming
primitives in the Unix kernelsaveandresumedo similar jobs, and such primitives also appear in other
coroutine and multiprogramming systems.

As was mentioned, unwinding is guaranteed to be easy if the return sequence is expressible as a
(parameterless) instruction or sequence of instructions. It is almost always possible if one is willing to do
enough work. It is good to have an algorithm in hand before committing oneself to a given design.

* Note added 2003: The ANSI committee in the 1989 standard struggled over this issue, and cooptéatitedeyword
to help deal with it.

Interrupts

In the Unix system, interrupts (in the kernel) and signals (in user processes) are turned into procedure
calls. These procedures require stack space, and it is convenient to use the same stack as the ordinary proce-
dures. This implies that it must be possible to recognize the last location used in the current stack frame, to
know where to begin the stack frame for the interrupt procedures. A register pointing to the end of the stack
frame (call itsp) may require one additional instruction to set up the register on entry to the call, and would
be an extra register of status information to be saved.

The order of events in a call must be chosen carefully so that an interrupt does not use a piece of the
stack area still needed by the current procedure. For example, if the status save area is to be placed in the
new stack framesp must be adjusted before the status is saved, in order that an interrupt not use the space
too soon. Similarly, in returning, the remainder of the status must be restored bpfmae be changed. In
general, the registers that describe the environment must always be valid whenever an interrupt might hap-
pen.

One alternative approach is to allocate a stack for interrupts from some other area of memory. This is
ugly, but might be better than consuming another register on some machines. (But make darejjimt
still works!) Alternatively, the signal and interrupt procedures might leave extra space for a possible status
save in progress, this is dangerous but workable. A similar issue arises when swapping procesges out
marks the end of the stack area to swap) and in reentrant procedures (such as some interrupt handlers), and
must be handled similarly in all cases.

Functions Returning Structures

Functions may return structures and unions. Although objects of other types usually fit nicely in a
designated return register, these do not; where should the returned value be placed? If the value is left in the
stack space of the called procedure, it becomes unprotected after the return and before it is copied; a signal,
interrupt, or swap at the wrong time would be a disaster. If the value is left in a static area, it is more pro-
tected, but the procedure is no longer reentrant.

The proper solution is to allocate space for the return value in the calling procedure’s stack, and com-
municate the address of this space to the called procedure; before returning, the value is copied into this
space. The called procedure might be able to find this space by looking at an additional argument or a
scratch register passed by the calling procedure, or (when the stack is contiguous) by mutual agreement
about the area where the result should go.

One attractive scheme is for the called procedure to copy the value over its incoming arguments; this
region is in the calling procedure’s stack area, and is certain to be known to both procedures. If this is
done, the calling procedure must supply enough space for the returned value, and must not reuse the argu-
ment area to call another procedure before the value is copied. The called procedure must ensure, when an
incoming argument is being returned, that it is copied properly into the return area.

The PDP-11 uses a static area to copy the structure return value (and thus gives up reentrancy), so
compiler writers who do likewise can at least claim a role model. Fortunately (or perhaps consequently),
reentrant procedures returning structures are uncommon.

It is tempting to suggest that procedures returning small structures, say one or two words, should
return those values in registers. Unfortunately, code sequences arise as a result of this optimization that do
not arise at any other time. It hardly seems worth the trouble.

Stack Machines

Stack machine architectures are favored by some manufacturers because they permit compact code,
are simple intellectually, and ‘because they make compilers easier.’ It has not been easy to put C on stack
machines, however.

The most serious problems have been with the call and return sequences. In the call, there is often no
provision for variable-length argument lists. Most stack machines use the stack to pass arguments to a pro-
cedure (there is little choice, after all'); and possesstarn opcode that frees the stack space used by the
called procedure, restores statymps the argumentpushes the return value onto the top of the stack, and

transfers back. As the italics suggest, tadled procedure does not know how many arguments were
passed, and may thus be unable to use the return opcode (in at least one machine, the argument size has to
be known at compile time). ‘Hand coding’ such a return sequence is long and slow, and there is no good
place to save the returned value while this bookkeeping is being done.

Even when the arguments are well behaved, other problems arise returning the values, especially
when the calling procedure and called procedure disagree on the type or disposition of the value. If the
types disagree. it is illegal C; the consequences (misalignment of the stack because the actual and expected
return value differ in size) are more bizarre than with machines that return values in registers. More seri-
ously, if thecalling procedure wishes to ignore a value returned byctléed procedure, the calling proce-
dure must know how big the value is. This requires a strict type match: moreover, it may require procedures
that compute no value to return to return one anyway. so it can be thrown awaybithg/pe would be a
big help here if consistently used.

Finally, some stack machines have never contemplated the return of structures. so many of the prob-
lems of the previous section apply.

