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Preface

Unix is not so much an operating system as an oral history.

<author>NealStephenson</author>

There is a vast difference between knowledge and expertise. Knowledge lets you deduce the right
thing to do; expertise makes the right thing a reflex, hardly requiring conscious thought at all.

This book has a lot of knowledge in it, but it is mainly about expertise. It is going to try to teach
you the things about Unix development that Unix experts know, but aren’t aware that they know.
It is therefore less about technicalia and more alstiatred culturehan most Unix books — both
explicit and implicit culture, both conscious and unconscious traditions. It is not a ‘how-to’ book,
it is a ‘why-to’ book.

The why-to has great practical importance, because far too much software is poorly designed. Much
of it suffers from bloat, is exceedingly hard to maintain, and is too difficult to port to new platforms
or extend in ways the original programmers didn’t anticipate. These problems are symptoms of bad
design. We hope that readers of this book will learn something of what Unix has to teach about
good design.

This book is divided into four parts: Context, Design, Tools, and Community.  The first part
(Context) is philosophy and history, to help provide foundation and motivation for what follows.
The second part (Design) unfolds the principles of the Unix philosophy into more specific advice
about design and implementation. The third part (Tools) focuses on the software Unix provides
for helping you solve problems.  The fourth part (Community) is about the human-to-human
transactions and agreements that make the Unix culture so effective at what it does.

Because this is a book about shared culture, | never planned to write it alone. You will notice that
the text includes guest appearances by prominent Unix developers, the shapers of the Unix tradition.
The book went through an extended public review process during which | invited these luminaries
to comment on and argue with the text. Rather than submerging the results of that review process
in the final version, these guests were encouraged to speak with their own voices, amplifying and
developing and even disagreeing with the main line of the text.

In this book, when | use the editorial ‘we’ it is not to pretend omniscience but to reflect the fact that
it attempts to articulate the expertise of an entire community.
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Because this book is aimed at transmitting culture, it includes much more in the way of history and
folklore and asides than is normal for a technical book. Enjoy; these things, too, are part of your
education as a Unix programmer. No single one of the historical details is vital, but the gestalt of
them all is important. We think it makes a more interesting story this way. More importantly,
understanding where Unix came from and how it got the way it is will help you develop an intuitive
feel for the Unix style.

For the same reason, we refuse to write as if history is over. You will find an unusually large number
of references to the time of writing in this book. We do not wish to pretend that current practice
reflects some sort of timeless and perfectly logical outcome of preordained destiny. References to
time of writing are meant as an alert to the reader two or three or five years hence that the associated
statements of fact may have become dated and should be double-checked.

Other things this book is not is neither a C tutorial, nor a guide to the Unix commands and API. It
is not a reference fasedor yaccor Perl or Python. It's not a network programming primer, nor an
exhaustive guide to the mysteries of X. It's not a tour of Unix’s internals and architecture, either.
Other books cover these specifics better, and this book points you at them as appropriate.

Beyond all these technical specifics, the Unix culture has an unwritten engineering tradition that has
developed over literally millions of man-yearsf skilled effort. This book is written in the belief

that understanding that tradition, and adding its design patterns to your toolkit, will help you become
a better programmer and designer.

Cultures consist of people, and the traditional way to learn Unix culture is from other people and
through the folklore, by osmosis. This book is not a substitute for person-to-person acculturation,
but it can help accelerate the process by allowing you to tap the experience of others.

Who Should Read This Book

You should read this book if you are an experienced Unix programmer who is often in the position
of either educating novice programmers or debating partisans of other operating systems, and you
find it hard to articulate the benefits of the Unix approach.

You should read this book if you are a C, C++, or Java programmer with experience on other
operating systems and you are about to start a Unix-based project.

1The three and a half decades between 1969 and 2003 is a long time. Going by the historical trend curve in number of Unix
sites during that period, probably somewhere upwards of fifty million man-years have been plowed into Unix development
worldwide.
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You should read this book if you are a Unix user with novice-level up to middle-level skills in
the operating system, but little development experience, and want to learn how to design software
effectively under Unix.

You should read this book if you are a non-Unix programmer who has figured out that the Unix
tradition might have something to teach you. We believe you're right, and that the Unix philosophy
can be exported to other operating systems. So we will pay more attention to non-Unix environments
(especially Microsoft operating systems) than is usual in a Unix book; and when tools and case
studies are portable, we say so.

You should read this book if you are an application architect considering platforms or implemen-
tation strategies for a major general-market or vertical application. It will help you understand

the strengths of Unix as a development platform, and of the Unix tradition of open source as a
development method.

You shouldnot read this book if what you are looking for is the details of C coding or how to use
the Unix kernel API. There are many good books on these topidsanced Programming in the
Unix Environmen{Stevens92] is classic among explorations of the Unix API, &he Practice of
Programming[Kernighan-Pike99] is recommended reading for all C programmers (indeed for all
programmers in any language).

How to Use This Book

This book is both practical and philosophical. Some parts are aphoristic and general, others will
examine specific case studies in Unix development. We will precede or follow general principles
and aphorisms with examples that illustrate them: examples drawn not from toy demonstration
programs but rather from real working code that is in use every day.

We have deliberately avoided filling the book with lots of code or specification-file examples, even
though in many places this might have made it easier to write (and in some places perhaps easier
to read!). Most books about programming give too many low-level details and examples, but fail at
giving the reader a high-level feel for what is really going on. In this book, we prefer to err in the
opposite direction.

Therefore, while you will often be invited to read code and specification files, relatively few are
actually included in the book. Instead, we point you at examples on the Web.
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Absorbing these examples will help solidify the principles you learn into semi-instinctive working
knowledge. Ideally, you should read this book near the console of a running Unix system, with a Web
browser handy. Any Unix will do, but the software case studies are more likely to be preinstalled
and immediately available for inspection on a Linux system. The pointers in the book are invitations
to browse and experiment. Introduction of these pointers is paced so that wandering off to explore
for a while won't break up exposition that has to be continuous.

Note: While we have made every effort to cite URLS that should remain stable and usable, there is
no way we can guarantee this. If you find that a cited link has gone stale, use common sense and do
a phrase search with your favorite Web search engine. Where possible we suggest ways to do this
near the URLs we cite.

Most abbreviations used in this book are expanded at first use. For convenience, we have also
provided a glossary in an appendix.

References are usually by author name. Numbered footnotes are for URLSs that would intrude on
the text or that we suspect might be perishable; also for asides, war stories, and jokes.

To make this book more accessible to less technical readers, we invited some non-programmers to
read it and identify terms that seemed both obscure and necessary to the flow of exposition. We

also use footnotes for definitions of elementary terms that an experienced programmer is unlikely to

need.

Related References

Some famous papers and a few books by Unix’s early developers have mined this territory before.
Kernighan and Pike’¥he Unix Programming Environmefi{ernighan-Pike84] stands out among
these and is rightly considered a classic. But today it shows its age a bit; it doesn’t cover the Internet,
and the World Wide Web or the new wave of interpreted languages like Perl, Tcl, and Python.

About halfway into the composition of this book, we learned of Mike Gancdizaé& Unix Philoso-
phy[Gancarz]. This book is excellent within its range, but did not attempt to cover the full spectrum

of topics we felt needed to be addressed. Nevertheless we are grateful to the author for the reminder
that the very simplest Unix design patterns have been the most persistent and successful ones.

2This particular footnote is dedicated to Terry Pratchett, whose use of footnotes is quite...inspiring.

XIX



Preface

The Pragmatic ProgramméHunt-Thomas] is a witty and wise disquisition on good design practice
pitched at a slightly different level of the software-design craft (more about coding, less about higher-
level partitioning of problems) than this book. The authors’ philosophy is an outgrowth of Unix
experience, and it is an excellent complement to this book.

The Practice of ProgramminfKernighan-Pike99] covers some of the same groundtas Prag-
matic Programmefrom a position deep within the Unix tradition.

Finally (and with admitted intent to provoke) we recommé&eah Flesh, Zen BongReps-Senzaki],

an important collection of Zen Buddhist primary sources. References to Zen are scattered
throughout this book. They are included because Zen provides a vocabulary for addressing some
ideas that turn out to be very important for software design but are otherwise very difficult to hold in
the mind. Readers with religious attachments are invited to consider Zen not as a religion but as a
therapeutic form of mental discipline — which, in its purest non-theistic forms, is exactly what Zen
is.

Conventions Used in This Book

The term “UNIX” is technically and legally a trademark of The Open Group, and should formally

be used only for operating systems which are certified to have passed The Open Group’s elaborate
standards-conformance tests. In this book we use “Unix” in the looser sense widely current among
programmers, to refer to any operating system (whether formally Unix-branded or not) that is either
genetically descended from Bell Labs’s ancestral Unix code or written in close imitation of its
descendants. In particular, Linux (from which we draw most of our examples) is a Unix under
this definition.

This book employs the Unix manual page convention of tagging Unix facilities with a following
manual section in parentheses, usually on first introduction when we want to emphasize that this
is a Unix command. Thus, for example, read “munger(1)” as “the ‘munger’ program, which will
be documented in section 1 (user tools) of the Unix manual pages, if it's present on your system”.
Section 2 is C system calls, section 3 is C library calls, section 5 is file formats and protocols, section
8 is system administration tools. Other sections vary among Unixes but are not cited in this book.
For more, typenan 1 manat your Unix shell prompt (older System V Unixes may requian -s

1 man).

Sometimes we mention a Unix application (suchEasacs without a manual-section suffix and
capitalized. This is a clue that the name actually represents a well-established family of Unix
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programs with essentially the same function, and we are discussing generic properties of all of
them.Emacs for example, includesemacs

At various points later in this book we refer to ‘old school’ and ‘new school’ methods.  As
with rap music, new-school starts about 1990. In this context, it's associated with the rise of
scripting languages, GUIs, open-source Unixes, and the Web. Old-school refers to the pre-1990
(and especially pre-1985) world of expensive (shared) computers, proprietary Unixes, scripting in
shell, and C everywhere. This difference is worth pointing out because cheaper and less memory-
constrained machines have wrought some significant changes on the Unix programming style.

Our Case Studies

A lot of books on programming rely on toy examples constructed specifically to prove a point. This
one won't. Our case studies will be real, pre-existing pieces of software that are in production use
every day. Here are some of the major ones:

cdrtoolgxcdroast These two separate projects are usually used togethercdrt@ols
package is a set of CLI tools for writing CD-ROMs; Web search for
“cdrtools”. Thexcdroastapplication is a GUI front end for cdrtools;
see the xcdroast project site [http://www.xcdroast.org/].

fetchmail Thefetchmailprogram retrieves mail from remote-mail servers using
the POP3 or IMAP post-office protocols. See the fetchmail home page
[http://www.catb.org/~esr/fetchmail] (or search for “fetchmail” on the
Web).

GIMP The GIMP (GNU Image Manipulation Program) is a full-featured
paint, draw, and image-manipulation program that can edit a huge
variety of graphical formats in sophisticated ways. Sources are avail-
able from the GIMP home page [http://www.gimp.org/] (or search for
"GIMP" on the Web).
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mutt The mutt mail user agent is the current best-of-breed among text-
based Unix electronic mail agents, with notably good support for
MIME (Multipurpose Internet Mail Extensions) and the use of privacy
aids such as PGP (Pretty Good Privacy) and GPG (GNU Privacy
Guard). Source code and executable binaries are available at the
Multt project site [http://www.mutt.org].

xmlto The xmlto command renders DocBook and other XML docu-
ments in various output formats, including HTML and text and
PostScript.  For sources and documentation, see the xmlto project
site [http://cyberelk.net/tim/xmlto/].

To minimize the amount of code the user needs to read to understand the examples, we have tried
to choose case studies that can be used more than once, ideally to illustrate several different design
principles and practices. For this same reason, many of the examples are from my projects. No
claim that these are the best possible ones is implied, merely that | find them sufficiently familiar to
be useful for multiple expository purposes.

Author’s Acknowledgements

The guest contributors (Ken Arnold, Steven M. Bellovin, Stuart Feldman, Jim Gettys, Steve Johnson,
Brian Kernighan, David Korn, Mike Lesk, Doug Mcllroy, Marshall Kirk McKusick, Keith Packard,
Henry Spencer, and Ken Thompson) added a great deal of value to this book. Doug Mcliroy, in
particular, went far beyond the call of duty in the thoroughness of his critique and the depth of his
contributions, displaying the same care and dedication to excellence which he brought to managing
the original Unix research group thirty years ago.

Special thanks go to Rob Landley and to my wife Catherine Raymond, both of whom delivered
intensive line-by-line critiques of manuscript drafts. Rob’s insightful and attentive commentary
actually inspired more than one entire chapter in the final manuscript, and he had a lot to do with
its present organization and range; if he had written all the text he pushed me to improve, | would
have to call him a co-author. Cathy was my test audience representing non-technical readers; to the
extent this book is accessible to people who aren'’t already programmers, that's largely her doing.

This book benefited from discussions with many other people over the five years it took me to write
it. Mark M. Miller helped me achieve enlightenment about threads. John Cowan supplied some
insights about interface design patterns and drafted the case studiég ahd VM/CMS, and Jef
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Raskin showed me where the Rule of Least Surprise comes from. The UIUC System Architecture
Group contributed useful feedback on early chapters. The sectiovhah Unix Gets Wrongnd
Flexibility in Depthwere directly inspired by their review. Russell J. Nelson contributed the material

on Bernstein chaining in Chapter 7. Jay Maynard contributed most of the material in the MVS case
study in Chapter 3. Les Hatton provided many helpful comments ohdhguageshapter and
motivated the portion of Chapter 4 @ptimal Module SizeDavid A. Wheeler contributed many
perceptive criticisms and some case-study material, especially in the Design part. Russ Cox helped
develop the survey of Plan 9. Dennis Ritchie corrected me on some historical points about C.

Hundreds of Unix programmers, far too many to list here, contributed advice and comments during

the book’s public review period between January and June of 2003. As always, | found the process
of open peer review over the Web both intensely challenging and intensely rewarding. Also as

always, responsibility for any errors in the resulting work remains my own.

The expository style and some of the concerns of this book have been influenced by the design
patterns movement; indeed, I flirted with the idea of titling the bookx Design Patternsl didn't,

because | disagree with some of the implicit central dogmas of the movement and don't feel the need
to use all its formal apparatus or accept its cultural baggage. Nevertheless, my approach has certainly
been influenced by Christopher Alexander’s whdspeciallyThe Timeless Way of Buildirapd A

Pattern Languagg and | owe the Gang of Four and other members of their school a large debt of
gratitude for showing me how it is possible to use Alexander’s insights to talk about software design
at a high level without merely uttering vague and useless generalities. Interested readers should see
Design Patterns: Elements of Reusable Object-Oriented Soff@aregOfFour] for an introduction

to design patterns.

The title of this book is, of course, a reference to Donald Knuth's Art of Computer Programming
While not specifically associated with the Unix tradition, Knuth has been an influence on us all.

Editors with vision and imagination aren’t as common as they should be. Mark Taub is one; he saw
merit in a stalled project and skillfully nudged me into finishing it. Copy editors with a good ear
for prose style and enough ability to improve writing that isn't like theirs are even less common,
but Mary Lou Nohr makes that grade. Jerry Votta seized on my concept for the cover and made it
look better than | had imagined. The whole crew at Addison-Wesley gets high marks for making
the editorial and production process as painless as possible, and for cheerfully accommodating my
control-freak tendencies not just over the text but deep into the details of the book’s visual design,
art, and marketing.

3An appreciation of Alexander’s work, with links to on-line versions of significant portions, may be found at Some Notes on
Christopher Alexander [http://www.math.utsa.edu/sphere/salingar/Chris.text.html].
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Chapter 1. Philosophy
Philosophy Matters

Those who do not understand Unix are condemned to reinvent it, poorly.
<author>HenrySpencer</author>
Usenet signature, November 1987

Culture? What Culture?

This is a book about Unix programming, but in it we're going to toss around the words ‘culture’,
‘art’, and ‘philosophy’ a lot. If you are not a programmer, or you are a programmer who has had little
contact with the Unix world, this may seem strange. But Unix has a culture; it has a distinctive art
of programming; and it carries with it a powerful design philosophy. Understanding these traditions
will help you build better software, even if you're developing for a non-Unix platform.

Every branch of engineering and design has technical cultures. In most kinds of engineering,
the unwritten traditions of the field are parts of a working practitioner’s education as important
as (and, as experience grows, often more important than) the official handbooks and textbooks.
Senior engineers develop huge bodies of implicit knowledge, which they pass to their juniors by (as
Zen Buddhists put it) “a special transmission, outside the scriptures”.

Software engineering is generally an exception to this rule; technology has changed so rapidly,
software environments have come and gone so quickly, that technical cultures have been weak and
ephemeral. There are, however, exceptions to this exception. A very few software technologies have
proved durable enough to evolve strong technical cultures, distinctive arts, and an associated design
philosophy transmitted across generations of engineers.

The Unix culture is one of these. The Internet culture is another — or, in the twenty-first century,
arguably the same one. The two have grown increasingly difficult to separate since the early 1980s,
and in this book we won't try particularly hard.

The Durability of Unix

Unix was born in 1969 and has been in continuous production use ever since. That's several geologic
eras by computer-industry standards — older than the PC or workstations or microprocessors or
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even video display terminals, and contemporaneous with the first semiconductor memories. Of all
production timesharing systems today, only IBM’s VM/CMS can claim to have existed longer, and
Unix machines have provided hundreds of thousands of times more service hours; indeed, Unix has
probably supported more computing than all other timesharing systems put together.

Unix has found use on a wider variety of machines than any other operating system can claim. From
supercomputers to handhelds and embedded networking hardware, through workstations and servers
and PCs and minicomputers, Unix has probably seen more architectures and more odd hardware than
any three other operating systems combined.

