Awk — A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files for pat-
terns, and to perform specified actions upon lines or fields of lines which contain
instances of those pattern8Bwk makes certain data selection and transformation opera-
tions easy to express; for example, alnk program

length > 72
prints all input lines whose length exceeds 72 characters; the program

NF % 2 ==
prints all lines with an even number of fields; and the program

{$1 =log($1); print }

replaces the first field of each line by its logarithm.
Awk patterns may include arbitrary boolean combinations of regular expressions and of
relational operators on strings, numbers, fields, variables, and array elements. Actions
may include the same pattern-matching constructions as in patterns, as well as arithmetic
and string expressions and assignmedfiase while, for statements, and multiple out-
put streams.

This report contains a user’s guide, a discussion of the design and implementation of
awk, and some timing statistics.

September 1, 1978

Awk — A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

Awk is a programming language designed to make Either the pattern or the action may be left out, but not both. If there is nc
many common information retrieval and text manipula- to the output. (Thus a line which matches several patterns can be printed
tion tasks easy to state and to perform. the action is performed for every input line. A line which matches no patte
The basic operation adwk is to scan a set of input Since patterns and actions are both optional, actions must be enclosed it
lines in order, searching for lines which match any of a

set of patterns which the user has specified. For each 1.3. Records and Fields

pattern, an action can be specified; this action will be Awk input is divided into “records” terminated by a record separator. TH
performed on each line that matches the pattern. awk processes its input a line at a time. The number of the current record
programgrep unix program manual will recognize theEapprioach(ezithd isgtwistiderpatte ives divaleténtn dfieldehdr@lds are nc
than ingrep, and the actions allowed are more invoRdh@ P whEptdysppriaiy they rhatehingehes fescaRapiownhdield

awk program first field, and$0is the whole input record itself. Fields may be assigned &
. able in a variable namexF.
{print $3, $2} The variable$S andRS refer to the input field and record separators; the

prints the third and second columns of a table in that order: th%pﬁ Lremmand-line argumerfic may also be used to ge§to the cha
If the record separator is empty, an empty input line is taken as the recor

$2 0/ABIC/ field separators.
prints all input lines with an A, B, or C in the second field. T pfipBIfLENAME contains the name of the current input file.
$1 != prev { print; prev = $1 } 1.4. Printing

prints all lines in which the first field is different from the prébfbaStifgtMahave no pattern, in which case the action is executed fors
record; this is accomplished by taek commandorint. Theawk program

1.1. Usage { pnnt }

The command)]])
prints each record, thus copying the input to the output intact. More use

awk program ([files] stance,

executes thawk commands in the stringrogram on the set of piamegp filgs, or on the standard input if there are no files. The

statements can also be placed in affilie, and executed by the command
prints the first two fields in reverse order. Items separated by a comma in

awk ~f pfile [files] put field separator when output. Items not separated by commas will be ¢
print $1 $2

runs the first and second fields together.
The predefined variablé$- andNR can be used; for example

{ print NR, NF, $0 }

1.2. Program Structure
An awk program is a sequence of statements of the form:

pattern { action }
pattern { action }

prints each record preceded by the record number and the number of fielc

Each line of input is matched against each of the patterns iHPH! B&Y LA vatterhith AR EHLES HBRERH AR astidn is execu

When all the patterns have been tested, the next line is fetchedpiil §e srasehingsiaigo¥efoo2" }

Readers familiar with thenix T . o . .
writes the first field$1, on the filefool, and the second field on fil@o2. The>:

TUNIX is a Trademark of Bell Laboratories. print $1 >>"foo"

appends the output to the fitwo. (In each case, the outputvihésharetoeeseahy seressbchprabefieneaoseddn Slesheariable or a
field as well as a constant; for example, One can also specify that any field or variable matches a regular expres

print $1 >$2 The program

uses the contents of field 2 as a file name. $1 D/[3John/
Naturally there is a limit on the number of output files; curprinitg @lidih®s where the first field matches “john” or “John.” Notice that
Similarly, output can be piped into another processJfx osly)fiorTostesiciet it to exact[jdjohn, use

print |"mail bwk" $1 O/[jJJohn$/

mails the output tbwk. The caret ” refers to the beginning of a line or field; the dollar$&igfers to the
The variableOFS andORS may be used to change the current output field separator and output record separator. The output
record separator is appended to the output gbtimé statemeft3. Relational Expressions