Call Instructions

On some machines, there are instructions designed to aid in compiling procedure calls and returns.
Some of these instructions cannot deal with variable-length argument lists, and thus cannot be used. Others,
far from being limited, are so excessively general that they take a long time to do the call. The VAX 11/780
instructions do exactly what is wanted, little more and no less, yetahe-retinstruction pair takes about
the same time as does the 16-instruction sequence that does the job on the slower PDP 11/70. It is always
worthwhile to consider coding the calling sequence explicitly, especially if code space is not a critical
resource. On some machines, brute force strategies have saved 30-40% in time over the built in instruc-
tions.

Microcode

Some machines have writable microstore, making it tempting to build special-purpose C call, save,
and return instructions. This might work well, but several things are worth noting.

1. Writable microstore is a resource. If it is used for calls it may become unavailable for other uses. In a
C-language operating system, the microstore must be loaded before execution of C programs can
begin.

2. Manufacturers often provide only limited access to writable microstore. For example, on both the
VAX and Interdata machines, the usual operand decode hardware is disabled. This means that to dis-
tinguish between various operand types, time-consuming conditional tests must be done in
microcode.

3. The memory access time required to store relevant registers may dominate. Microcode speedup may
not be significant.

On the Interdata, the writable microcode was tried; we found only a 10-15% speedup in the call of a
procedure with no arguments and no register variables, and less improvement for more complicated proce-
dures. Because of point 1, it did not seem worth the bother.

The Real World

The calling sequences described above are used on the PDP-11, the Interdata 8/32, and many other
machines. On both GCOS and IBM, however, the C compiler generates different calls; other forces out-
weighed the considerations discussed above. On both systems, it is inconvenient to grow stack space con-
tiguously; more important, on both systems existing system calling conventions offered advantages in com-
patibility.

On GCOS, the C calling sequence is the same as that for Fortran; control is transferred, and the
addresse®f arguments are left in memory following the call. Tballed procedure obtains enough space
for its stack frame, and then copies the arguments into the proper place on this stack frame. Efficiency is
improved by the powerful indirect addressing capabilities of the Honeywell hardware, which allow

references to automatics, arguments, and constants to be compiled directly into the argument lists without
executing any code at all. The scheme permits the stack to be discontiguous, so additional space can be
obtained from the operating system if needed. It is necessary to avoid copying nonexistent arguments (so it
costs time to cater to variable argument lists). Becausedhed procedure does not always know the size

of the argument to be copied, at least with floats and doubles, it must rely on the declared size--another
printf bother. A machine-dependent procedure solves the problem by providing a list of the addresses of
the arguments to ttealled procedure.

On the IBM/370, we chose to be compatible with a local IBM BLISS calling sequence. Since C and
BLISS are similar languages, we could make use of the BLISS 1/O library. In retrospect this was unwise,
for the BLISS library has been of no use in other IBM environments, and some of the BLISS conventions
make interfacing with standard OS calls difficult.

Were the IBM calling sequence to be reimplemented, it seems that the large address space and the
availability of virtual memory on most IBM systems would argue for a contiguous stack organization simi-
lar to that described above.

If any general conclusion can be drawn, it is that the problem of implementing a C calling sequence
when the operating system is not ideal depends on issues far removed from C itself. If the aim is to obtain
Unix utilities with little effort, it may be worth spending more time in the call to keep the fine points com-
patible with other environments.

Effects on the Language

The decisions about the stack frame and calling convention are barely visible at the language level,
but there are a couple of places where they can be discerned. Variable-length argument lists have already
been much discussed. The other area is the order of evaluation of procedure arguments.

The C language specifies that the arguments to a procedure may be evaluated in any order; if a pro-
gram depends on the order of evaluation of the arguments of a procedure, it is illegal C. Reality is not so
kind, and one finds programs (especially those written by novices or former assembly language program-
mers) that have these dependencies in them. There seem to be three natural orders of evaluation; while this
is properly an issue for the compiler-writer, it will be touched on here.

If the stack grows backwards, and therepsish instruction that can be used to put the arguments on
end of the stack, the natural order to evaluate procedure argumeigtstito left, so that the arguments can
be found on the (backwards growing) stack in increasing order. When the stack grows forward, the natural
order isleft to right.

When the outgoing arguments are built in a special area at the end of the stack frame, it is essential
that all arguments containing procedure calls be evaluated before the arguments to the outer procedure are
placed in the argument region. The natural order is to evaluate those arguments containing procedures first,
and then the others in some order. We might term thigrtbiele-outorder. These three orderings are the
most common, but others are possible. For example, were the first several arguments passed in registers,
this would almost certainly affect the argument evaluation order. Tighter specification of the order of evalu-
ation in C would cause significant inefficiencies with some of these stack-frame organizations, or, alterna-
tively, considerably more complexity in the compiler.