Unix has supported a mind-bogglingly wide spectrum of uses. No other operating system has shone
simultaneously as a research vehicle, a friendly host for technical custom applications, a platform
for commercial-off-the-shelf business software, and a vital component technology of the Internet.

Confident predictions that Unix would wither away, or be crowded out by other operating systems,
have been made yearly since its infancy. And yet Unix, in its present-day avatars as Linux and BSD
and Solaris and MacOS X and half a dozen other variants, seems stronger than ever today.

Robert Metcalf [the inventor of Ethernet] says that if something comes along to
replace Ethernet, it will be called “Ethernet”, so therefore Ethernet will nevet die.
Unix has already undergone several such transformations.

<author>KenThompson</author>

At least one of Unix’s central technologies — the C language — has been widely naturalized
elsewhere. Indeed it is now hard to imagine doing software engineering without C as a ubiquitous
common language of systems programming. Unix also introduced both the now-ubiquitous tree-
shaped file namespace with directory nodes and the pipeline for connecting programs.

Unix’s durability and adaptability have been nothing short of astonishing. Other technologies have
come and gone like mayflies. Machines have increased a thousandfold in power, languages have
mutated, industry practice has gone through multiple revolutions — and Unix hangs in there, still
producing, still paying the bills, and still commanding loyalty from many of the best and brightest
software technologists on the planet.

4In fact, Ethernet has already been replaced by a different technology with the same name — twice.
Once when coax was replaced with twisted pair, and a second time when gigabit Ethernet came in.
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One of the many consequences of the exponential power-versus-time curve in computing, and the
corresponding pace of software development, is that 50% of what one knows becomes obsolete over
every 18 months. Unix does not abolish this phenomenon, but does do a good job of containing it.
There’s a bedrock of unchanging basics — languages, system calls, and tool invocations — that one
can actually keep using for years, even decades. Elsewhere it is impossible to predict what will be
stable; even entire operating systems cycle out of use. Under Unix, there is a fairly sharp distinction
between transient knowledge and lasting knowledge, and one can know ahead of time (with about
90% certainty) which category something is likely to fall in when one learns it. Thus the loyalty
Unix commands.

Much of Unix’s stability and success has to be attributed to its inherent strengths, to design decisions
Ken Thompson, Dennis Ritchie, Brian Kernighan, Doug Mcllroy, Rob Pike and other early Unix
developers made back at the beginning; decisions that have been proven sound over and over. But
just as much is due to the design philosophy, art of programming, and technical culture that grew up
around Unix in the early days. This tradition has continuously and successfully propagated itself in
symbiosis with Unix ever since.

The Case against Learning Unix Culture

Unix’s durability and its technical culture are certainly of interest to people who already like Unix,
and perhaps to historians of technology. But Unix’s original application as a general-purpose
timesharing system for mid-sized and larger computers is rapidly receding into the mists of history,
killed off by personal workstations. And there is certainly room for doubt that it will ever achieve
success in the mainstream business-desktop market now dominated by Microsoft.

Outsiders have frequently dismissed Unix as an academic toy or a hacker's sandbox. One well-
known polemic, theaJnix Hater's HandbooKGarfinkel], follows an antagonistic line nearly as old

as Unix itself in writing its devotees off as a cult religion of freaks and losers. Certainly the colossal
and repeated blunders of AT&T, Sun, Novell, and other commercial vendors and standards consortia
in mispositioning and mismarketing Unix have become legendary.

Even from within the Unix world, Unix has seemed to be teetering on the brink of universality for
so long as to raise the suspicion that it will never actually get there. A skeptical outside observer’s
conclusion might be that Unix is too useful to die but too awkward to break out of the back room; a
perpetual niche operating system.

What confounds the skeptics’ case is, more than anything else, the rise of Linux and other open-
source Unixes (such as the modern BSD variants). Unix’s culture proved too vital to be smothered
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even by a decade of vendor mismanagement. Today the Unix community itself has taken control
of the technology and marketing, and is rapidly and visibly solving Unix’s problems (in ways we'll
examine in more detail in Chapter 20).

What Unix Gets Wrong

For a design that dates from 1969, it is remarkably difficult to identify design choices in Unix that
are unequivocally wrong. There are several popular candidates, but each is still a subject of spirited
debate not merely among Unix fans but across the wider community of people who think about and
design operating systems.

Unix files have no structure above byte level. File deletion is irrevocable. The Unix security model
is arguably too primitive. Job control is botched. There are too many different kinds of names for
things. Having a file system at all may have been the wrong choice. We will discuss these technical
issues in Chapter 20.

But perhaps the most enduring objections to Unix are consequences of a feature of its philosophy
first made explicit by the designers of the X windowing system. X strives to provide “mechanism,
not policy”, supporting an extremely general set of graphics operations and deferring decisions about
toolkits and interface look-and-feel (the policy) up to application level. Unix’s other system-level
services display similar tendencies; final choices about behavior are pushed as far toward the user
as possible. Unix users can choose among multiple shells. Unix programs normally provide many
behavior options and sport elaborate preference facilities.

This tendency reflects Unix’s heritage as an operating system designed primarily for technical users,
and a consequent belief that users know better than operating-system designers what their own needs
are.

This tenet was firmly established at Bell Labs by Dick Hamrhiwo insisted in

the 1950s when computers were rare and expensive, that open-shop computing,
where customers wrote their own programs, was imperative, because “it is better
to solve the right problem the wrong way than the wrong problem the right way”.

<author>DougMcllroy</author>

SYes, the Hamming of ‘Hamming distance’ and ‘Hamming code’.
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But the cost of the mechanism-not-policy approach is that when thecaseset policy, the user
mustset policy. Nontechnical end-users frequently find Unix’s profusion of options and interface
styles overwhelming and retreat to systems that at least pretend to offer them simplicity.

In the short term, Unix’s laissez-faire approach may lose it a good many nontechnical users. In the
long term, however, it may turn out that this ‘mistake’ confers a critical advantage — because policy
tends to have a short lifetime, mechanism a long one. Today’s fashion in interface look-and-feel too
often becomes tomorrow’s evolutionary dead end (as people using obsolete X toolkits will tell you
with some feeling!). So the flip side of the flip side is that the “mechanism, not policy” philosophy
may enable Unix to renew its relevance long after competitors more tied to one set of policy or
interface choices have faded from viéw.

What Unix Gets Right

The explosive recent growth of Linux, and the increasing importance of the Internet, give us good
reasons to suppose that the skeptics’ case is wrong. But even supposing the skeptical assessment
is true, Unix culture is worth learning because there are some things that Unix and its surrounding
culture clearly do better than any competitors.

Open-Source Software

Though the term “open source” and the Open Source Definition were not invented until 1998, peer-
review-intensive development of freely shared source code was a key feature of the Unix culture
from its beginnings.

For its first ten years AT&T's original Unix, and its primary variant Berkeley Unix, were normally
distributed with source code. This enabled most of the other good things that follow here.

Cross-Platform Portability and Open Standards

Unix is still the only operating system that can present a consistent, documented application
programming interface (API) across a heterogeneous mix of computers, vendors, and special-
purpose hardware. Itis the only operating system that can scale from embedded chips and handhelds,

6Jim Gettys, one of the architects of X (and a contributor to this book), has meditated in depth on how X’s laissez-faire
style might be productively carried forward The Two-Edged Swofettys]. This essay is well worth reading, both for its
specific proposals and for its expression of the Unix mindset.
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up through desktop machines, through servers, and all the way to special-purpose number-crunching
behemoths and database back ends.

The Unix API is the closest thing to a hardware-independent standard for writing truly portable
software that exists. It is no accident that what the IEEE originally calledPthiable Operating
System Standamuickly got a suffix added to its acronym and became POSIX. A Unix-equivalent
APl was the only credible model for such a standard.

Binary-only applications for other operating systems die with their birth environments, but Unix
sources are forever. Forever, at least, given a Unix technical culture that polishes and maintains
them across decades.

The Internet and the World Wide Web

The Defense Department’s contract for the first production TCP/IP stack went to a Unix development
group because the Unix in question was largely open source. Besides TCP/IP, Unix has become the
one indispensable core technology of the Internet Service Provider industry. Ever since the demise
of the TOPS family of operating systems in the mid-1980s, most Internet server machines (and
effectively all above the PC level) have relied on Unix.

Not even Microsoft's awesome marketing clout has been able to dent Unix’s lock on the Internet.

While the TCP/IP standards (on which the Internet is based) evolved under TOPS-10 and are
theoretically separable from Unix, attempts to make them work on other operating systems have
been bedeviled by incompatibilities, instabilities, and bugs. The theory and specifications are
available to anyone, but the engineering tradition to make them into a solid and working reality

exists only in the Unix world.

The Internet technical culture and the Unix culture began to merge in the early 1980s, and are how
inseparably symbiotic. The design of the World Wide Web, the modern face of the Internet, owes
as much to Unix as it does to the ancestral ARPANET. In particular, the concept of the Uniform
Resource Locator (URL) so central to the Web is a generalization of the Unix idea of one uniform
file namespace everywhere. To function effectively as an Internet expert, an understanding of Unix
and its culture are indispensable.

The Open-Source Community

"Other operating systems have generally copied or cloned Unix TCP/IP implementations. It is their loss that they have not
generally adopted the robust tradition of peer review that goes with it, exemplified by documents like RFCQB2ing
IP Bake Off.
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The community that originally formed around the early Unix source distributions never went away
— after the great Internet explosion of the early 1990s, it recruited an entire new generation of eager
hackers on home machines.

Today, that community is a powerful support group for all kinds of software development. High-
quality open-source development tools abound in the Unix world (we’ll examine many in this book).
Open-source Unix applications are usually equal to, and are often superior to, their proprietary
equivalents [Fuzz]. Entire Unix operating systems, with complete toolkits and basic applications
suites, are available for free over the Internet. Why code from scratch when you can adapt, reuse,
recycle, and save yourself 90% of the work?

This tradition of code-sharing depends heavily on hard-won expertise about how to make programs
cooperative and reusable. And not by abstract theory, but through a lot of engineering practice —
unobvious design rules that allow programs to function not just as isolated one-shot solutions but as
synergistic parts of a toolkit. A major purpose of this book is to elucidate those rules.

Today, a burgeoning open-source movement is bringing new vitality, new technical approaches, and
an entire generation of bright young programmers into the Unix tradition. Open-source projects

including the Linux operating system and symbionts such as Apache and Mozilla have brought

the Unix tradition an unprecedented level of mainstream visibility and success. The open-source
movement seems on the verge of winning its bid to define the computing infrastructure of tomorrow

— and the core of that infrastructure will be Unix machines running on the Internet.

Flexibility All the Way Down

Many operating systems touted as more ‘modern’ or ‘user friendly’ than Unix achieve their surface
glossiness by locking users and developers into one interface policy, and offer an application-
programming interface that for all its elaborateness is rather narrow and rigid. On such systems,
tasks the designers have anticipated are very easy — but tasks they have not anticipated are often
impossible or at best extremely painful.

Unix, on the other hand, has flexibility in depth. The many ways Unix provides to glue together
programs mean that components of its basic toolkit can be combined to produce useful effects that
the designers of the individual toolkit parts never anticipated.

Unix’s support of multiple styles of program interface (often seen as a weakness because it increases
the perceived complexity of the system to end users) also contributes to flexibility; no program
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that wants to be a simple piece of data plumbing is forced to carry the complexity overhead of an
elaborate GUI.

Unix tradition lays heavy emphasis on keeping programming interfaces relatively small, clean, and
orthogonal — another trait that produces flexibility in depth. Throughout a Unix system, easy things
are easy and hard things are at least possible.

Unix Is Fun to Hack

People who pontificate about Unix’s technical superiority often don’t mention what may ultimately
be its most important strength, the one that underlies all its successes. Unix is fun to hack.

Unix boosters seem almost ashamed to acknowledge this sometimes, as though admitting they’re
having fun might damage their legitimacy somehow. But it's true; Unix is fun to play with and
develop for, and always has been.

There are not many operating systems that anyone has ever described as ‘fun’. Indeed, the friction
and labor of development under most other environments has been aptly compared to kicking a dead
whale down the beachThe kindest adjectives one normally hears are on the order of “tolerable”

or “not too painful”. In the Unix world, by contrast, the operating system rewards effort rather than
frustrating it. People programming under Unix usually come to see it not as an adversary to be
clubbed into doing one’s bidding by main effort but rather as an actual positive help.

This has real economic significance. The fun factor started a virtuous circle early in Unix’s history.
People liked Unix, so they built more programs for it that made it nicer to use. Today people build
entire, production-quality open-source Unix systems as a hobby. To understand how remarkable
this is, ask yourself when you last heard of anybody cloning OS/360 or VAX VMS or Microsoft
Windows for fun.

The ‘fun’ factor is not trivial from a design point of view, either. The kind of people who become
programmers and developers have ‘fun’ when the effort they have to put out to do a task challenges
them, but is just within their capabilities. ‘Fun’ is therefore a sign of peak efficiency. Painful
development environments waste labor and creativity; they extract huge hidden costs in time, money,
and opportunity.

8This was originally said of the IBM MVS TSO facility by Stephen C. Johnson, perhaps better known as the ayitiwar of
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If Unix were a failure in every other way, the Unix engineering culture would be worth studying
for the ways it keeps the fun in development — because that fun is a sign that it makes developers
efficient, effective, and productive.

The Lessons of Unix Can Be Applied Elsewhere

Unix programmers have accumulated decades of experience while pioneering operating-system
features we now take for granted. Even non-Unix programmers can benefit from studying that Unix
experience. Because Unix makes it relatively easy to apply good design principles and development
methods, it is an excellent place to learn them.

Other operating systems generally make good practice rather more difficult, but even so some of
the Unix culture’s lessons can transfer. Much Unix code (including all its filters, its major scripting
languages, and many of its code generators) will port directly to any operating system supporting
ANSI C (for the excellent reason that C itself was a Unix invention and the ANSI C library embodies

a substantial chunk of Unix’s services!).

Basics of the Unix Philosophy

The ‘Unix philosophy’ originated with Ken Thompson’s early meditations on how to design a small
but capable operating system with a clean service interface. It grew as the Unix culture learned
things about how to get maximum leverage out of Thompson’s design. It absorbed lessons from
many sources along the way.

The Unix philosophy is not a formal design method. It wasn’t handed down from the high fastnesses
of theoretical computer science as a way to produce theoretically perfect software. Nor is it that
perennial executive’s mirage, some way to magically extract innovative but reliable software on too
short a deadline from unmotivated, badly managed, and underpaid programmers.

The Unix philosophy (like successful folk traditions in other engineering disciplines) is bottom-up,
not top-down. It is pragmatic and grounded in experience. It is not to be found in official methods
and standards, but rather in the implicit half-reflexive knowledgeetipertisehat the Unix culture
transmits. It encourages a sense of proportion and skepticism — and shows both by having a sense
of (often subversive) humor.

Doug Mcllroy, the inventor of Unix pipes and one of the founders of the Unix tradition, had this to
say at the time [Mcllroy78]:
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(i) Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new features.

(i) Expect the output of every program to become the input to another, as yet
unknown, program. Don't clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don't insist on interactive input.

(iii) Design and build software, even operating systems, to be tried early, ideally
within weeks. Don't hesitate to throw away the clumsy parts and rebuild them.

(iv) Use tools in preference to unskilled help to lighten a programming task, even
if you have to detour to build the tools and expect to throw some of them out after
you've finished using them.

He later summarized it this way (quotedAmQuarter Century of UniSalus]):

This is the Unix philosophy: Write programs that do one thing and do it well.
Write programs to work together. Write programs to handle text streams, because
that is a universal interface.

Rob Pike, who became one of the great masters of C, offers a slightly different aipésisaon C
ProgrammingPike]:

Rule 1. You can't tell where a program is going to spend its time. Bottlenecks
occur in surprising places, so don't try to second guess and put in a speed hack
until you've proven that's where the bottleneck is.

Rule 2. Measure. Don't tune for speed until you've measured, and even then don’t
unless one part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow wheiis small, anch is usually small. Fancy
algorithms have big constants. Until you know thaits frequently going to be
big, don't get fancy. (Even ifi does get big, use Rule 2 first.)

Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder
to implement. Use simple algorithms as well as simple data structures.
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Rule 5. Data dominates. If you've chosen the right data structures and organized
things well, the algorithms will almost always be self-evident. Data structures,
not algorithms, are central to programmihg.

Rule 6. There is no Rule 6.

Ken Thompson, the man who designed and implemented the first Unix, reinforced Pike’s rule 4 with
a gnomic maxim worthy of a Zen patriarch:

When in doubt, use brute force.

More of the Unix philosophy was implied not by what these elders said but by what they did and the
example Unix itself set. Looking at the whole, we can abstract the following ideas:

1.Rule of Modularity: Write simple parts connected by clean interfaces.

2.Rule of Clarity: Clarity is better than cleverness.

3.Rule of Composition: Design programs to be connected to other programs.

4.Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
5. Rule of Simplicity: Design for simplicity; add complexity only where you must.

6.Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing
else will do.

7.Rule of Transparency: Design for visibility to make inspection and debugging easier.
8.Rule of Robustness: Robustness is the child of transparency and simplicity.
9. Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.

10.Rule of Least Surprise: In interface design, always do the least surprising thing.

9Pike’s original adds “(See Brooks p. 102.)” here. The reference is to an early ediffdredflythical
Man-Month[Brooks]; the quote is “Show me your flow charts and conceal your tables and | shall
continue to be mystified, show me your tables and | won't usually need your flow charts; they’ll be
obvious”.
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11.Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12.Rule of Repair: When you must fail, fail noisily and as soon as possible.

13.Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.
14.Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15.Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16.Rule of Diversity: Distrust all claims for “one true way”.

17.Rule of Extensibility: Design for the future, because it will be here sooner than you think.

If you're new to Unix, these principles are worth some meditation. Software-engineering texts
recommend most of them; but most other operating systems lack the right tools and traditions to
turn them into practice, so most programmers can’t apply them with any consistency. They come
to accept blunt tools, bad designs, overwork, and bloated code as normal — and then wonder what
Unix fans are so annoyed about.