Awk also provides thprintf statement for output formatting:An awk pattern can be a relational expression involving the usual relatiorr

printf format expr, expr, ... $2 > $1 + 100
formats the expressions in the list according to the specificatimmiselectd priesswhene. treisexampliégld is at least 100 greater than the
printf "%8.2f %10ld\n", $1, $2 NF % 2 ==

prints$las a floating point number 8 digits wide, with two aftetsHineeewttabpoivB@as mie-dibfidioisy decimal number, fol-
lowed by a newline. No output separators are produced atlnomiaticai8l; tgets nifuseiduer theenayoliselinasrio, thistengropieparisenés-m
sion ofprintf is identical to that used with C. C programm Ian%Liagg Qgentice hall 1978

2. Patterns selects lines that begin with art, u, etc. In the absence of any other inform
A pattern in front of an action acts as a selector that determiﬂeg ggether the action is to be executed. A variety of expressions
may be used as patterns: regular expressions, arithmetic relafional expressions, string-valued expressions, and awdnitrary boole
combinations of these. will perform a string comparison.

2.1. BEGIN and END 2.4. Combinations of Patterns

The special patterBEGIN matches the beginning of the inpAtpattéonectne Hiesamgamiehis coathinktio frbligraitaoie Liegetitt operdtors

of tht_a input, _aft_er_the_ last record has been procesBEGIN andgi\llgzthuss @Igvﬁeg,\/t\(a&&oglalgq%%riajl,before and after pro-

cessing, for initialization and wrapup.

As an example, the field separator can be set to a colon bselects lines where the first field begins with “s”, but is not “smiti&& and |
BEGIN {FS=""} from left to right; evaluation stops as soon as the truth or falsehood is dete
... rest of program ... 2.5. Pattern Ranges

Or the input lines may be counted by The “pattern” that selects an action may also consist of two patterns sepec

END { print NR } patl, pat2 { ... }

If BEGIN is present, it must be the first pattedEND must be theéHast#sgsdble action is performed for each line between an occurrqraté
example,
2.2. Regular Expressions Jstart/. /stop/
The simplest regular expression is a literal string of characters enclosed i slashes, like
. prints all lines betweestart andstop, while
[smith/
This is actually a completawvk program which will print all lineS Rhich lc%%‘ta’\ilnRaﬁ)_/ 88 ukeirde of the name “smith”. If a line
contains “smith” as part of a larger word, it will also be prindeésaténaction for lines 100 through 200 of the input.
blacksmithing 3. Actions
Awk regular expressions include the regular expression fohmsfduactioritike seediboes of Figtiongtatemeantsiaéaniiaped by newlines
(without back-referencing). In additioayk allows parenthedesafearieoupiri)okie eyttiea atide$tririg meaoipularéig aaskRSor
“zero or one”, all as inex. Character classes may be abbrevig@eezA-20-9] is the set of all letters and digits. As an exam-
ple, theawk program 3.1. Built-in Functions
/[Aa]ho [Ww]einber ger |[Kk]ernighan/ inglgnp;rtc;]\{ldes a “length” function to compute the length of a string of char
will print all lines which contain any of the names “Aho,” “Wein enrrghe[é ort“hKe$8'ghan,” whether capitalized or not.
Regular expressions (with the extensions listed above) must‘be enclosed th lashes, gdsbad$ed. Within a regular ex-
pression, blanks and the regular expression metacharactelengit sigrtietints ad'pseudbtivanabtpt mieiehingetd iecofahgthegtiidrecku
pression characters, precede it with a backslash. An exanypédss te Ipatgiérrof its argument, as in the equivalent

JAYARY/) {print length($0), $0}

The argument may be any expression. fields are treated as strings.

Awk also provides the arithmetic functioagrt, log, exp, andtachfompaduisue isospitiase fiddsitumo reagoaky Bal nandsisaegett is also po:
part of their respective arguments. - split(s. arra

The name of one of these built-in functions, without argument or arg ﬁesé’é setg%ds for the value of the function on the whole
record. The program splits the the stringinto array[1], ...,array[n] . The number of elements fou
length < 1011 length > 20 used as the field separator; otherwiSds used as the separator.

prints lines whose length is less than 10 or greater than 2(B.4. String Concatenation

The functionsubstr(s, m, n)produces the substring sthat b&gimgyatrpagiiendoogiarytecnd Foaexaogpleharacters long. If
nis qmltted, the substring goes to the end. cfhe functlonndexq%}‘,g%&fu&ségsa position where the stris@joccurs insl, or
zero if it does not.