Summary

We have discussed the major issues involved in the construction of a C calling sequence, and have
given a stack frame organizations that can be adapted to many different architectures. An Appendix dis-
cusses the calling sequence for the Interdata 8/32 C compiler.

Acknowledgements

We are grateful to Mike Lesk, who coauthored the earlier version of this memorandum, and Brian
Kernighan, Rob Pike, Dave Ditzel, Bart Locanthi, and an anonymous internal referee who commented on
this version.

-10 -

Appendix: the Interdata 8/32

The Interdata 8/32 is similar to the IBM 370 series machines, with the significant exception that most
instructions permit a ‘long address’ mode capable of addressing any element in memory without using a
base register. Thus, it is not necessary to have many base registers dedicated to establishing addressability.
although base register references to data are faster and smaller than the equivalent longer forms.

The offsets from base registers are unsigned 14 bit numbers, and the memory protection does not
allow segments to grow backwards, so the stack grows forward in memory.

To establish a baseline, first consider the fastest calling sequence that is marginally acceptable: this is
one with only a single frame pointer register, and does not support interrupts or debugging stack traces.
Throughout the following, let V be the number of register variables that are saved in the calling sequence.
In the fastest calling sequence, a call looks like

la nfp,offset(fp)
bal link,procedure

wherefp is the frame pointenfp the new frame pointer, adohk the linkage register. The called procedure
need merely do

stm xx,0(nfp)
Ir fp,nfp

wherexx is the first register to be saved. (The instruction saves registers starting at its argument through
register 15). The return sequence is

Im xx,0(fp)
br 0(link)

The registers are assigned so thatltheand stmcause the loading and storing of the V register variables,
the link register, and the ofg. An approximate timing is

13.85 + 1.55V

microseconds. Thus, with 3 register variables saved, the cost would be 18.50 microseconds. As pointed out
in the body of the text, the handling of interrupts makes it attractive to have a pointer to the end of the cur-
rent stack frame. This register must be saved and restored (1.55 microseconds) and reestablished for each
call (1.12 microseconds); moreover, in order that the registers not be saved beyond sp it must be copied (.4
microseconds). This gives a cost of

16.92 + 1.55V

With three register variables, this gives a time of 21.57 microseconds. The unpleasant parts of this calling
organization are the need to declare more arguments than would be passed to a procedure, and the costlier
implementation of coroutines. If another register is dedicated to hold an argument pointer, this register
would have to be saved and restored across calls (1.55) and, in addition, the frame pointer would have to be
established (.4) in each new procedure. On the other fegndpuld no longer have to be copied in the

called procedure (saving .4 microseconds). Thus, this ornate calling sequence takes

18.47 + 1.55V

microseconds. With three register variables, this time is 23.12 microseconds; this is roughly 25% longer
than the stripped down call, and less than 10% slower than the calswilone. Moreover, the Interdata,
with 16 registers, is not short of registers. Thus, this calling sequence was adopted.

The stack frame organization looks like:

-11 -

Sp—
new argument space
new save area
temporaries
automatics
fp—
arg3
arg2
argl
save R15
save R14
save R7
save R6
ap—

Here, high addresses are at the top of the page, and the stack grows upwards.

To call, the arguments are placed at the end of the current stack frame. Then the calling procedure
executes

la nap,offset(fp)
bal link,procedure

The called procedure does

Im xx,yy(nap)
Ir ap,nap

Ir fp,sp

la sp,offset(fp)

On return, the calling procedure executes:

Im xx,yy(ap)
br 0(link)

Here, xx and yy are functions of V that are chosen to make the registers saved always lie at the end of the
save area.

The following organization permits this calling sequence within the constraints dhttend stm
instructions:

0 scratch register

1 base register to the data area (never changed)
2 scratch register: used for procedure returns

3 scratch register

4 scratch register

5 scratch register: holds nap on calls

6-11 register variables

12 ap
13 scratch register: holds link on calls
14 sp
15 fp

This organization allows up to 6 register variables.

Note that the number of registers saved in a given procedure cannot be determined from the stack
frame. This has caused problems; a reimplementation today would probably use fewer register variables,
and save all possible ones.

-12 -

Measurements and Empiricism

For several reasons, the calling sequence implemented on the Interdata is slower than claimed here.
For one thing, a hardware design defect forces us to check explicitly for stack overflow; it is enough for us
to generate the instruction

I r0,0(sp)

at the end of thecalled procedure’s prologue, to generating a fault if the stack has overflowed. Another
empirical problem is that, when the code is unoptimized, certain numbers (for example, the xx and offset
values above) are known only at the end of the procedure. In the absence of optimization, the assembler
may use longer forms for these instructions than are necessary. Finally, for various unpleasant reasons all
return sequences have an extra branch in them; some have two. Thus, the measured time to do a call of a
null procedure is longer than expected,; it closely fits the function

24.+2.3V

microseconds, or almost 25% slower than calculated.