Rule of Modularity: Write simple parts connected by clean
interfaces.

As Brian Kernighan once observed, “Controlling complexity is the essence of computer program-
ming” [Kernighan-Plauger]. Debugging dominates development time, and getting a working system
out the door is usually less a result of brilliant design than it is of managing not to trip over your
own feet too many times.

Assemblers, compilers, flowcharting, procedural programming, structured programming, “artificial
intelligence”, fourth-generation languages, object orientation, and software-development method-
ologies without number have been touted and sold as a cure for this problem. All have failed as
cures, if only because they ‘succeeded’ by escalating the normal level of program complexity to
the point where (once again) human brains could barely cope. As Fred Brooks famously observed
[Brooks], there is no silver bullet.

The only way to write complex software that won't fall on its face is to hold its global complexity
down — to build it out of simple parts connected by well-defined interfaces, so that most problems
are local and you can have some hope of upgrading a part without breaking the whole.
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Rule of Clarity: Clarity is better than cleverness.

Because maintenance is so important and so expensive, write programs as if the most important
communication they do is not to the computer that executes them but to the human beings who will
read and maintain the source code in the future (including yourself).

In the Unix tradition, the implications of this advice go beyond just commenting your code. Good
Unix practice also embraces choosing your algorithms and implementations for future maintainabil-
ity. Buying a small increase in performance with a large increase in the complexity and obscurity
of your technique is a bad trade — not merely because complex code is more likely to harbor bugs,
but also because complex code will be harder to read for future maintainers.

Code that is graceful and clear, on the other hand, is less likely to break — and more likely to be
instantly comprehended by the next person to have to change it. This is important, especially when
that next person might be yourself some years down the road.

Never struggle to decipher subtle code three times. Once might be a one-shot
fluke, but if you find yourself having to figure it out a second time — because the
first was too long ago and you've forgotten details — it is time to comment the
code so that the third time will be relatively painless.

<author>HenrySpencer</author>

Rule of Composition: Design programs to be connected with
other programs.

It's hard to avoid programming overcomplicated monoliths if none of your programs can talk to each
other.

Unix tradition strongly encourages writing programs that read and write simple, textual, stream-
oriented, device-independent formats.  Under classic Unix, as many programs as possible are
written as simpldilters, which take a simple text stream on input and process it into another simple
text stream on output.

Despite popular mythology, this practice is favored not because Unix programmers hate graphical
user interfaces. It's because if you don't write programs that accept and emit simple text streams,
it's much more difficult to hook the programs together.
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Text streams are to Unix tools as messages are to objects in an object-oriented setting. The simplicity
of the text-stream interface enforces the encapsulation of the tools. More elaborate forms of inter-
process communication, such as remote procedure calls, show a tendency to involve programs with
each others’ internals too much.

To make programs composable, make them independent. A program on one end of a text stream
should care as little as possible about the program on the other end. It should be made easy to
replace one end with a completely different implementation without disturbing the other.

GUIs can be a very good thing. Complex binary data formats are sometimes unavoidable by any
reasonable means. But before writing a GUI, it's wise to ask if the tricky interactive parts of your
program can be segregated into one piece and the workhorse algorithms into another, with a simple
command stream or application protocol connecting the two. Before devising a tricky binary format
to pass data around, it's worth experimenting to see if you can make a simple textual format work and
accept a little parsing overhead in return for being able to hack the data stream with general-purpose
tools.

When a serialized, protocol-like interface is not natural for the application, proper Unix design is to
at least organize as many of the application primitives as possible into a library with a well-defined
API. This opens up the possibility that the application can be called by linkage, or that multiple
interfaces can be glued on it for different tasks.

(We discuss these issues in detail in Chapter 7.)

Rule of Separation: Separate policy from mechanism; sepa-
rate interfaces from engines.

In our discussion of what Unix gets wrong, we observed that the designers of X made a basic
decision to implement “mechanism, not policy"—to make X a generic graphics engine and leave
decisions about user-interface style to toolkits and other levels of the system. We justified this by
pointing out that policy and mechanism tend to mutate on different timescales, with policy changing
much faster than mechanism. Fashions in the look and feel of GUI toolkits may come and go, but
raster operations and compositing are forever.

Thus, hardwiring policy and mechanism together has two bad effects: It makes policy rigid and
harder to change in response to user requirements, and it means that trying to change policy has a
strong tendency to destabilize the mechanisms.
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On the other hand, by separating the two we make it possible to experiment with new policy without
breaking mechanisms. We also make it much easier to write good tests for the mechanism (policy,
because it ages so quickly, often does not justify the investment).

This design rule has wide application outside the GUI context. In general, it implies that we should
look for ways to separate interfaces from engines.

One way to effect that separation is, for example, to write your application as a library of C service
routines that are driven by an embedded scripting language, with the application flow of control
written in the scripting language rather than C. A classic example of this patterngstaeseditor,

which uses an embedded Lisp interpreter to control editing primitives written in C. We discuss this
style of design in Chapter 11.

Another way is to separate your application into cooperating front-end and back-end processes
communicating through a specialized application protocol over sockets; we discuss this kind of
design in Chapter 5 and Chapter 7. The front end implements policy; the back end, mechanism.
The global complexity of the pair will often be far lower than that of a single-process monolith
implementing the same functions, reducing your vulnerability to bugs and lowering life-cycle costs.

Rule of Simplicity: Design for simplicity; add complexity
only where you must.

Many pressures tend to make programs more complicated (and therefore more expensive and
buggy). One such pressure is technical machismo. Programmers are bright people who are (often
justly) proud of their ability to handle complexity and juggle abstractions. Often they compete with
their peers to see who can build the most intricate and beautiful complexities. Just as often, their
ability to design outstrips their ability to implement and debug, and the result is expensive failure.

The notion of “intricate and beautiful complexities” is almost an oxymoron. Unix
programmers vie with each other for “simple and beautiful” honors — a point
that's implicit in these rules, but is well worth making overt.

<author>DougMcllroy</author>

Even more often (at least in the commercial software world) excessive complexity comes from
project requirements that are based on the marketing fad of the month rather than the reality of
what customers want or software can actually deliver. Many a good design has been smothered
under marketing’s pile of “checklist features” — features that, often, no customer will ever use.
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And a vicious circle operates; the competition thinks it has to compete with chrome by adding more
chrome. Pretty soon, massive bloat is the industry standard and everyone is using huge, buggy
programs not even their developers can love.

Either way, everybody loses in the end.

The only way to avoid these traps is to encourage a software culture that knows that small is
beautiful, that actively resists bloat and complexity: an engineering tradition that puts a high value
on simple solutions, that looks for ways to break program systems up into small cooperating pieces,
and that reflexively fights attempts to gussy up programs with a lot of chrome (or, even worse, to
design programaroundthe chrome).

That would be a culture a lot like Unix’s.

Rule of Parsimony: Write a big program only when it is clear

by demonstration that nothing else will do.

‘Big’ here has the sense both of large in volume of code and of internal complexity. Allowing
programs to get large hurts maintainability. = Because people are reluctant to throw away the

visible product of lots of work, large programs invite overinvestment in approaches that are failed or
suboptimal.

(We’'ll examine the issue of the right size of software in more detail in Chapter 13.)

Rule of Transparency: Design for visibility to make inspec-
tion and debugging easier.

Because debugging often occupies three-quarters or more of development time, work done early to
ease debugging can be a very good investment. A particularly effective way to ease debugging is to
design fortransparencyanddiscoverability

A software system isransparentwhen you can look at it and immediately understand what it is
doing and how. It igliscoverablevhen it has facilities for monitoring and display of internal state
so that your program not only functions well but canseento function well.

Designing for these qualities will have implications throughout a project. At minimum, it implies
that debugging options should not be minimal afterthoughts. Rather, they should be designed in
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from the beginning — from the point of view that the program should be able to both demonstrate
its own correctness and communicate to future developers the original developer's mental model of
the problem it solves.

For a program to demonstrate its own correctness, it needs to be using input and output formats
sufficiently simple so that the proper relationship between valid input and correct output is easy to
check.

The objective of designing for transparency and discoverability should also encourage simple
interfaces that can easily be manipulated by other programs — in particular, test and monitoring
harnesses and debugging scripts.

Rule of Robustness: Robustness is the child of transparency
and simplicity.

Software is said to beobustwhen it performs well under unexpected conditions which stress the
designer's assumptions, as well as under normal conditions.

Most software is fragile and buggy because most programs are too complicated for a human brain
to understand all at once. When you can’t reason correctly about the guts of a program, you can't be
sure it's correct, and you can't fix it if it's broken.

It follows that the way to make robust programs is to make their internals easy for human beings to
reason about. There are two main ways to do that: transparency and simplicity.

For robustness, designing in tolerance for unusual or extremely bulky inputs is
also important. Bearing in mind the Rule of Composition helps; input generated
by other programs is notorious for stress-testing software (e.g., the original Unix C
compiler reportedly needed small upgrades to cope well with Yacc output). The
forms involved often seem useless to humans. For example, accepting empty
lists/strings/etc., even in places where a human would seldom or never supply an
empty string, avoids having to special-case such situations when generating the
input mechanically.

<author>HenrySpencer</author>
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One very important tactic for being robust under odd inputs is to avoid having special cases in your
code. Bugs often lurk in the code for handling special cases, and in the interactions among parts of
the code intended to handle different special cases.

We observed above that softwargrensparentwhen you can look at it and immediately see what is
going on. It issimplewhen what is going on is uncomplicated enough for a human brain to reason
about all the potential cases without strain. The more your programs have both of these qualities,
the more robust they will be.

Modularity (simple parts, clean interfaces) is a way to organize programs to make them simpler.
There are other ways to fight for simplicity. Here’s another one.

Rule of Representation: Fold knowledge into data,
so program logic can be stupid and robust.

Even the simplest procedural logic is hard for humans to verify, but quite complex data structures
are fairly easy to model and reason about. To see this, compare the expressiveness and explanatory
power of a diagram of (say) a fifty-node pointer tree with a flowchart of a fifty-line program. Or,
compare an array initializer expressing a conversion table with an equivalent switch statement. The
difference in transparency and clarity is dramatic. See Rob Pike’s Rule 5.

Data is more tractable than program logic. It follows that where you see a choice between complexity
in data structures and complexity in code, choose the former. More: in evolving a design, you should
actively seek ways to shift complexity from code to data.

The Unix community did not originate this insight, but a lot of Unix code displays its influence. The

C language’s facility at manipulating pointers, in particular, has encouraged the use of dynamically-

modified reference structures at all levels of coding from the kernel upward. Simple pointer chases
in such structures frequently do duties that implementations in other languages would instead have
to embody in more elaborate procedures.

(We also cover these techniques in Chapter 9.)

Rule of Least Surprise: In interface design, always do
the least surprising thing.

(This is also widely known as the Principle of Least Astonishment.)
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The easiest programs to use are those that demand the least new learning from the user — or, to
put it another way, the easiest programs to use are those that most effectively connect to the user’s
pre-existing knowledge.

Therefore, avoid gratuitous novelty and excessive cleverness in interface design. If you're writing
a calculator program, ‘+' should always mean addition! When designing an interface, model it on
the interfaces of functionally similar or analogous programs with which your users are likely to be
familiar.

Pay attention to your expected audience. They may be end users, they may be other programmers,
or they may be system administrators. What is least surprising can differ among these groups.

Pay attention to tradition. The Unix world has rather well-developed conventions about things
like the format of configuration and run-control files, command-line switches, and the like. These
traditions exist for a good reason: to tame the learning curve. Learn and use them.

(We’'ll cover many of these traditions in Chapter 5 and Chapter 10.)

The flip side of the Rule of Least Surprise is to avoid making things superficially
similar but really a little bit different. This is extremely treacherous because the
seeming familiarity raises false expectations. It's often better to make things
distinctly different than to make theaimostthe same.

<author>HenrySpencer</author>

Rule of Silence: When a program has nothing surprising to
say, it should say nothing.

One of Unix’s oldest and most persistent design rules is that when a program has nothing interesting
or surprising to say, it shoulshut up Well-behaved Unix programs do their jobs unobtrusively,
with a minimum of fuss and bother. Silence is golden.

This “silence is golden” rule evolved originally because Unix predates video displays. On the slow
printing terminals of 1969, each line of unnecessary output was a serious drain on the user’s time.
That constraint is gone, but excellent reasons for terseness remain.
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| think that the terseness of Unix programs is a central feature of the style. When
your program'’s output becomes another’s input, it should be easy to pick out the
needed bits. And for people it is a human-factors necessity — important infor-
mation should not be mixed in with verbosity about internal program behavior. If

all displayed information is important, important information is easy to find.

<author>KenArnold</author>

Well-designed programs treat the user’s attention and concentration as a precious and limited
resource, only to be claimed when necessary.

(We’'ll discuss the Rule of Silence and the reasons for it in more detail at the end of Chapter 11.)

Rule of Repair: Repair what you can — but when you must
fail, fail noisily and as soon as possible.

Software should be transparent in the way that it fails, as well as in normal operation. It's best when

software can cope with unexpected conditions by adapting to them, but the worst kinds of bugs are
those in which the repair doesn’t succeed and the problem quietly causes corruption that doesn’t
show up until much later.

Therefore, write your software to cope with incorrect inputs and its own execution errors as
gracefully as possible.  But when it cannot, make it fail in a way that makes diagnosis of the
problem as easy as possible.

Consider also Postel’s Prescriptitii:Be liberal in what you accept, and conservative in what you
send”. Postel was speaking of network service programs, but the underlying idea is more general.
Well-designed programs cooperate with other programs by making as much sense as they can from
ill-formed inputs; they either fail noisily or pass strictly clean and correct data to the next program

in the chain.

However, heed also this warning:

The original HTML documents recommended “be generous in what you accept”,
and it has bedeviled us ever since because each browser accepts a different

19Jonathan Postel was the first editor of the Internet RFC series of standards, and one of the principal architects of the Internet.
A tribute page [http://www.postel.org/jonpostel.html] is maintained by the Postel Center for Experimental Networking.
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superset of the specifications. It is thpecificationghat should be generous,
not their interpretation.

<author>DougMcllroy</author>

Mcllroy adjures us talesignfor generosity rather than compensating for inadequate standards with
permissive implementations. Otherwise, as he rightly points out, it's all too easy to end up in tag
soup.

Rule of Economy: Programmer time is expensive; conserve
it in preference to machine time.

In the early minicomputer days of Unix, this was still a fairly radical idea (machines were a great
deal slower and more expensive then). Nowadays, with every development shop and most users
(apart from the few modeling nuclear explosions or doing 3D movie animation) awash in cheap
machine cycles, it may seem too obvious to need saying.

Somehow, though, practice doesn’'t seem to have quite caught up with reality. If we took this
maxim really seriously throughout software development, most applications would be written in
higher-level languages like Perl, Tcl, Python, Java, Lisp and even shell — languages that ease the
programmer’s burden by doing their own memory management (see [Ravenbrook]).

And indeed this is happening within the Unix world, though outside it most applications shops still
seem stuck with the old-school Unix strategy of coding in C (or C++). Later in this book we'll
discuss this strategy and its tradeoffs in detail.

One other obvious way to conserve programmer time is to teach machines how to do more of the
low-level work of programming. This leads to...

Rule of Generation: Avoid hand-hacking; write programs to
write programs when you can.

Human beings are notoriously bad at sweating the details. Accordingly, any kind of hand-hacking
of programs is a rich source of delays and errors. The simpler and more abstracted your program
specification can be, the more likely it is that the human designer will have gotten it right. Generated
code (ateverylevel) is almost always cheaper and more reliable than hand-hacked.
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We all know this is true (it's why we have compilers and interpreters, after all) but we often don’t
think about the implications. High-level-language code that’s repetitive and mind-numbing for
humans to write is just as productive a target for a code generator as machine code. It pays to
use code generators when they can raise the level of abstraction — that is, when the specification
language for the generator is simpler than the generated code, and the code doesn’t have to be hand-
hacked afterwards.

In the Unix tradition, code generators are heavily used to automate error-prone detail work.
Parser/lexer generators are the classic examples; makefile generators and GUI interface builders
are newer ones.

(We cover these techniques in Chapter 9.)

Rule of Optimization: Prototype before polishing. Get it
working before you optimize it.

The most basic argument for prototyping first is Kernighan & Plauger’s; “90% of the functionality
delivered now is better than 100% of it delivered never”. Prototyping first may help keep you from
investing far too much time for marginal gains.

For slightly different reasons, Donald Knuth (authorTdife Art Of Computer Programmingne of
the field’s few true classics) popularized the observation that “Premature optimization is the root of
all evil”.** And he was right.

Rushing to optimize before the bottlenecks are known may be the only error to have ruined more
designs than feature creep. From tortured code to incomprehensible data layouts, the results of
obsessing about speed or memory or disk usage at the expense of transparency and simplicity are
everywhere. They spawn innumerable bugs and cost millions of man-hours — often, just to get
marginal gains in the use of some resource much less expensive than debugging time.

Disturbingly often, premature local optimization actually hinders global optimization (and hence
reduces overall performance). A prematurely optimized portion of a design frequently interferes
with changes that would have much higher payoffs across the whole design, so you end up with
both inferior performance and excessively complex code.

Hn full: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all
evil”. Knuth himself attributes the remark to C. A. R. Hoare.
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In the Unix world there is a long-established and very explicit tradition (exemplified by Rob
Pike’'s comments above and Ken Thompson’s maxim about brute force) thatfaystype, then
polish. Get it working before you optimize iOr: Make it work first, then make it work fast.
‘Extreme programming’ guru Kent Beck, operating in a different culture, has usefully amplified this
to: “Make it run, then make it right, then make it fast”.

The thrust of all these quotes is the same: get your design right with an un-optimized, slow, memory-
intensive implementation before you try to tune. Then, tune systematically, looking for the places
where you can buy big performance wins with the smallest possible increases in local complexity.