The functionsprintf(f, e1, e2, ...)produces the value of the ezhrassibisem)gtic.ofritbdirat thfeenfia dne Cfiqulia. stEtes)dot,

example, print $1 " is " $2

= intf("'o 0 "
X = sprintf(*%68.2f %10ld", $1, $2) prints the two fields separated by “ is ”. Variables and numeric expression

setsx to the string produced by formatting the value$band$2.
3.5. Arrays

3.2. Variables, Expressions, and Assignments Array elements are not declared; they spring into existence by being m
Awk variables take on numeric (floating point) or string valclesliagcoodinmgtoesangtringsoraxamei@ample of a conventional numeric su

x=1 X[NR] =
x is clearly a number, while in assigns the current input record to Nig-th element of the array. In fact, it
X = "smith® process the entire input in a random order withetluk program
it is clearly a string. Strings are converted to numbers and vicENBr%a{(L%%lngv%Pc}o?text demands it. For instance,

... program ..

X =13+ The first action merely records each input line in the acray

assigns 7 ta. Strings which cannot be interpreted as numbérsain elemersiscal aypftex avilege bgralbn raveenicnesices|ughiehogvisa

it is unwise to count on this behavior. Snobol tables. Suppose the input contains fields with valueagiile, orange,
By default, variables (other than built-ins) are initialized to t e nlrlll strin hlcklue umerlcal value zero; this sltménate
need for mosBEGIN sections. For example, the sums of the rﬁqwo flekf gvorgr)z%nge L}ted by

{sl+=%1;s2 +=$2} END { print x["apple"], x["orange"] }

END { print s1, s2 } increments counts for the named array elements, and prints them at the e

Arithmetic is done internally in floating point. The arithmetic operatorstare [] /, and% (mod). The C increment+ and
decrement— operators are also available, and so are the 88igRlnertfoperitetSiatémeantd%=. These operators may all

be used in expressions. Awk provides the basic flow-of-control statemeifislse, while, for, and stats
theif statement in section 3.3 without describing it. The condition in pare
3.3. Field Variables ing theif is done. Theelsepart is optional.

Fields inawk share essentially all of the properties of variabhesvhil ¢hepterae tieisiseddthydika theti o bCstfiog @meratiensy pridtrathynpu
be assigned to. Thus one can replace the first field with a sequence number like this:

{ $1 = NR; print } while (i <= NF) {
or accumulate two fields into a third, like this: E:Tt $i
{ 81 = $2 + $3; print $0 } }
or assign a string to a field: Thefor statement is also exactly that of C:
{ if ($3 > 1000) for (i = 1; i <= NF; i++)
$3 = "too big" print $i
} print does the same job as thvhile statement above.

There is an alternate form of tfar statement which is suited for accessinge
which replaces the third field by “too big” when it is, and in any ca(senpnnts She record.

arra
Field references may be numerical expressions, as in

statement
{ print $i, $(i+1), $(i+n) } doesstatementvith i set in turn to each elementafray. The elements are 8
Whether a field is deemed numeric or string depends on censei;ifnaaitagedus chary liker elements are accessed during the loop.
it ($1 == $2) The expression in the condition part ofigrwhile or for can include relatior
and!= (“not equal t0”"); regular expression matches with the match operal

of course parentheses for grouping. As might be expectedwk is not as fast as the specialized toets sed, or tt
Thebreak statement causes an immediate exit from an etheowitige @enerahéadentinnestatasesntiva tasisstine regbivertstioeasy to ex
to begin. guages; tasks involving fields were considerably easier to expresgkgsrog

The statementext causesawk to skip immediately to the nawikressatdraidxbeBinSEANnning the patterns from the top. The state-
mentexit causes the program to behave as if the end of the input had occurred.
Comments may be placedamk programs: they begin with the characteand end with the end of the line, as in

print x, y # this is a comment

4. Design

TheuNix system already provides several programs that operate by passing input through a selection meategmitme. first

and simplest, merely prints all lines which match a single specified paEgrap provides more general patterns, i.e., regular
expressions in full generalitjgrep searches for a set of keywords with a particularly fast algorithea unix programm manu-

al provides most of the editing facilities of the edidr applied to a stream of input. None of these programs provides numeric
capabilities, logical relations, or variables.