Prototyping is important for system design as well as optimization — it is much
easier to judge whether a prototype does what you want than it is to read a long
specification. | remember one development manager at Bellcore who fought
against the “requirements” culture years before anybody talked about “rapid
prototyping” or “agile development”. He wouldn't issue long specifications; he'd
lash together some combination of shell scripts and awk code that did roughly
what was needed, tell the customers to send him some clerks for a few days, and
then have the customers come in and look at their clerks using the prototype and
tell him whether or not they liked it. If they did, he would say “you can have

it industrial strength so-many-months from now at such-and-such cost”.  His
estimates tended to be accurate, but he lost out in the culture to managers who
believed that requirements writers should be in control of everything.

<author>MikelLesk</author>

Using prototyping to learn which features you don’t have to implement helps optimization for
performance; you don’t have to optimize what you don’t write. The most powerful optimization
tool in existence may be the delete key.

One of my most productive days was throwing away 1000 lines of code.

<author>KenThompson</author>

(We’ll go into a bit more depth about related ideas in Chapter 12.)

Rule of Diversity: Distrust all claims for “one true way”.
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Even the best software tools tend to be limited by the imaginations of their designers. Nobody is
smart enough to optimize for everything, nor to anticipate all the uses to which their software might
be put. Designing rigid, closed software that won't talk to the rest of the world is an unhealthy form
of arrogance.

Therefore, the Unix tradition includes a healthy mistrust of “one true way” approaches to software
design or implementation. It embraces multiple languages, open extensible systems, and customiza-
tion hooks everywhere.

Rule of Extensibility: Design for the future, because it will
be here sooner than you think.

If it is unwise to trust other people’s claims for “one true way”, it's even more foolish to believe
them about your own designs. Never assume you have the final answer. Therefore, leave room for
your data formats and code to grow; otherwise, you will often find that you are locked into unwise
early choices because you cannot change them while maintaining backward compatibility.

When you design protocols or file formats, make them sufficiently self-describing to be extensible.
Always, alwayseither include a version number, or compose the format from self-contained, self-
describing clauses in such a way that new clauses can be readily added and old ones dropped without
confusing format-reading code. Unix experience tells us that the marginal extra overhead of making
data layouts self-describing is paid back a thousandfold by the ability to evolve them forward without
breaking things.

When you design code, organize it so future developers will be able to plug new functions into the
architecture without having to scrap and rebuild the architecture. This rule is not a license to add
features you don't yet need; it's advice to write your code so that adding features later whem you
need them is easy. Make the joints flexible, and put “If you ever need to...” comments in your code.
You owe this grace to people who will use and maintain your code after you.

You'll be there in the future too, maintaining code you may have half forgotten under the press of
more recent projects. When you design for the future, the sanity you save may be your own.

The Unix Philosophy in One Lesson

All the philosophy really boils down to one iron law, the hallowed ‘KISS principle’ of master
engineers everywhere:
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K.LI.S.S.

Keep It Simple, Stupid!

Unix gives you an excellent base for applying the KISS principle. The remainder of this book will
help you learn how.

Applying the Unix Philosophy

These philosophical principles aren’t just vague generalities. In the Unix world they come straight
from experience and lead to specific prescriptions, some of which we've already developed above.
Here’s a by no means exhaustive list;

« Everything that can be a source- and destination-independentfibeitdbe one.

« Data streams should if at all possible be textual (so they can be viewed and filtered with standard
tools).
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« Database layouts and application protocols should if at all possible be textual (human-readable
and human-editable).

« Complex front ends (user interfaces) should be cleanly separated from complex back ends.
* Whenever possible, prototype in an interpreted language before coding C.

» Mixing languages is better than writing everything in one, if and only if using only that one is
likely to overcomplicate the program.

 Be generous in what you accept, rigorous in what you emit.
* When filtering, never throw away information you don’t need to.

* Small is beautiful. Write programs that do as little as is consistent with getting the job done.

We'll see the Unix design rules, and the prescriptions that derive from them, applied over and over
again in the remainder of this book.  Unsurprisingly, they tend to converge with the very best
practices from software engineering in other traditiths.

Attitude Matters Too

When you see the right thing, do it — this may look like more work in the short term, but it’s the path
of least effort in the long run. If you don’t know what the right thing is, do the minimum necessary
to get the job done, at least until you figure out what the right thing is.

To do the Unix philosophy right, you have to be loyal to excellence. You have to believe that
software design is a craft worth all the intelligence, creativity, and passion you can muster. Otherwise
you won't look past the easy, stereotyped ways of approaching design and implementation; you'll
rush into coding when you should be thinking. You'll carelessly complicate when you should be
relentlessly simplifying — and then you’ll wonder why your code bloats and debugging is so hard.

To do the Unix philosophy right, you have to value your own time enough never to waste it. If
someone has already solved a problem once, don't let pride or politics suck you into solving it a

20ne notable example is Butler Lampsohigts for Computer System Desifilrampson], which | discovered late in the
preparation of this book. It not only expresses a number of Unix dicta in forms that were clearly discovered independently,
but uses many of the same tag lines to illustrate them.
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second time rather than re-using. And never work harder than you have to; work smarter instead,
and save the extra effort for when you need it. Lean on your tools and automate everything you can.

Software design and implementation should be a joyous art, a kind of high-level play. If this attitude
seems preposterous or vaguely embarrassing to you, stop and think; ask yourself what you've
forgotten. Why do you design software instead of doing something else to make money or pass
the time? You must have thought software was worthy of your passion once....

To do the Unix philosophy right, you need to have (or recover) that attitude. You neadetorou
need toplay. You need to be willing texplore

We hope you'll bring this attitude to the rest of this book. Or, at least, that this book will help you
rediscover it.
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A Tale of Two Cultures

Those who cannot remember the past are condemned to repeat it.
<author>GeorgeSantayana</author>
The Life of Reason (1905)

The past informs practice. Unix has a long and colorful history, much of which is still live as
folklore, assumptions, and (too often) battle scars in the collective memory of Unix programmers.
In this chapter we’'ll survey the history of Unix, with an eye to explaining why, in 2003, today’s Unix
culture looks the way it does.

Origins and History of Unix, 1969-1995

A notorious ‘second-system effect’ often afflicts the successors of small experimental prototypes.
The urge to add everything that was left out the first time around all too frequently leads to huge
and overcomplicated design. Less well known, because less common, is the ‘third-system effect’;
sometimes, after the second system has collapsed of its own weight, there is a chance to go back to
simplicity and get it really right.

The original Unix was a third system. Its grandfather was the small and simple Compatible Time-
Sharing System (CTSS), either the first or second timesharing system ever deployed (depending on
some definitional questions we are going to determinedly ignore). Its father was the pioneering
Multics project, an attempt to create a feature-packed ‘information utility’ that would gracefully
support interactive timesharing of mainframe computers by large communities of users. Multics,
alas, did collapse of its own weight. But Unix was born from that collapse.

Genesis: 1969-1971

Unix was born in 1969 out of the mind of a computer scientist at Bell Laboratories, Ken Thompson.
Thompson had been a researcher on the Multics project, an experience which spoiled him for the
primitive batch computing that was the rule almost everywhere else. But the concept of timesharing
was still a novel one in the late 1960s; the first speculations on it had been uttered barely ten years
earlier by computer scientist John McCarthy (also the inventor of the Lisp language), the first actual
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deployment had been in 1962, seven years earlier, and timesharing operating systems were still
experimental and temperamental beasts.

Computer hardware was at that time more primitive than even people who were there to see it
can now easily recall. The most powerful machines of the day had less computing power and
internal memory than a typical cellphone of tod&yideo display terminals were in their infancy

and would not be widely deployed for another six years. The standard interactive device on the
earliest timesharing systems was the ASR-33 teletype — a slow, noisy device that printed upper-
case-only on big rolls of yellow paper. The ASR-33 was the natural parent of the Unix tradition of
terse commands and sparse responses.

When Bell Labs withdrew from the Multics research consortium, Ken Thompson was left with
some Multics-inspired ideas about how to build a file system. He was also left without a machine
on which to play a game he had written called Space Travel, a science-fiction simulation that
involved navigating a rocket through the solar system. Unix began its life on a scavenged PDP-
7 minicomputet* like the one shown in Figure 2.1, as a platform for the Space Travel game and a
testbed for Thompson'’s ideas about operating system design.

13Ken Thompson reminded me that today’s cellphones have more RAM than the PDP-7 had RAM and disk storage combined;
alarge disk, in those days, was less than a megabyte of storage.

14There is a Web FAQ on the PDP computers [http://www.fags.org/fags/dec-fag/pdp8/] that explains the otherwise extremely
obscure PDP-7’s place in history.
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Figure 2.1. The PDP-7.

The full origin story is told in [Ritchie79] from the point of view of Thompson'’s first collaborator,
Dennis Ritchie, the man who would become known as the co-inventor of Unix and the inventor of
the C language. Dennis Ritchie, Doug Mcllroy, and a few colleagues had become used to interactive
computing under Multics and did not want to lose that capability. Thompson’s PDP-7 operating
system offered them a lifeline.

Ritchie observes: “What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew from experience that
the essence of communal computing, as supplied by remote-access, time-shared machines, is not
just to type programs into a terminal instead of a keypunch, but to encourage close communication”.
The theme of computers being viewed not merely as logic devices but as the nuclei of communities
was in the air; 1969 was also the year the ARPANET (the direct ancestor of today’s Internet) was
invented. The theme of “fellowship” would resonate all through Unix’s subsequent history.

Thompson and Ritchie’s Space Travel implementation attracted notice. At first, the PDP-7's
software had to be cross-compiled on a GE mainframe. The utility programs that Thompson and
Ritchie wrote to support hosting game development on the PDP-7 itself became the core of Unix —
though the name did not attach itself until 1970. The original spelling was “UNICS” (UNiplexed
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Information and Computing Service), which Ritchie later described as “a somewhat treacherous pun
on Multics”, which stood for MULTiplexed Information and Computing Service.

Even at its earliest stages, PDP-7 Unix bore a strong resemblance to today’s Unixes and provided a
rather more pleasant programming environment than was available anywhere else in those days
of card-fed batch mainframes.  Unix was very close to being the first system under which a
programmer could sit down directly at a machine and compose programs on the fly, exploring
possibilities and testing while composing. All through its lifetime Unix has had a pattern of growing
more capabilities by attracting highly skilled volunteer efforts from programmers impatient with the
limitations of other operating systems. This pattern was set early, within Bell Labs itself.

The Unix tradition of lightweight development and informal methods also began at its beginning.
Where Multics had been a large project with thousands of pages of technical specifications written
before the hardware arrived, the first running Unix code was brainstormed by three people and
implemented by Ken Thompson in two days — on an obsolete machine that had been designed to
be a graphics terminal for a ‘real’ computer.

Unix’s first real job, in 1971, was to support what would now be called word processing for the Bell
Labs patent department; the first Unix application was the ancestor of the nroff(1) text formatter.
This project justified the purchase of a PDP-11, a much more capable minicomputer. Management
remained blissfully unaware that the word-processing system that Thompson and colleagues were
building was incubating an operating system. Operating systems were not in the Bell Labs plan —
AT&T had joined the Multics consortium precisely to avoid doing an operating system on its own.
Nevertheless, the completed system was a rousing success. It established Unix as a permanent and
valued part of the computing ecology at Bell Labs, and began another theme in Unix’s history —

a close association with document-formatting, typesetting, and communications tools. The 1972
manual claimed 10 installations.

Later, Doug Mcllroy would write of this period [Mcllroy91]: “Peer pressure and simple pride in
workmanship caused gobs of code to be rewritten or discarded as better or more basic ideas emerged.
Professional rivalry and protection of turf were practically unknown: so many good things were
happening that nobody needed to be proprietary about innovations”. But it would take another
quarter century for all the implications of that observation to come home.

Exodus: 1971-1980

The original Unix operating system was written in assembler, and the applications in a mix of
assembler and an interpreted language called B, which had the virtue that it was small enough to
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run on the PDP-7. But B was not powerful enough for systems programming, so Dennis Ritchie
added data types and structures to it. The resulting C language evolved from B beginning in 1971;
in 1973 Thompson and Ritchie finally succeeded in rewriting Unix in their new language. This was
guite an audacious move; at the time, system programming was done in assembler in order to extract
maximum performance from the hardware, and the very concept of a portable operating system was
barely a gleam in anyone’s eye. As late as 1979, Ritchie could write: “It seems certain that much of
the success of Unix follows from the readability, modifiability, and portability of its software that in
turn follows from its expression in high-level languages”, in the knowledge that this was a point that
still needed making.

Ken (seated) and Dennis (standing) at a PDP-11 in 1972.

A 1974 paper inCommunications of the ACNRitchie-Thompson] gave Unix its first public
exposure. In that paper, its authors described the unprecedentedly simple design of Unix, and
reported over 600 Unix installations. All were on machines underpowered even by the standards of
that day, but (as Ritchie and Thompson wrote) “constraint has encouraged not only economy, but
also a certain elegance of design”.

After the CACM paper, research labs and universities all over the world clamored for the chance
to try out Unix themselves.  Under a 1958 consent decree in settlement of an antitrust case,
AT&T (the parent organization of Bell Labs) had been forbidden from entering the computer
business.  Unix could not, therefore, be turned into a product; indeed, under the terms of the
consent decree, Bell Labs was required to license its nontelephone technology to anyone who asked.
Ken Thompson quietly began answering requests by shipping out tapes and disk packs — each,
according to legend, with a note signed “love, ken”.

This was years before personal computers. Not only was the hardware needed to run Unix too
expensive to be within an individual's reach, but nobody imagined that would change in the
foreseeable future. So Unix machines were only available by the grace of big organizations with big
budgets: corporations, universities, government agencies. But use of these minicomputers was less
regulated than the even-bigger mainframes, and Unix development rapidly took on a countercultural
air. It was the early 1970s; the pioneering Unix programmers were shaggy hippies and hippie-
wannabes. They delighted in playing with an operating system that not only offered them
fascinating challenges at the leading edge of computer science, but also subverted all the technical
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assumptions and business practices that went with Big Computing.  Card punches, COBOL,
business suits, and batch IBM mainframes were the despised old wave; Unix hackers reveled in
the sense that they were simultaneously building the future and flipping a finger at the system.

The excitement of those days is captured in this quote from Douglas Comer: “Many universities
contributed to UNIX. At the University of Toronto, the department acquired a 200-dot-per-inch
printer/plotter and built software that used the printer to simulate a phototypesetter. At Yale
University, students and computer scientists modified the UNIX shell. At Purdue University, the
Electrical Engineering Department made major improvements in performance, producing a version
of UNIX that supported a larger number of users. Purdue also developed one of the first UNIX
computer networks. At the University of California at Berkeley, students developed a new shell and
dozens of smaller utilities. By the late 1970s, when Bell Labs released Version 7 UNIX, it was clear
that the system solved the computing problems of many departments, and that it incorporated many
of the ideas that had arisen in universities. The end result was a strengthened system. A tide of ideas
had started a new cycle, flowing from academia to an industrial laboratory, back to academia, and
finally moving on to a growing number of commercial sites” [Comer].

The first Unix of which it can be said that essentially all of it would be recognizable to a modern
Unix programmer was the Version 7 release in 1¥78he first Unix user group had formed the
previous year. By this time Unix was in use for operations support all through the Bell System
[Hauben], and had spread to universities as far away as Australia, where John Lions’s 1976 notes
[Lions] on the Version 6 source code became the first serious documentation of the Unix kernel
internals. Many senior Unix hackers still treasure a copy.

The Lions book was a samizdat publishing sensation. Because of copyright
infringement or some such it couldn’t be published in the U.S., so copies of copies
seeped everywhere. | still have my copy, which was at least 6th generation. Back
then you couldn't be a kernel hacker without a Lions.

<author>KenArnold</author>

The beginnings of a Unix industry were coalescing as well. The first Unix company (the Santa Cruz
Operation, SCO) began operations in 1978, and the first commercial C compiler (Whitesmiths)
sold that same year. By 1980 an obscure software company in Seattle was also getting into
the Unix game, shipping a port of the AT&T version for microcomputers called XENIX. But

15The version 7 manuals can be browsed on-line at http:/plan9.bell-labs.com/7thEdMan/index.html.
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Microsoft's affection for Unix as a product was not to last very long (though Unix would continue
to be used for most internal development work at the company until after 1990).

TCP/IP and the Unix Wars: 1980-1990

The Berkeley campus of the University of California emerged early as the single most important
academic hot-spot in Unix development. Unix research had begun there in 1974, and was given a
substantial impetus when Ken Thompson taught at the University during a 1975-76 sabbatical. The
first BSD release had been in 1977 from a lab run by a then-unknown grad student named Bill Joy.
By 1980 Berkeley was the hub of a sub-network of universities actively contributing to their variant
of Unix. Ideas and code from Berkeley Unix (including the vi(1) editor) were feeding back from
Berkeley to Bell Labs.

Then, in 1980, the Defense Advanced Research Projects Agency needed a team to implement
its brand-new TCP/IP protocol stack on the VAX under Unix. The PDP-10s that powered the
ARPANET at that time were aging, and indications that DEC might be forced to cancel the 10 in
order to support the VAX were already in the air. DARPA considered contracting DEC to implement
TCP/IP, but rejected that idea because they were concerned that DEC might not be responsive to
requests for changes in their proprietary VAX/VMS operating system [Libes-Ressler]. Instead,
DARPA chose Berkeley Unix as a platform — explicitly because its source code was available
and unencumbered [Leonard].

Berkeley’s Computer Science Research Group was in the right place at the right time with the
strongest development tools; the result became arguably the most critical turning point in Unix’s
history since its invention.

Until the TCP/IP implementation was released with Berkeley 4.2 in 1983, Unix had had only the
weakest networking support. Early experiments with Ethernet were unsatisfactory. An ugly but
serviceable facility called UUCP (Unix to Unix Copy Program) had been developed at Bell Labs for
distributing software over conventional telephone lines via motfetdlUCP could forward Unix

mail between widely separated machines, and (after Usenet was invented in 1981) supported Usenet,
a distributed bulletin-board facility that allowed users to broadcast text messages to anywhere that
had phone lines and Unix systems.

Still, the few Unix users aware of the bright lights of the ARPANET felt like they were stuck in
a backwater. No FTP, no telnet, only the most restricted remote job execution, and painfully

BUUCP was hot stuff when fastmodem was 300 baud.
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slow links. Before TCP/IP, the Internet and Unix cultures did not mix. Dennis Ritchie’s vision of
computers as a way to “encourage close communication” was one of collegial communities clustered
around individual timesharing machines or in the same computing center; it didn't extend to the
continent-wide distributed ‘network nation’ that ARPA users had started to form in the mid-1970s.
Early ARPANETters, for their part, considered Unix a crude makeshift limping along on risibly
weak hardware.

After TCP/IP, everything changed. The ARPANET and Unix cultures began to merge at the edges,
a development that would eventually save both from destruction. But there would be hell to pay
first as the result of two unrelated disasters; the rise of Microsoft and the AT&T divestiture.

In 1981, Microsoft made its historic deal with IBM over the new IBM PC. Bill Gates bought QDOS
(Quick and Dirty Operating System), a clone of CP/M that its programmer Tim Paterson had thrown
together in six weeks, from Paterson’s employer Seattle Computer Products. Gates, concealing the
IBM deal from Paterson and SCP, bought the rights for $50,000. He then talked IBM into allowing
Microsoft to market MS-DOS separately from the PC hardware. Over the next decade, leveraging
code he didn’t write made Bill Gates a multibillionaire, and business tactics even sharper than the
original deal gained Microsoft a monopoly lock on desktop computing. XENIX as a product was
rapidly deep-sixed, and eventually sold to SCO.

It was not apparent at the time how successful (or how destructive) Microsoft was going to be. Since
the IBM PC-1 didn’t have the hardware capacity to run Unix, Unix people barely noticed it at all
(though, ironically enough, DOS 2.0 eclipsed CP/M largely because Microsoft's co-founder Paul
Allen merged in Unix features including subdirectories and pipes). There were things that seemed
much more interesting going on — like the 1982 launching of Sun Microsystems.

Sun Microsystems founders Bill Joy, Andreas Bechtolsheim, and Vinod Khosla set out to build
a dream Unix machine with built-in networking capability. ~They combined hardware designed
at Stanford with the Unix developed at Berkeley to produce a smashing success, and founded the
workstation industry. At the time, nobody much minded watching source-code access to one branch
of the Unix tree gradually dry up as Sun began to behave less like a freewheeling startup and more
like a conventional firm. Berkeley was still distributing BSD with source code. Officially, System

Il source licenses cost $40,000 each; but Bell Labs was turning a blind eye to the number of bootleg
Bell Labs Unix tapes in circulation, the universities were still swapping code with Bell Labs, and it
looked like Sun’s commercialization of Unix might just be the best thing to happen to it yet.

1982 was also the year that C first showed signs of establishing itself outside the Unix world as
the systems-programming language of choice. It would only take about five years for C to drive
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machine assemblers almost completely out of use. By the early 1990s C and C++ would dominate
not only systems but application programming; by the late 1990s all other conventional compiled
languages would be effectively obsolete.

When DEC canceled development on the PDP-10’s successor machine (Jupiter) in 1983, VAXes
running Unix began to take over as the dominant Internet machines, a position they would hold
until being displaced by Sun workstations. By 1985, about 25% of all VAXes would be running
Unix despite DEC's stiff opposition. But the longest-term effect of the Jupiter cancellation was
a less obvious one; the death of the MIT Al Lab’s PDP-10-centered hacker culture motivated a
programmer named Richard Stallman to begin writing GNU, a complete free clone of Unix.

By 1983 there were no fewer than six Unix-workalike operating systems for the IBM-PC: uNETix,
Venix, Coherent, QNX, Idris, and the port hosted on the Sritek PC daughtercard. = There was
still no port of Unix in either the System V or BSD versions; both groups considered the 8086
microprocessor woefully underpowered and wouldn’t go near it.  None of the Unix-workalikes
were significant as commercial successes, but they indicated a significant demand for Unix on cheap
hardware that the major vendors were not supplying. No individual could afford to meet it, either,
not with the $40,000 price-tag on a source-code license.

Sun was already a success (with imitators!) when, in 1983, the U.S. Department of Justice won its
second antitrust case against AT&T and broke up the Bell System. This relieved AT&T from the
1958 consent decree that had prevented them from turning Unix into a product. AT&T promptly
rushed to commercialize Unix System V—a move that nearly killed Unix.

So true. But their marketing did spread Unix internationally.

<author>KenThompson</author>

Most Unix boosters thought that the divestiture was great news. We thought we saw in the post-
divestiture AT&T, Sun Microsystems, and Sun’s smaller imitators the nucleus of a healthy Unix
industry — one that, using inexpensive 68000-based workstations, would challenge and eventually
break the oppressive monopoly that then loomed over the computer industry — IBM’s.

What none of us realized at the time was that the productization of Unix would destroy the free
exchanges of source code that had nurtured so much of the system'’s early vitality. Knowing no other
model than secrecy for collecting profits from software and no other model than centralized control
for developing a commercial product, AT&T clamped down hard on source-code distribution.
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Bootleg Unix tapes became far less interesting in the knowledge that the threat of lawsuit might
come with them. Contributions from universities began to dry up.

To make matters worse, the big new players in the Unix market promptly committed major strategic
blunders. One was to seek advantage by product differentiation — a tactic which resulted in
the interfaces of different Unixes diverging. This threw away cross-platform compatibility and
fragmented the Unix market.

The other, subtler error was to behave as if personal computers and Microsoft were irrelevant to
Unix’s prospects. Sun Microsystems failed to see that commoditized PCs would inevitably become
an attack on its workstation market from below. AT&T, fixated on minicomputers and mainframes,
tried several different strategies to become a major player in computers, and badly botched all of
them. A dozen small companies formed to support Unix on PCs; all were underfunded, focused on
selling to developers and engineers, and never aimed at the business and home market that Microsoft
was targeting.

In fact, for years after divestiture the Unix community was preoccupied with the first phase of the
Unix wars — an internal dispute, the rivalry between System V Unix and BSD Unix. The dispute
had several levels, some technical (sockets vs. streams, BSD tty vs. System V termio) and some
cultural. The divide was roughly between longhairs and shorthairs; programmers and technical
people tended to line up with Berkeley and BSD, more business-oriented types with AT&T and
System V. The longhairs, repeating a theme from Unix’s early days ten years before, liked to see
themselves as rebels against a corporate empire; one of the small companies put out a poster showing
an X-wing-like space fighter marked “BSD” speeding away from a huge AT&T ‘death star’ logo left
broken and in flames. Thus we fiddled while Rome burned.

But something else happened in the year of the AT&T divestiture that would have more long-term
importance for Unix. A programmer/linguist named Larry Wall quietly invented the patch(1) utility.
The patchprogram, a simple tool that applies changebars generated by diff(1) to a base file, meant
that Unix developers could cooperate by passing around patch sets — incremental changes to code
— rather than entire code files. This was important not only because patches are less bulky than
full files, but because patches would often apply cleanly even if much of the base file had changed
since the patch-sender fetched his copy. With this tool, streams of development on a common
source-code base could diverge, run in parallel, and re-convergepaittgprogram did more than

any other single tool to enable collaborative development over the Internet — a method that would
revitalize Unix after 1990.
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In 1985 Intel shipped the first 386 chip, capable of addressing 4 gigabytes of memory with a flat
address space. The clumsy segment addressing of the 8086 and 286 became immediately obsolete.
This was big news, because it meant that for the first time, a microprocessor in the dominant Intel
family had the capability to run Unix without painful compromises. The handwriting was on the
wall for Sun and the other workstation makers. They failed to see it.

1985 was also the year that Richard Stallman issued the GNU manifesto [Stallman] and launched the
Free Software Foundation. Very few people took him or his GNU project seriously, a judgment that
turned out to be seriously mistaken. In an unrelated development of the same year, the originators of
the X window system released it as source code without royalties, restrictions, or license code. As
a direct result of this decision, it became a safe neutral area for collaboration between Unix vendors,
and defeated proprietary contenders to become Unix’s graphics engine.

Serious standardization efforts aimed at reconciling the System V and Berkeley APIs also began in
1983 with the /usr/group standard. This was followed in 1985 by the POSIX standards, an effort
backed by the IEEE. These described the intersection set of the BSD and SVR3 (System V Release
3) calls, with the superior Berkeley signal handling and job control but with SVR3 terminal control.

All later Unix standards would incorporate POSIX at their core, and later Unixes would adhere to

it closely. The only major addition to the modern Unix kernel APl to come afterwards was BSD
sockets.

In 1986 Larry Wall, previously the inventor of patch(1), began work on Perl, which would become
the first and most widely used of the open-source scripting languages. In early 1987 the first version
of the GNU C compiler appeared, and by the end of 1987 the core of the GNU toolset was falling
into place: editor, compiler, debugger, and other basic development tools. = Meanwhile, the X
windowing system was beginning to show up on relatively inexpensive workstations. Together,
these would provide the armature for the open-source Unix developments of the 1990s.

1986 was also the year that PC technology broke free of IBM’s grip. IBM, still trying to preserve a
price-vs.-power curve across its product line that would favor its high-margin mainframe business,
rejected the 386 for most of its new line of PS/2 computers in favor of the weaker 286. The PS/2
series, designed around a proprietary bus architecture to lock out clonemakers, became a colossally
expensive failuré” Compag, the most aggressive of the clonemakers, trumped IBM’s move by
releasing the first 386 machine. Even with a clock speed of a mere 16 MHz, the 386 made a tolerable
Unix machine. It was the first PC of which that could be said.

"The PS/2 did, however, leave one mark on later PCs — they made the mouse a standard peripheral, which is why the mouse
connector on the back of your chassis is called a “PS/2 port”.
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It was beginning to be possible to imagine that Stallman’s GNU project might mate with 386
machines to produce Unix workstations almost an order of magnitude less costly than anyone was
offering.  Curiously, no one seems to have actually got this far in their thinking. Most Unix
programmers, coming from the minicomputer and workstation worlds, continued to disdain cheap
80x86 machines in favor of more elegant 68000-based designs. And, though a lot of programmers
contributed to the GNU project, among Unix people it tended to be considered a quixotic gesture
that was unlikely to have near-term practical consequences.

The Unix community had never lost its rebel streak. But in retrospect, we were nearly as blind
to the future bearing down on us as IBM or AT&T. Not even Richard Stallman, who had declared
a moral crusade against proprietary software a few years before, really understood how badly the
productization of Unix had damaged the community around it; his concerns were with more abstract
and long-term issues.  The rest of us kept hoping that some clever variation on the corporate
formula would solve the problems of fragmentation, wretched marketing, and strategic drift, and
redeem Unix’s pre-divestiture promise. But worse was still to come.

1988 was the year Ken Olsen (CEO of DEC) famously described Unix as “snake oil”. DEC had
been shipping its own variant of Unix on PDP-11s since 1982, but really wanted the business to go
to its proprietary VMS operating system. DEC and the minicomputer industry were in deep trouble,
swamped by waves of powerful low-cost machines coming out of Sun Microsystems and the rest of
the workstation vendors. Most of those workstations ran Unix.

But the Unix industry’s own problems were growing more severe. In 1988 AT&T took a 20% stake
in Sun Microsystems. These two companies, the leaders in the Unix market, were beginning to
wake up to the threat posed by PCs, IBM, and Microsoft, and to realize that the preceding five years
of bloodletting had gained them little. The AT&T/Sun alliance and the development of technical
standards around POSIX eventually healed the breach between the System V and BSD Unix lines.
But the second phase of the Unix wars began when the second-tier vendors (IBM, DEC, Hewlett-
Packard, and others) formed the Open Software Foundation and lined up against the AT&T/Sun axis
(represented by Unix International). More rounds of Unix fighting Unix ensued.

Meanwhile, Microsoft was making billions in the home and small-business markets that the warring

Unix factions had never found the will to address. The 1990 release of Windows 3.0 — the first

successful graphical operating system from Redmond — cemented Microsoft's dominance, and
created the conditions that would allow them to flatten and monopolize the market for desktop
applications in the 1990s.
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The years from 1989 to 1993 were the darkest in Unix’s history. It appeared then that all the Unix
community’s dreams had failed. Internecine warfare had reduced the proprietary Unix industry to
a squabbling shambles that never summoned either the determination or the capability to challenge
Microsoft. The elegant Motorola chips favored by most Unix programmers had lost out to Intel's
ugly but inexpensive processors. The GNU project failed to produce the free Unix kernel it had
been promising since 1985, and after years of excuses its credibility was beginning to wear thin.
PC technology was being relentlessly corporatized. The pioneering Unix hackers of the 1970s
were hitting middle age and slowing down. Hardware was getting cheaper, but Unix was still too
expensive. We were belatedly becoming aware that the old monopoly of IBM had yielded to a
newer monopoly of Microsoft, and Microsoft's mal-engineered software was rising around us like a
tide of sewage.

Blows against the Empire: 1991-1995

The first glimmer of light in the darkness was the 1990 effort by William Jolitz to port BSD onto

a 386 box, publicized by a series of magazine articles beginning in 1991. The 386BSD port was
possible because, partly influenced by Stallman, Berkeley hacker Keith Bostic had begun an effort
to clean AT&T proprietary code out of the BSD sources in 1988. But the 386BSD project took a
severe blow when, near the end of 1991, Jolitz walked away from it and destroyed his own work.
There are conflicting explanations, but a common thread in all is that Jolitz wanted his code to be
released as unencumbered source and was upset when the corporate sponsors of the project opted
for a more proprietary licensing model.

In August 1991 Linus Torvalds, then an unknown university student from Finland, announced the
Linux project. Torvalds is on record that one of his main motivations was the high cost of Sun’s Unix

at his university. Torvalds has also said that he would have joined the BSD effort had he known of
it, rather than founding his own. But 386BSD was not shipped until early 1992, some months after
the first Linux release.

The importance of both these projects became clear only in retrospect. At the time, they attracted
little notice even within the Internet hacker culture — let alone in the wider Unix community, which
was still fixated on more capable machines than PCs, and on trying to reconcile the special properties
of Unix with the conventional proprietary model of a software business.

It would take another two years and the great Internet explosion of 1993-1994 before the true
importance of Linux and the open-source BSD distributions became evident to the rest of the Unix
world. Unfortunately for the BSDers, an AT&T lawsuit against BSDI (the startup company that had
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backed the Jolitz port) consumed much of that time and motivated some key Berkeley developers to
switch to Linux.

Code copying and theft of trade secrets was alleged. The actual infringing code
was not identified for nearly two years. The lawsuit could have dragged on for
much longer but for the fact that Novell bought USL from AT&T and sought a
settlement. In the end, three files were removed from the 18,000 that made up the
distribution, and a number of minor changes were made to other files. In addition,
the University agreed to add USL copyrights to about 70 files, with the stipulation
that those files continued to be freely redistributed.

<author>MarshallKirkMcKusick</author>

The settlement set an important precedent by freeing an entire working Unix from proprietary
control, but its effects on BSD itself were dire. Matters were not helped when, in 1992-1994,
the Computer Science Research Group at Berkeley shut down; afterwards, factional warfare within
the BSD community split it into three competing development efforts. As a result, the BSD lineage
lagged behind Linux at a crucial time and lost to it the lead position in the Unix community.

The Linux and BSD development efforts were native to the Internet in a way previous Unixes had
not been. They relied on distributed development and Larry Wall's patch(1) tool, and recruited
developers via email and through Usenet newsgroups. Accordingly, they got a tremendous boost
when Internet Service Provider businesses began to proliferate in 1993, enabled by changes in
telecomm technology and the privatization of the Internet backbone that are outside the scope of
this history. The demand for cheap Internet was created by something else: the 1991 invention of
the World Wide Web. The Web was the “killer app” of the Internet, the graphical user interface
technology that made it irresistible to a huge population of nontechnical end users.

The mass-marketing of the Internet both increased the pool of potential developers and lowered the
transaction costs of distributed development. The results were reflected in efforts like XFree86,
which used the Internet-centric model to build a more effective development organization than that
of the official X Consortium. The first XFree86 in 1992 gave Linux and the BSDs the graphical-
user-interface engine they had been missing.  Over the next decade XFree86 would lead in X
development, and an increasing portion of the X Consortium’s activity would come to consist of
funneling innovations originated in the XFree86 community back to the Consortium’s industrial
SpONSOrs.
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By late 1993, Linux had both Internet capability and X. The entire GNU toolkit had been hosted on
it from the beginning, providing high-quality development tools. Beyond GNU tools, Linux acted
as a basin of attraction, collecting and concentrating twenty years of open-source software that
had previously been scattered across a dozen different proprietary Unix platforms. Though the
Linux kernel was still officially in beta (at 0.99 level), it was remarkably crash-free. The breadth
and quality of the software in Linux distributions was already that of a production-ready operating
system.

A few of the more flexible-minded among old-school Unix developers began to notice that the long-
awaited dream of a cheap Unix system for everybody had snuck up on them from an unexpected
direction. It didn’t come from AT&T or Sun or any of the traditional vendors. Nor did it rise out

of an organized effort in academia. It was a bricolage that bubbled up out of the Internet by what
seemed like spontaneous generation, appropriating and recombining elements of the Unix tradition
in surprising ways.

Elsewhere, corporate maneuvering continued. AT&T divested its interest in Sun in 1992; then sold
its Unix Systems Laboratories to Novell in 1993; Novell handed off the Unix trademark to the
X/Open standards group in 1994; AT&T and Novell joined OSF in 1994, finally ending the Unix
wars. In 1995 SCO bought UnixWare (and the rights to the original Unix sources) from Novell. In
1996, X/Open and OSF merged, creating one big Unix standards group.