Lex lesk lexical analyzer cstr provides general regular expression recognition capabilities, and, by serving as a C program gener-
ator, is essentially open-ended in its capabilities. The usexphowever, requires a knowledge of C programming, alex a

program must be compiled and loaded before use, which discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the matrix of possibilities. It provides general regular expression capabilities and an
implicit input/output loop. But it also provides convenient numeric processing, variables, more general selection, and control
flow in the actions. It does not require compilation or a knowledge of C. Fimalkyprovides a convenient way to access fields

within lines; it is unique in this respect.

Awk also tries to integrate strings and numbers completely, by treating all quantities as both string and numeric, deciding which
representation is appropriate as late as possible. In most cases the user can simply ignore the differences.

Most of the effort in developingwk went into deciding whawk should or should not do (for instance, it doesn’t do string sub-
stitution) and what the syntax should be (no explicit operator for concatenation) rather than on writing or debugging the code.
We have tried to make the syntax powerful but easy to use and well adapted to scanning files. For example, the absence of decla-
rations and implicit initializations, while probably a bad idea for a general-purpose programming language, is desiile in a |
guage that is meant to be used for tiny programs that may even be composed on the command line.

In practice,awk usage seems to fall into two broad categories. One is what might be called “report generation” — processing
an input to extract counts, sums, sub-totals, etc. This also includes the writing of trivial data validation programsesfich as v

ing that a field contains only numeric information or that certain delimiters are properly balanced. The combination of textual
and numeric processing is invaluable here.

A second area of use is as a data transformer, converting data from the form produced by one program into that expected by an-
other. The simplest examples merely select fields, perhaps with rearrangements.

5. Implementation

The actual implementation afvk uses the language development tools available oaNie operating system. The grammar
is specified withyacc; yacc johnson cstr the lexical analysis is dondely the regular expression recognizers are deterministic
finite automata constructed directly from the expressionsawinprogram is translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather than processing speed; the delayed evaluation of variable types and the necessity to
break input into fields makes high speed difficult to achieve in any case. Nonetheless, the program has not proven to be unwork-
ably slow.

Table | below shows the execution (user + system) time on a PDP-11/70unfi¥h@rogramswc, grep, egrep, fgrep, sed, lex,
andawk on the following simple tasks:

1.count the number of lines.

2.print all lines containing “doug”.

3.print all lines containing “doug”, “ken” or “dmr”.

4.print the third field of each line.

5.print the third and second fields of each line, in that order.

6.append all lines containing “doug”, “ken”, and “dmr” to files “jdoug”, “jken”, and “jdmr”, respectively.

7.print each line prefixed by “line-number : ".

8.sum the fourth column of a table.
The progranwc merely counts words, lines and characters in its input; we have already mentioned the others. In all cases the in-
put was a file containing 10,000 lines as created by the commeahpeach line has the form

—rw—rw-rw— 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters. Timekefodo not include compile or load.

Task
Program 1 2 3 4 5 6 7 8
wc 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1
sed 10.2 11.6 158/ 29.0 305 16.0
lex 65.1 | 150.1| 1442 67.1 70.3 104/0 817 928
awk 15.0 25.6 299 333 389 64 714 311

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are shown below.
Thelex programs are generally too long to show.

AWK:
1.

2.

LEX:

END {print NR}
/doug/
/kenl doud dmr/
{print $3}
{print $3, $2}
Iken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/{print >"jdmr"}
{print NR ": " $0}
{sum = sum + $4}
END {print sum}
$=
/doug/p
/doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d
100107 100104 10) Os/A/p
180180 10) [18(C 10) LsiA2\1/p
/ken/w jken

/doug/w jdoug
/dmr/w jdmr

%{
int i

%}

%%

\n i+t
%%
yywrap() {

printf("%d\n", i);
}

%%
~.0oug$ printf("%s\n”, yytext);

\n