But the conventional Unix vendors and the wreckage of their wars came to seem steadily less and
less relevant. The action and energy in the Unix community were shifting to Linux and BSD and
the open-source developers. By the time IBM, Intel, and SCO announced the Monterey project in
1998 — a last-gasp attempt to merge One Big System out of all the proprietary Unixes left standing
— developers and the trade press reacted with amusement, and the project was abruptly canceled in
2001 after three years of going nowhere.

The industry transition could not be said to have completed until 2000, when SCO sold UnixWare
and the original Unix source-code base to Caldera — a Linux distributor. But after 1995, the story
of Unix became the story of the open-source movement. There’s another side to that story; to tell
it, we'll need to return to 1961 and the origins of the Internet hacker culture.

Origins and History of the Hackers, 1961-1995

The Unix tradition is an implicit culture that has always carried with it more than just a bag of
technical tricks. It transmits a set of values about beauty and good design; it has legends and folk
heroes. Intertwined with the history of the Unix tradition is another implicit culture that is more
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difficult to label neatly. It has its own values and legends and folk heroes, partly overlapping with
those of the Unix tradition and partly derived from other sources. It has most often been called the
“hacker culture”, and since 1998 has largely coincided with what the computer trade press calls “the
open source movement”.

The relationships between the Unix tradition, the hacker culture, and the open-source movement
are subtle and complex. They are not simplified by the fact that all three implicit cultures have
frequently been expressed in the behaviors of the same human beings. But since 1990 the story of
Unix is largely the story of how the open-source hackers changed the rules and seized the initiative
from the old-line proprietary Unix vendors. Therefore, the other half of the history behind today’s
Unix is the history of the hackers.

At Play in the Groves of Academe: 1961-1980

The roots of the hacker culture can be traced back to 1961, the year MIT took delivery of its first

PDP-1 minicomputer. The PDP-1 was one of the earliest interactive computers, and (unlike other
machines) of the day was inexpensive enough that time on it did not have to be rigidly scheduled.
It attracted a group of curious students from the Tech Model Railroad Club who experimented with

it in a spirit of fun. Hackers: Heroes of the Computer Revolut[brvy] entertainingly describes

the early days of the club. Their most famous achievement was SPACEWAR, a game of dueling
rocketships loosely inspired by thensmarspace operas of E.E. “Doc” Smith.

Several of the TMRC experimenters later went on to become core members of the MIT Artificial
Intelligence Lab, which in the 1960s and 1970s became one of the world centers of cutting-edge
computer science. They took some of TMRC's slang and in-jokes with them, including a tradition
of elaborate (but harmless) pranks called “hacks”. The Al Lab programmers appear to have been
the first to describe themselves as “hackers”.

After 1969 the MIT Al Lab was connected, via the early ARPANET, to other leading computer
science research laboratories at Stanford, Bolt Beranek & Newman, Carnegie-Mellon University and
elsewhere. Researchers and students got the first foretaste of the way fast network access abolishes
geography, often making it easier to collaborate and form friendships with distant people on the net
than it would be to do likewise with colleagues closer-by but less connected.

Software, ideas, slang, and a good deal of humor flowed over the experimental ARPANET links.
Something like a shared culture began to form. One of its earliest and most enduring artifacts was

18SPACEWAR was not related to Ken Thompson’s Space Travel game, other than by the fact that both appealed to science-
fiction fans.
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the Jargon File, a list of shared slang terms that originated at Stanford in 1973 and went through
several revisions at MIT after 1976. Along the way it accumulated slang from CMU, Yale, and
other ARPANET sites.

Technically, the early hacker culture was largely hosted on PDP-10 minicomputers. They used a
variety of operating systems that have since passed into history: TOPS-10, TOPS-20, Multics, ITS,
SAIL. They programmed in assembler and dialects of Lisp. PDP-10 hackers took over running the
ARPANET itself because nobody else wanted the job. Later, they became the founding cadre of
the Internet Engineering Task Force (IETF) and originated the tradition of standardization through
Requests For Comment (RFCs).

Socially, they were young, exceptionally bright, almost entirely male, dedicated to programming to
the point of addiction, and tended to have streaks of stubborn nonconformism — what years later
would be called ‘geeks’. They, too, tended to be shaggy hippies and hippie-wannabes. They,
too, had a vision of computers as community-building devices. They read Robert Heinlein and
J. R. R. Tolkien, played in the Society for Creative Anachronism, and tended to have a weakness for
puns. Despite their quirks (or perhaps because of them!) many of them were among the brightest
programmers in the world.

They werenot Unix programmers.  The early Unix community was drawn largely from the
same pool of geeks in academia and government or commercial research laboratories, but the two
cultures differed in important ways. One that we've already touched on is the weak networking of
early Unix. There was effectively no Unix-based ARPANET access until after 1980, and it was
uncommon for any individual to have a foot in both camps.

Collaborative development and the sharing of source code was a valued tactic for Unix programmers.
To the early ARPANET hackers, on the other hand, it was more than a tactic: it was something rather
closer to a shared religion, partly arising from the academic “publish or perish” imperative and (in its
more extreme versions) developing into an almost Chardinist idealism about networked communities
of minds. The most famous of these hackers, Richard M. Stallman, became the ascetic saint of that
religion.

Internet Fusion and the Free Software Movement: 1981-1991

After 1983 and the BSD port of TCP/IP, the Unix and ARPANET cultures began to fuse together.
This was a natural development once the communication links were in place, since both cultures
were composed of the same kind of people (indeed, in a few but significant casesrtgmeople).
ARPANET hackers learned C and began to speak the jargon of pipes, filters, and shells; Unix
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programmers learned TCP/IP and started to call each other “hackers”.  The process of fusion

was accelerated after the Project Jupiter cancellation in 1983 killed the PDP-10’s future. By 1987

the two cultures had merged so completely that most hackers programmed in C and casually used
slang terms that went back to the Tech Model Railroad Club of twenty-five years earlier.

(In 1979 | was unusual in having strong ties to both the Unix and ARPANET cultures. In 1985
that was no longer unusual. By the time | expanded the old ARPANET Jargon File inkéethe
Hacker'’s DictionaryfRaymond96] in 1991, the two cultures had effectively fused. The Jargon File,
born on the ARPANET but revised on Usenet, aptly symbolized the merger.)

But TCP/IP networking and slang were not the only things the post-1980 hacker culture inherited
from its ARPANET roots. It also got Richard Stallman, and Stallman’s moral crusade.

Richard M. Stallman (generally known by his login name, RMS) had already proved by the late
1970s that he was one of the most able programmers alive. Among his many inventions was the
Emacs editor. For RMS, the Jupiter cancellation in 1983 only finished off a disintegration of the MIT
Al Lab culture that had begun a few years earlier as many of its best went off to help run competing
Lisp-machine companies. RMS felt ejected from a hacker Eden, and decided that proprietary
software was to blame.

In 1983 Stallman founded the GNU project, aimed at writing an entire free operating system.
Though Stallman was not and had never been a Unix programmer, under post-1980 conditions
implementing a Unix-like operating system became the obvious strategy to pursue.  Most of
RMS’s early contributors were old-time ARPANET hackers newly decanted into Unix-land, in
whom the ethos of code-sharing ran rather stronger than it did among those with a more Unix-
centered background.

In 1985, RMS published the GNU Manifesto. In it he consciously created an ideology out of the
values of the pre-1980 ARPANET hackers — complete with a novel ethico-political claim, a self-
contained and characteristic discourse, and an activist plan for change. RMS aimed to knit the diffuse
post-1980 community of hackers into a coherent social machine for achieving a single revolutionary
purpose. His behavior and rhetoric half-consciously echoed Karl Marx’s attempts to mobilize the
industrial proletariat against the alienation of their work.

RMS’s manifesto ignited a debate that is still live in the hacker culture today. His program went
way beyond maintaining a codebase, and essentially implied the abolition of intellectual-property
rights in software. In pursuit of this goal, RMS popularized the term “free software”, which was the

first attempt to label the product of the entire hacker culture. He wrote the General Public License
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(GPL), which was to become both a rallying point and a focus of great controversy, for reasons
we will examine in Chapter 16. You can learn more about RMS’s position and the Free Software
Foundation at the GNU website [http://www.gnu.org].

The term “free software” was partly a description and partly an attempt to define a cultural
identity for hackers. On one level, it was quite successful. Before RMS, people in the hacker
culture recognized each other as fellow-travelers and used the same slang, but nobody bothered
arguing about what a ‘hacker’ is or should be. After him, the hacker culture became much more
self-conscious; value disputes (often framed in RMS’s language even by those who opposed his
conclusions) became a normal feature of debate. RMS, a charismatic and polarizing figure, himself
became so much a culture hero that by the year 2000 he could hardly be distinguished from his
legend. Free as in FreedorfWilliams] gives us an excellent portrait.

RMS’s arguments influenced the behavior even of many hackers who remained skeptical of his
theories. In 1987, he persuaded the caretakers of BSD Unix that cleaning out AT&T's proprietary
code so they could release an unencumbered version would be a good idea. However, despite his
determined efforts over more than fifteen years, the post-1980 hacker culture never unified around
his ideological vision.

Other hackers were rediscovering open, collaborative development without secrets for more prag-
matic, less ideological reasons. A few buildings away from Richard Stallman’s 9th-floor office
at MIT, the X development team thrived during the late 1980s. It was funded by Unix vendors
who had argued each other to a draw over the control and intellectual-property-rights issues sur-
rounding the X windowing system, and saw no better alternative than to leave it free to everyone.
In 1987-1988 the X development prefigured the really huge distributed communities that would
redefine the leading edge of Unix five years later.

X was one of the first large-scale open-source projects to be developed by a
disparate team of individuals working for different organizations spread across
the globe. E-mail allowed ideas to move rapidly among the group so that issues
could be resolved as quickly as necessary, and each individual could contribute
in whatever capacity suited them best. Software updates could be distributed
in a matter of hours, enabling every site to act in a concerted manner during
development. The net changed the way software could be developed.

<author>KeithPackard</author>
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The X developers were no partisans of the GNU master plan, but they weren't actively opposed to it,
either. Before 1995 the most serious opposition to the GNU plan came from the BSD developers.
The BSD people, who remembered that they had been writing freely redistributable and modifiable
software years before RMS’s manifesto, rejected GNU'’s claim to historical and ideological primacy.
They specifically objected to the infectious or “viral” property of the GPL, holding out the BSD
license as being “more free” because it placed fewer restrictions on the reuse of code.

It did not help RMS'’s case that, although his Free Software Foundation had produced most of the
rest of a full software toolkit, it failed to deliver the central piece. Ten years after the founding
of the GNU project, there was still no GNU kernel. While individual tools like Emacs and GCC
proved tremendously useful, GNU without a kernel neither threatened the hegemony of proprietary
Unixes nor offered an effective counter to the rising problem of the Microsoft monopoly.

After 1995 the debate over RMS’s ideology took a somewhat different turn. Opposition to it became
closely associated with both Linus Torvalds and the author of this book.

Linux and the Pragmatist Reaction: 1991-1998

Even as the HURD (the GNU kernel) effort was stalling, new possibilities were opening up. Inthe
early 1990s the combination of cheap, powerful PCs with easy Internet access proved a powerful
lure for a new generation of young programmers looking for challenges to test their mettle. The
user-space toolkit written by the Free Software Foundation suggested a way forward that was free
of the high cost of proprietary software development tools. Ideology followed economics rather
than leading the charge; some of the newbies signed up with RMS’s crusade and adopted the GPL as
their banner, and others identified more with the Unix tradition as a whole and joined the anti-GPL
camp, but most dismissed the whole dispute as a distraction and just wrote code.

Linus Torvalds neatly straddled the GPL/anti-GPL divide by using the GNU toolkit to surround
the Linux kernel he had invented and the GPL’s infectious properties to protect it, but rejecting the
ideological program that went with RMS’s license. Torvalds affirmed that he thought free software
better in general but occasionally used proprietary programs. His refusal to be a zealot even in his
own cause made him tremendously attractive to the majority of hackers who had been uncomfortable
with RMS'’s rhetoric, but had lacked any focus or convincing spokesperson for their skepticism.

Torvalds's cheerful pragmatism and adept but low-key style catalyzed an astonishing string of
victories for the hacker culture in the years 1993-1997, including not merely technical successes
but the solid beginnings of a distribution, service, and support industry around the Linux operating
system. As a result his prestige and influence skyrocketed. Torvalds became a hero on Internet
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time; by 1995, he had achieved in just four years the kind of culture-wide eminence that RMS had
required fifteen years to earn — and far exceeded Stallman’s record at selling “free software” to
the outside world. By contrast with Torvalds, RMS'’s rhetoric began to seem both strident and
unsuccessful.

Between 1991 and 1995 Linux went from a proof-of-concept surrounding an 0.1 prototype kernel to
an operating system that could compete on features and performance with proprietary Unixes, and
beat most of them on important statistics like continuous uptime. In 1995, Linux found its killer app:
Apache, the open-source webserver. Like Linux, Apache proved remarkably stable and efficient.
Linux machines running Apache quickly became the platform of choice for ISPs worldwide; Apache
captured about 60% of websitéshandily beating out both of its major proprietary competitors.

The one thing Torvalds did not offer was a new ideology — a new rationale or generative myth of
hacking, and a positive discourse to replace RMS’s hostility to intellectual property with a program
more attractive to people both within and outside the hacker culture. | inadvertently supplied
this lack in 1997 as a result of trying to understand why Linux’s development had not collapsed in
confusion years before. The technical conclusions of my published papers [Raymond01] will be
summarized in Chapter 19. For this historical sketch, it will be sufficient to note the impact of the
first one’s central formula: “Given a sufficiently large number of eyeballs, all bugs are shallow”.

This observation implied something nobody in the hacker culture had dared to really believe in the
preceding quarter-century: that its methods could reliably produce software that was not just more
elegant but more reliable artuktter than our proprietary competitors’ code. This consequence,
quite unexpectedly, turned out to present exactly the direct challenge to the discourse of “free
software” that Torvalds himself had never been interested in mounting. For most hackers and almost
all nonhackers, “Free software because it works better” easily trumped “Free software because all
software should be free”.

The paper’s contrast between ‘cathedral’ (centralized, closed, controlled, secretive) and ‘bazaar’
(decentralized, open, peer-review-intensive) modes of development became a central metaphor in
the new thinking. In an important sense this was merely a return to Unix’s pre-divestiture roots —

it is continuous with Mcllroy’s 1991 observations about the positive effects of peer pressure on Unix
development in the early 1970s and Dennis Ritchie’s 1979 reflections on fellowship, cross-fertilized
with the early ARPANET's academic tradition of peer review and with its idealism about distributed
communities of mind.

®Current and historical webserver share figures are available at the monthly Netcraft Web Server Survey
[http://www.netcraft.com/survey/].
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In early 1998, the new thinking helped motivate Netscape Communications to release the source
code of its Mozilla browser. The press attention surrounding that event took Linux to Wall Street,
helped drive the technology-stock boom of 1999-2001, and proved to be a turning point in both the
history of the hacker culture and of Unix.

The Open-Source Movement: 1998 and Onward

By the time of the Mozilla release in 1998, the hacker community could best be analyzed as a loose
collection of factions or tribes that included Richard Stallman’s Free Software Movement, the Linux
community, the Perl community, the Apache community, the BSD community, the X developers,
the Internet Engineering Task Force (IETF), and at least a dozen others. These factions overlap,
and an individual developer would be quite likely to be affiliated with two or more.

A tribe might be grouped around a particular codebase that they maintain, or around one or more
charismatic influence leaders, or around a language or development tool, or around a particular
software license, or around a technical standard, or around a caretaker organization for some part
of the infrastructure.  Prestige tends to correlate with longevity and historical contribution as
well as more obvious drivers like current market-share and mind-share; thus, perhaps the most
universally respected of the tribes is the IETF, which can claim continuity back to the beginnings
of the ARPANET in 1969. The BSD community, with continuous traditions back to the late
1970s, commands considerable prestige despite having a much lower installation count than Linux.
Stallman’s Free Software Movement, dating back to the early 1980s, ranks among the senior tribes
both on historical contribution and as the maintainer of several of the software tools in heaviest
day-to-day use.

After 1995 Linux acquired a special role as both the unifying platform for most of the community’s
other software and the hackers’ most publicly recognizable brand name. The Linux community
showed a corresponding tendency to absorb other sub-tribes — and, for that matter, to co-opt and
absorb the hacker factions associated with proprietary Unixes. The hacker culture as a whole began
to draw together around a common mission: push Linux and the bazaar development model as far
as it could go.

Because the post-1980 hacker culture had become so deeply rooted in Unix, the new mission was
implicitly a brief for the triumph of the Unix tradition. Many of the hacker community’s senior
leaders were also Unix old-timers, still bearing scars from the post-divestiture civil wars of the 1980s
and getting behind Linux as the last, best hope to fulfill the rebel dreams of the early Unix days.
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The Mozilla release helped further concentrate opinions. In March of 1998 an unprecedented
summit meeting of community influence leaders representing almost all of the major tribes convened
to consider common goals and tactics. That meeting adopted a new label for the common
development method of all the factions: open source.

Within six months almost all the tribes in the hacker community would accept “open source” as its
new banner. Older groups like IETF and the BSD developers would begin to apply it retrospectively
to what they had been doing all along. In fact, by 2000 the rhetoric of open source would not just
unify the hacker culture’s present practice and plans for the future, but re-color its view of its own
past.

The galvanizing effect of the Netscape announcement, and of the new prominence of Linux,
reached well beyond the Unix community and the hacker culture. Beginning in 1995, developers
from various platforms in the path of Microsoft's Windows juggernaut (MacOS; Amiga; OS/2;
DOS; CP/M; the weaker proprietary Unixes; various mainframe, minicomputer, and obsolete
microcomputer operating systems) had banded together around Sun Microsystems's Java language.
Many disgruntled Windows developers joined them in hopes of maintaining at least some nominal
independence from Microsoft. But Sun’s handling of Java was (as we discuss in Chapter 14)
clumsy and alienating on several levels. Many Java developers liked what they saw in the nascent
open-source movement, and followed Netscape’s lead into Linux and open source just as they had
previously followed Netscape into Java.

Open-source activists welcomed the surge of immigrants from everywhere. The old Unix hands
began to share the new immigrants’ dreams of not merely passively out-enduring the Microsoft
monopoly, but actually reclaiming key markets from it. The open-source community as a whole
prepared a major push for mainstream respectability, and began to welcome alliances with major
corporations that increasingly feared losing control of their own businesses as Microsoft’s lock-in
tactics grew ever bolder.

There was one exception: Richard Stallman and the Free Software Movement. “Open source”
was explicitly intended to replace Stallman’s preferred “free software” with a public label that was
ideologically neutral, acceptable both to historically opposed groups like the BSD hackers and those
who did not wish to take a position in the GPL/anti-GPL debate. Stallman flirted with adopting the
term, then rejected it on the grounds that it failed to represent the moral position that was central
to his thinking. The Free Software Movement has since insisted on its separateness from “open
source”, creating perhaps the most significant political fissure in the hacker culture of 2003.
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The other (and more important) intention behind “open source” was to present the hacker com-
munity’s methods to the rest of the world (especially the business mainstream) in a more market-
friendly, less confrontational way. In this role, fortunately, it proved an unqualified success — and
led to a revival of interest in the Unix tradition from which it sprang.

The Lessons of Unix History

The largest-scale pattern in the history of Unix is this: when and where Unix has adhered most
closely to open-source practices, it has prospered. Attempts to proprietarize it have invariably
resulted in stagnation and decline.

In retrospect, this should probably have become obvious much sooner than it did. We lost ten years
after 1984 learning our lesson, and it would probably serve us very ill to ever again forget it.

Being smarter than anyone else about important but narrow issues of software design didn’t prevent
us from being almost completely blind about the consequences of interactions between technology
and economics that were happening right under our noses. Even the most perceptive and forward-
looking thinkers in the Unix community were at best half-sighted. The lesson for the future is that
over-committing to any one technology or business model would be a mistake — and maintaining
the adaptive flexibility of our software and the design tradition that goes with it is correspondingly
imperative.

Another lesson is this: Never bet against the cheap plastic solution. Or, equivalently, the low-
end/high-volume hardware technology almost always ends up climbing the power curve and win-
ning. The economist Clayton Christensen calls thésuptive technologgnd showed ifThe Inno-

vator’s DilemmgChristensen] how this happened with disk drives, steam shovels, and motorcycles.
We saw it happen as minicomputers displaced mainframes, workstations and servers replaced minis,
and commodity Intel machines replaced workstations and servers. The open-source movement is
winning by commoditizing software. To prosper, Unix needs to maintain the knack of co-opting
the cheap plastic solution rather than trying to fight it.

Finally, the old-school Unix community failed in its efforts to be “professional” by welcoming in

all the command machinery of conventional corporate organization, finance, and marketing. We
had to be rescued from our folly by a rebel alliance of obsessive geeks and creative misfits—who
then proceeded to show us that professionalism and dedication really meant what we had been doing
beforewe succumbed to the mundane persuasions of “sound business practices”.

The application of these lessons with respect to software technologies other than Unix is left as an
easy exercise for the reader.
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Comparing the Unix Philosophy with Others

If you have any trouble sounding condescending, find a Unix user to show you how it's done.
<author>ScottAdams</author>
Dilbert newsletter 3.0, 1994

The design of operating systems conditions the style of software development under them in many
ways both obvious and subtle. Much of this book traces connections between the design of the
Unix operating system and the philosophy of program design that has evolved around it.  For
contrast, it will therefore be instructive to compare the classic Unix way with the styles of design
and programming native to other major operating systems.

The Elements of Operating-System Style

Before we can start discussing specific operating systems, we’ll need an organizing framework for
the ways that operating-system design can affect programming style for good or ill.

Overall, the design and programming styles associated with different operating systems seem
to derive from three different sources: (a) the intentions of the operating-system designers, (b)
uniformities forced on designs by costs and limitations in the programming environment, and (c)
random cultural drift, early practices becoming traditional simply because they were there first.

Even if we take it as given that there is some random cultural drift in every operating-system
community, considering the intentions of the designers and the costs and limitations of the results
does reveal some interesting patterns that can help us understand the Unix style better by contrast.
We can make the patterns explicit by analyzing some of the most important ways that operating
systems differ.

What Is the Operating System’s Unifying Idea?

Unix has a couple of unifying ideas or metaphors that shape its APIs and the development style that
proceeds from them. The most important of these are probably the “everything is a file” model
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and the pipe metaph®rbuilt on top of it. In general, development style under any given operating
system is strongly conditioned by the unifying ideas baked into the system by its designers — they
percolate upwards into applications programming from the models provided by system tools and
APls.

Accordingly, the most basic question to ask in contrasting Unix with another operating system is:
Does it have unifying ideas that shape its development, and if so how do they differ from Unix's?

To design the perfect anti-Unix, have no unifying idea at all, just an incoherent pile of ad-hoc
features.

Multitasking Capability

One of the most basic ways operating systems can differ is in the extent to which they can support
multiple concurrent processes. At the lowest end (such as DOS or CP/M) the operating system is
basically a sequential program loader with no capacity to multitask at all. Operating systems of this
kind are no longer competitive on general-purpose computers.

At the next level up, an operating system may heweperative multitasking Such systems can
support multiple processes, but a process has to voluntarily give up its hold on the processor before
the next one can run (thus, simple programming errors can readily freeze the machine). This style of
operating system was a transient adaptation to hardware that was powerful enough for concurrency
but lacked either a periodic clock interrépbr a memory-management unit or both; it, too, is
obsolete and no longer competitive.

Unix haspreemptive multitaskindgn which timeslices are allocated by a scheduler which routinely
interrupts or pre-empts the running process in order to hand control to the next one. Almost all
modern operating systems support preemption.

Note that “multitasking” is not the same as “multiuser”. An operating system can be multitasking
but single-user, in which case the facility is used to support a single console and multiple background
processes. True multiuser support requires multiple user privilege domains, a feature we’ll cover in
the discussion of internal boundaries a bit further on.

20For readers without Unix experience, a pipe is a way of connecting the output of one program to the input of another. We’'ll
explore the ways this idea can be used to help programs cooperate in Chapter 7.

21A periodic clock interrupt from the hardware is useful as a sort of heartbeat for a timesharing system; each time it fires, it
tells the system that it may be time to switch to another task, defining the size of the unit timeslice. In 2003 Unixes usually
set the heartbeat to either 60 or 100 times a second.

7



Chapter 3. Contrasts

To design the perfect anti-Unix, don’t support multitasking at all — or, support multitasking but
cripple it by surrounding process management with a lot of restrictions, limitations, and special
cases that mean it’s quite difficult to get any actual use out of multitasking.

Cooperating Processes

In the Unix experience, inexpensive process-spawning and easy inter-process communication (IPC)
makes a whole ecology of small tools, pipes, and filters possible. We’'ll explore this ecology in
Chapter 7; here, we need to point out some consequences of expensive process-spawning and IPC.

The pipe was technically trivial, but profound in its effect. However, it would
not have been trivial without the fundamental unifying notion of the process as an
autonomous unit of computation, with process control being programmable. As
in Multics, a shell was just another process; process control did not come from
God inscribed in JCL.

<author>DougMcllroy</author>

If an operating system makes spawning new processes expensive and/or process control is difficult
and inflexible, you'll usually see all of the following consequences:

« Monster monoliths become a more natural way of programming.

* Lots of policy has to be expressed within those monoliths. This encourages C++ and elaborately
layered internal code organization, rather than C and relatively flat internal hierarchies.

*When processes can't avoid a need to communicate, they do so through mechanisms that are
either clumsy, inefficient, and insecure (such as temporary files) or by knowing far too much
about each others’ implementations.

» Multithreading is extensively used for tasks that Unix would handle with multiple communicat-
ing lightweight processes.

* Learning and using asynchronous I/O is a must.
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These are examples of common stylistic traits (even in applications programming) being driven by
a limitation in the OS environment.

A subtle but important property of pipes and the other classic Unix IPC methods is that they require
communication between programs to be held down to a level of simplicity that encourages separation
of function. Conversely, the result of having no equivalent of the pipe is that programs can only be
designed to cooperate by building in full knowledge of each others’ internals.

In operating systems without flexible IPC and a strong tradition of using it, programs communicate
by sharing elaborate data structures. Because the communication problem has to be solved anew
for all programs every time another is added to the set, the complexity of this solution rises as the
square of the number of cooperating programs. Worse than that, any change in one of the exposed
data structures can induce subtle bugs in an arbitrarily large number of other programs.

Word and Excel and PowerPoint and other Microsoft programs have intimate —
one might say promiscuous — knowledge of each others’ internals. In Unix,
one tries to design programs to operate not specifically with each other, but with
programs as yet unthought of.

<author>DougMcllroy</author>
We'll return to this theme in Chapter 7.

To design the perfect anti-Unix, make process-spawning very expensive, make process control
difficult and inflexible, and leave IPC as an unsupported or half-supported afterthought.

Internal Boundaries

Unix has wired into it an assumption that the programmer knows best. It doesn’t stop you or
request confirmation when you do dangerous things with your own data, like igsoing* . On

the other hand, Unix is rather careful about not letting you step on other people’s data. In fact,
Unix encourages you to have multiple accounts, each with its own attached and possibly differing
privileges, to help you protect yourself from misbehaving progr&nystem programs often have

their own pseudo-user accounts to confer access to special system files without requiring unlimited
(or superuseraccess.

22The modern buzzword for this isle-based security
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Unix has at least three levels of internal boundaries that guard against malicious users or buggy
programs. One is memory management; Unix uses its hardware’s memory management unit (MMU)

to ensure that separate processes are prevented from intruding on the others’ memory-address spaces.
A second is the presence of true privilege groups for multiple users — an ordinary (nhonroot) user’s
processes cannot alter or read another user’s files without permission. A third is the confinement
of security-critical functions to the smallest possible pieces of trusted code. Under Unix, even the
shell (the system command interpreter) is not a privileged program.

The strength of an operating system’s internal boundaries is not merely an abstract issue of design:
It has important practical consequences for the security of the system.

To design the perfect anti-Unix, discard or bypass memory management so that a runaway process
can crash, subvert, or corrupt any running program. Have weak or nonexistent privilege groups, so
users can readily alter each others’ files and the system’s critical data (e.g., a macro virus, having
seized control of your word processor, can format your hard drive). And trust large volumes of
code, like the entire shell and GUI, so that any bug or successful attack on that code becomes a
threat to the entire system.

File Attributes and Record Structures

Unix files have neither record structure nor attributes. In some operating systems, files have an
associated record structure; the operating system (or its service libraries) knows about files with a
fixed record length, or about text line termination and whether CR/LF is to be read as a single logical
character.

In other operating systems, files and directories can have namef/attribute pairs associated with
them — out-of-band data used (for example) to associate a document file with an application that
understands it. (The classic Unix way to handle these associations is to have applications recognize
‘magic numbers’, or other type data within the file itself.)

OS-level record structures are generally an optimization hack, and do little more than complicate
APIs and programmers’ lives. They encourage the use of opaque record-oriented file formats that
generic tools like text editors cannot read properly.

File attributes can be useful, but (as we will see in Chapter 20) can raise some awkward semantic
issues in a world of byte-stream-oriented tools and pipes. When file attributes are supported at
the operating-system level, they predispose programmers to use opaque formats and lean on the file
attributes to tie them to the specific applications that interpret them.
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To design the perfect anti-Unix, have a cumbersome set of record structures that make it a hit-or-
miss proposition whether any given tool will be able to even read a file as the writer intended it.
Add file attributes and have the system depend on them heavily, so that the semantics of a file will
not be determinable by looking at the data within it.

Binary File Formats

If your operating system uses binary formats for critical data (such as user-account records) it is
likely that no tradition of readable textual formats for applications will develop. We explain in
more detail why this is a problem in Chapter 5. For now it's sufficient to note the following
consequences:

« Even if a command-line interface, scripting, and pipes are supported, very few filters will evolve.

« Data files will be accessible only through dedicated tools. Developers will think of the tools
rather than the data files as central. Thus, different versions of file formats will tend to be
incompatible.

To design the perfect anti-Unix, make all file formats binary and opaque, and require heavyweight
tools to read and edit them.

Preferred User Interface Style

In Chapter 11 we will develop in some detail the consequences of the differences betneaand-

line interfaces(CLIs) andgraphical user interface$GUIs). Which kind an operating system’s
designers choose as its normal mode of presentation will affect many aspects of the design, from
process scheduling and memory management on up tagpkcation programming interfaces
(APIs) presented for applications to use.

It has been enough years since the first Macintosh that very few people need to be convinced that
weak GUI facilities in an operating system are a problem. The Unix lesson is the opposite: that
weak CLI facilities are a less obvious but equally severe deficit.

If the CLI facilities of an operating system are weak or nonexistent, you'll also see the following
consequences:

81



Chapter 3. Contrasts

« Programs will not be designed to cooperate with each other in unexpected ways — because they
can'tbe. Outputs aren’t usable as inputs.

*«Remote system administration will be sparsely supported, more difficult to use, and more
network-intensive?

« Even simple noninteractive programs will incur the overhead of a GUI or elaborate scripting
interface.

« Servers, daemons, and background processes will probably be impossible or at least rather
difficult, to program in any graceful way.

To design the perfect anti-Unix, have no CLI and no capability to script programs — or, important
facilities that the CLI cannot drive.

Intended Audience

The design of operating systems varies in response to the expected audience for the system. Some
operating systems are intended for back rooms, some for desktops. Some are designed for technical
users, others for end users. Some are intended to work standalone in real-time control applications,
others for an environment of timesharing and pervasive networking.

One important distinction is client vs. server. ‘Client’ translates as: being lightweight, suppporting
only a single user, able to run on small machines, designed to be switched on when needed and off
when the user is done, lacking pre-emptive multitasking, optimized for low latency, and putting a
lot of its resources into fancy user interfaces. ‘Server’ translates as: being heavyweight, capable of
running continuously, optimized for throughput, fully pre-emptively multitasking to handle multiple
sessions. In origin all operating systems were server operating systems; the concept of a client
operating system only emerged in the late 1970s with inexpensive but underpowered PC hardware.
Client operating systems are more focused on a visually attractive user experience than on 24/7
uptime.

All these variables have an effect on development style. One of the most obvious is the level
of interface complexity the target audience will tolerate, and how it tends to weight perceived
complexity against other variables like cost and capability. Unix is often said to have been written by
programmers for programmers — an audience that is notoriously tolerant of interface complexity.

ZThis problem was considered quite serious by Microsoft itself during their rebuild of Hotmail. See [BrooksD].
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This is a consequence rather than a goal. | abhor a system designed for the “user”,
if that word is a coded pejorative meaning “stupid and unsophisticated”.

<author>KenThompson</author>

To design the perfect anti-Unix, write an operating system that thinks it knows what you're doing
better than you do. And then adds injury to insult by getting it wrong.

Entry Barriers to Development

Another important dimension along which operating systems differ is the height of the barrier that
separates mere users from becoming developers. There are two important cost drivers here. One
is the monetary cost of development tools, the other is the time cost of gaining proficiency as a
developer. Some development cultures evolve social barriers to entry, but these are usually an
effect of the underlying technology costs, not a primary cause.

Expensive development tools and complex, opaque APIs produce small and elitist programming
cultures. Inthose cultures, programming projects are large, serious endeavors — they have to be in
order to offer a payoff that justifies the cost of both hard and soft (human) capital invested. Large,
serious projects tend to produce large, serious programs (and, far too often, large expensive failures).

Inexpensive tools and simple interfaces support casual programming, hobbyist cultures, and explo-
ration. Programming projects can be small (often, formal project structure is plain unnecessary),
and failure is not a catastrophe. This changes the style in which people develop code; among other
things, they show less tendency to over-commit to failed approaches.

Casual programming tends to produce lots of small programs and a self-reinforcing, expanding
community of knowledge. In a world of cheap hardware, the presence or absence of such a
community is an increasingly important factor in whether an operating system is long-term viable at
all.

Unix pioneered casual programming. One of the things Unix was first at doing was shipping with
a compiler and scripting tools as part of the default installation available to all users, supporting a
hobbyist software-development culture that spanned multiple installations. Many people who write
code under Unix do not think of it as writing code — they think of it as writing scripts to automate
common tasks, or as customizing their environment.

To design the perfect anti-Unix, make casual programming impossible.
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Operating-System Comparisons

The logic of Unix’s design choice stands out more clearly when we contrast it with other operating
systems. Here we will attempt only a design overview; for detailed discussion of the technical
features of different operating systeffis.

%See the OSData website [hitp://www.osdata.com/].
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Figure 3.1. Schematic history of timesharing.
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Figure 3.1 indicates the genetic relationships among the timesharing operating systems we’ll survey.
A few other operating systems (marked in gray, and not necessarily timesharing) are included for
context. Sytems in solid boxes are still live. The ‘birth’ are dates of first shipfighg ‘death’

dates are generally when the system was end-of-lifed by its vendor.

Solid arrows indicate a genetic relationship or very strong design influence (e.g., a later system with
an API deliberately reverse-engineered to match an earlier one). Dashed lines indicate significant
design influence. Dotted lines indicate weak design influence. Not all the genetic relationships are
acknowledged by the developers; indeed, some have been officially denied for legal or corporate-
strategy reasons but are open secrets in the industry.

The ‘Unix’ box includes all proprietary Unixes, including both AT&T and early Berkeley versions.
The ‘Linux’ box includes the open-source Unixes, all of which launched in 1991. They have
genetic inheritance from early Unix through code that was freed from AT&T proprietary control by
the settlement of a 1993 lawsift.

VMS

VMS is the proprietary operating system originally developed for the VAX minicomputer from
Digital Equipment Corporation. Itwas first released in 1978, was an important production operating
system in the 1980s and early 1990s, and continued to be maintained when DEC was acquired by
Compaq and Compag was acquired by Hewlett-Packard. It is still sold and supported in mid-2003,
though little new development goes on in it todayMS is surveyed here to show the contrast
between Unix and other CLI-oriented operating systems from the minicomputer era.

VMS has full preemptive multitasking, but makes process-spawning very expensive. The VMS
file system has an elaborate notion of record types (though not attributes). These traits have all the
consequences we outlined earlier on, especially (in VMS'’s case) the tendency for programs to be
huge, clunky monoliths.

VMS features long, readable COBOL-like system commands and command options. It has very
comprehensive on-line help (not for APIs, but for the executable programs and command-line
syntax). In fact, the VMS CLI and its help system are the organizing metaphor of VMS. Though X

SExcept for Multics which exerted most of its influence between the time its specifications were published in 1965 and when
it actually shipped in 1969.

ZFor details on the lawsuit, see Marshall Kirk McKusick’s paper in [OpenSources].

2’More information is available at the OpenVMS.org site [http://www.openvms.org].
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windows has been retrofitted onto the system, the verbose CLI remains the most important stylistic
influence on program design. This has the following major implications:

 The frequency with which people use command-line functions — the more voluminously you
have to type, the less you want to do it.

« The size of programs — people want to type less, so they want to use fewer programs, and write
larger ones with more bundled functions.

* The number and types of options your program accepts — they must conform to the syntactic
constraints imposed by the help system.

» The ease of using the help system — it's very complete, but search and discovery tools for it are
absent and it has poor indexing. This makes acquiring broad knowledge difficult, encourages
specialization, and discourages casual programming.

VMS has a respectable system of internal boundaries. It was designed for true multiuser operation
and fully employs the hardware MMU to protect processes from each other. The system command
interpreter is privileged, but the encapsulation of critical functions is otherwise reasonably good.
Security cracks against VMS have been rare.

VMS tools were initially expensive, and its interfaces are complex. Enormous volumes of VMS
programmer documentation are only available in paper form, so looking up anything is a time-
consuming, high-overhead operation. This has tended to discourage exploratory programming and
learning a large toolkit. Only since being nearly abandoned by its vendor has VMS developed casual
programming and a hobbyist culture, and that culture is not particularly strong.

Like Unix, VMS predated the client/server distinction. It was successful in its day as a general-
purpose timesharing operating system. The intended audience was primarily technical users and
software-intensive businesses, implying a moderate tolerance for complexity.

MacOS

The Macintosh operating system was designed at Apple in the early 1980s, inspired by pioneering
work on GUIs done earlier at Xerox's Palo Alto Research Center. It saw its debut with the
Macintosh in 1984. MacOS has gone through two significant design transitions since, and is
undergoing a third. The first transition was the shift from supporting only a single application at a
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time to being able to cooperatively multitask multiple applications (MultiFinder); the second was
the shift from 68000 to PowerPC processors, which both preserved backward binary compatibility
with 68K applications and brought in an advanced shared library management system for PowerPC
applications, replacing the original 68K trap instruction-based code-sharing system. The third was
the merger of MacOS design ideas with a Unix-derived infrastructure in MacOS X. Except where
specifically noted, the discussion here applies to pre-OS-X versions.

MacOS has a very strong unifying idea that is very different from Unix’s: the Mac Interface
Guidelines. These specify in great detail what an application GUI should look like and how it
should behave. The consistency of the Guidelines influenced the culture of Mac users in significant
ways. Not infrequently, simple-minded ports of DOS or Unix programs that did not follow the
Guidelines have been summarily rejected by the Mac user base and failed in the marketplace.

One key idea of the Guidelines is that things stay where you put them. Documents, directories, and
other objects have persistent locations on the desktop that the system doesn’'t mess with, and the
desktop context persists through reboots.

The Macintosh’s unifying idea is so strong that most of the other design choices we discussed above
are either forced by it or invisible. All programs have GUIs. There is no CLI at all. Scripting
facilities are present but much less commonly used than under Unix; many Mac programmers never
learn them. MacOS'’s captive-interface GUI metaphor (organized around a single main event loop)
leads to a weak scheduler without preemption. The weak scheduler, and the fact that all MultiFinder
applications run in a single large address space, implies that it is not practical to use separated
processes or even threads rather than polling.

MacOS applications are not, however, invariably monster monoliths. The system’s GUI support
code, which is partly implemented in a ROM shipped with the hardware and partly implemented in
shared libraries, communicates with MacOS programs through an event interface that has been quite
stable since its beginnings. Thus, the design of the operating system encourages a relatively clean
separation between application engine and GUI interface.

MacOS also has strong support for isolating application metadata like menu structures from the
engine code. MacOS files have both a ‘data fork’ (a Unix-style bag of bytes that contains a
document or program code) and a ‘resource fork’ (a set of user-definable file attributes). Mac
applications tend to be designed so that (for example) the images and sound used in them are stored
in the resource fork and can be modified separately from the application code.
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The MacOS system of internal boundaries is very weak. There is a wired-in assumption that there
is but a single user, so there are no per-user privilege groups. Multitasking is cooperative, not pre-
emptive. All MultiFinder applications run in the same address space, so bad code in any application
can corrupt anything outside the operating system’s low-level kernel. Security cracks against MacOS
machines are very easy to write; the OS has been spared an epidemic mainly because very few people
are motivated to crack it.

Mac programmers tend to design in the opposite direction from Unix programmers; that is, they
work from the interface inward, rather than from the engine outward (we’ll discuss some of the
implications of this choice in Chapter 20). Everything in the design of the MacOS conspires to
encourage this.

The intended role for the Macintosh was as a client operating system for nontechnical end users,
implying a very low tolerance for interface complexity. Developers in the Macintosh culture became
very, very good at designing simple interfaces.

The incremental cost of becoming a developer, assuming you have a Macintosh already, has never
been high. Thus, despite rather complex interfaces, the Mac developed a strong hobbyist culture
early on. There is a vigorous tradition of small tools, shareware, and user-supported software.

Classic MacOS has been end-of-lifed. Most of its facilities have been imported into MacOS X,
which mates them to a Unix infrastructure derived from the Berkeley traditigmthe same time,
leading-edge Unixes such as Linux are beginning to borrow ideas like file attributes (a generalization
of the resource fork) from MacOS.

0S/2

0S/2 began life as an IBM development project called ADOS (‘Advanced DOS’), one of three
competitors to become DOS 4. At that time, IBM and Microsoft were formally collaborating to
develop a next-generation operating system for the PC. OS/2 1.0 was first released in 1987 for the
286, but was unsuccessful. The 2.0 version for the 386 came out in 1992, but by that time the
IBM/Microsoft alliance had already fractured. Microsoft went in a different (and more lucrative)
direction with Windows 3.0. OS/2 attracted a loyal minority following, but never attracted a critical
mass of developers and users. It remained third in the desktop market, behind the Macintosh, until
being subsumed into IBM’s Java initiative after 1996. The last released version was 4.0 in 1996.

28MacOS X actually consists of two proprietary layers (ports of the OpenStep and Classic Mac GUIs) layered over an open-
source Unix core (Darwin).
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Early versions found their way into embedded systems and still, as of mid-2003, run inside many of
the world’s automated teller machines.

Like Unix, OS/2 was built to be preemptively multitasking and would not run on a machine without

an MMU (early versions simulated an MMU using the 286’s memory segmentation). Unlike Unix,
0S/2 was never built to be a multiuser system. Process-spawning was relatively cheap, but IPC
was difficult and brittle. Networking was initially focused on LAN protocols, but a TCP/IP stack
was added in later versions. There were no programs analogous to Unix service daemons, so OS/2
never handled multi-function networking very well.

0S/2 had both a CLI and GUI. Most of the positive legendry around OS/2 was about the Workplace
Shell (WPS), the OS/2 desktop. Some of this technology was licensed from the developers of the
AmigaOS Workbenck® a pioneering GUI desktop that still as of 2003 has a loyal fan base in Europe.
This is the one area of the design in which OS/2 achieved a level of capability which Unix arguably
has not yet matched. The WPS was a clean, powerful, object-oriented design with understandable
behavior and good extensibility. Years later it would become a model for Linux’s GNOME project.

The class-hierarchy design of WPS was one of OS/2’s unifying ideas. The other was multithreading.
0S/2 programmers used threading heavily as a partial substitute for IPC between peer processes. No
tradition of cooperating program toolkits developed.

0S/2 had the internal boundaries one would expect in a single-user OS. Running processes were
protected from each other, and kernel space was protected from user space, but there were no
per-user privilege groups. This meant the file system had no protection against malicious code.
Another consequence was that there was no analog of a home directory; application data tended to
be scattered all over the system.

A further consequence of the lack of multiuser capability was that there could be no privilege
distinctions in userspace. Thus, developers tended to trust only kernel code. Many system tasks
that in Unix would be handled by user-space daemons were jammed into the kernel or the WPS.
Both bloated as a result.

0OS/2 had a text vs. binary mode (that is, a mode in which CR/LF was read as a single end-of-
line, versus one in which no such interpretation was performed), but no other file record structure. It
supported file attributes, which were used for desktop persistence after the manner of the Macintosh.
System databases were mostly in binary formats.

2In return for some Amiga technology, IBM gave Commodore a license for its REXX scripting language. The deal is
described at http://www.0s2bbs.com/os2news/OS2Warp.html.
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The preferred Ul style was through the WPS. User interfaces tended to be ergonomically better than
Windows, though not up to Macintosh standards (OS/2's most active period was relatively early in
the history of MacOS Classic). Like Unix and Windows, OS/2’s user interface was themed around
multiple, independent per-task groups of windows, rather than capturing the desktop for the running
application.

The intended audience for OS/2 was business and nontechnical end users, implying a low tolerance
for interface complexity. It was used both as a client operating system and as a file and print server.

In the early 1990s, developers in the OS/2 community began to migrate to a Unix-inspired environ-
ment called EMX that emulated POSIX interfaces. Ports of Unix software started routinely showing
up under OS/2 in the latter half of the 1990s.

Anyone could download EMX, which included the GNU Compiler Collection and other open-source
development tools. IBM intermittently gave away copies of the system documentation in the OS/2
developer’s toolkit, which was posted on many BBSs and FTP sites. Because of this, the “Hobbes”
FTP archive of user-developed OS/2 software had already grown to over a gigabyte in size by 1995.
A very vigorous tradition of small tools, exploratory programming, and shareware developed and
retained a loyal following for some years after OS/2 itself was clearly headed for the dustbin of
history.

After the release of Windows 95 the OS/2 community, feeling beleaguered by Microsoft and
encouraged by IBM, became increasingly interested in Java. After the Netscape source code release
in early 1998, the direction of migration changed (rather suddenly), toward Linux.

0OS/2 is interesting as a case study in how far a multitasking but single-user operating-system design
can be pushed. Most of the observations in this case study would apply well to other operating
systems of the same general type, notably Amig8@8d GEM3! A wealth of OS/2 material is

still available on the Web in 2003, including some good histoties.

Windows NT

Windows NT (New Technology) is Microsoft's operating system for high-end personal and server
use; it is shipped in several variants that can all be considered the same for our purposes. All
of Microsoft’s operating systems since the demise of Windows ME in 2000 have been NT-based;

%0AmigaOS Portal [http://os.amiga.com/].
1The GEM Operating System [http://www.geocities.com/SiliconValley/Vista/6148/gem.html].
%2 See, for example, the OS Voice [http://www.os2voice.org/] and OS/2 BBS.COM [http://www.0s2bbs.com/] sites.
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Windows 2000 was NT 5, and Windows XP (current in 2003) is NT 5.1.  NT is genetically
descended from VMS, with which it shares some important characteristics.

NT has grown by accretion, and lacks a unifying metaphor corresponding to Unix’s “everything is a
file” or the MacOS desktop Because core technologies are not anchored in a small set of persistent
central metaphors, they become obsolete every few years. Each of the technology generations —
DOS (1981), Windows 3.1 (1992), Windows 95 (1995), Windows NT 4 (1996), Windows 2000
(2000), Windows XP (2002), and Windows Server 2003 (2003) — has required that developers
relearn fundamental things in a different way, with the old way declared obsolete and no longer well
supported.

There are other consequences as well:

* The GUI facilities coexist uneasily with the weak, remnant command-line interface inherited
from DOS and VMS.

» Socket programming has no unifying data object analogous to the Unix everything-is-a-file-
handle, so multiprogramming and network applications that are simple in Unix require several
more fundamental concepts in NT.

NT has file attributes in some of its file system types. They are used in a restricted way, to implement

access-control lists on some file systems, and don’t affect development style very much. It also has
a record-type distinction, between text and binary files, that produces occasional annoyances (both
NT and OS/2 inherited this misfeature from DOS).

Though pre-emptive multitasking is supported, process-spawning is expensive — not as expensive
as in VMS, but (at about 0.1 seconds per spawn) up to an order of magnitude more so than on a
modern Unix. Scripting facilities are weak, and the OS makes extensive use of binary file formats.
In addition to the expected consequences we outlined earlier are these:

* Most programs cannot be scripted at all. Programs rely on complex, fragilete procedure
call (RPC) methods to communicate with each other, a rich source of bugs.

33perhaps. It has been argued that the unifying metaphor of all Microsoft operating systems is “the customer must be locked
in”.
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« There are no generic tools at all. Documents and databases can't be read or edited without
special-purpose programs.

« Over time, the CLI has become more and more neglected because the environment there is so
sparse. The problems associated with a weak CLI have gotten progressively worse rather than
better. (Windows Server 2003 attempts to reverse this trend somewhat.)

System and user configuration data are centralized in a central properties registry rather than being
scattered through numerous dotfiles and system data files as in Unix. This also has consequences
throughout the design:

* The registry makes the system completely non-orthogonal. Single-point failures in applications
can corrupt the registry, frequently making the entire operating system unusable and requiring a
reinstall.

» The registry creepphenomenon: as the registry grows, rising access costs slow down all
programs.

NT systems on the Internet are notoriously vulnerable to worms, viruses, defacements, and cracks
of all kinds. There are many reasons for this, some more fundamental than others. The most
fundamental is that NT’s internal boundaries are extremely porous.

NT has access control lists that can be used to implement per-user privilege groups, but a great deal
of legacy code ignores them, and the operating system permits this in order not to break backward
compatibility. There are no security controls on message traffic between GUI clients3&ihdr,

adding them would also break backward compatibility.

While NT will use an MMU, NT versions after 3.5 have the system GUI wired into the same address
space as the privileged kernel for performance reasons. Recent versions even wire the webserver
into kernel space in an attempt to match the speed of Unix-based webservers.

These holes in the boundaries have the synergistic effect of making actual security on NT systems
effectively impossiblé® If an intruder can get code run as any user at all (e.g., through the Outlook
email-macro feature), that code can forge messages through the window system to any other running

S4http://security.tombom.co.uk/shatter.html
%Microsoft  actually —admitted publicly that NT  security is impossible in  March  2003.
See http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-010.asp.
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application. And any buffer overrun or crack in the GUI or webserver can be exploited to take
control of the entire system.

Because Windows does not handle library versioning properly, it suffers from a chronic configura-
tion problem called “DLL hell”, in which installing new programs can randomly upgrade (or even
downgrade!) the libraries on which existing programs depend. This applies to the vendor-supplied
system libraries as well as to application-specific ones: it is not uncommon for an application to ship
with specific versions of system libraries, and break silently when it does not havéthem.

On the bright side, NT provides sufficient facilities to host Cygwin, which is a compatibility layer
implementing Unix at both the utilities and the API level, with remarkably few compromises.
Cygwin permits C programs to make use of both the Unix and the native APIs, and is the first thing
many Unix hackers install on such Windows systems as they are compelled by circumstances to
make use of.

The intended audience for the NT operating systems is primarily nontechnical end users, implying
a very low tolerance for interface complexity. It is used in both client and server roles.

Early in its history Microsoft relied on third-party development to supply applications.  They
originally published full documentation for the Windows APIs, and kept the price of development
tools low. But over time, and as competitors collapsed, Microsoft's strategy shifted to favor in-
house development, they began hiding APIs from the outside world, and development tools grew
more expensive. As early as Windows 95, Microsoft was requiring nondisclosure agreements as a
condition for purchasing professional-quality development tools.

The hobbyist and casual-developer culture that had grown up around DOS and earlier Windows
versions was large enough to be self-sustaining even in the face of increasing efforts by Microsoft
to lock them out (including such measures as certification programs designed to delegitimize
amateurs). Shareware never went away, and Microsoft’s policy began to reverse somewhat after
2000 under market pressure from open-source operating systems and Java. However, Windows
interfaces for ‘professional’ programming continued to grow more complex over time, presenting
an increasing barrier to casual (or serious!) coding.

%The DLL hell problem is somewhat mitigated by the .NET development framework, which handles library versioning —
but as of 2003 .NET only ships on the highest-end server versions of NT.

$7Cygwin is largely compliant with the Single Unix Specification, but programs requiring direct hardware access run into
limitations in the Windows kernel that hosts it. Ethernet cards are notoriously problematic.
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The result of this history is a sharp dichotomy between the design styles practiced by amateur and
professional NT developers — the two groups barely communicate. While the hobbyist culture
of small tools and shareware is very much alive, professional NT projects tend to produce monster
monoliths even bulkier than those characteristic of ‘elitist’ operating systems like VMS.

Unix-like shell facilities, command sets, and library APIs are available under Windows through
third-party libraries including UWIN, Interix, and the open-source Cygwin.

BeOS

Be, Inc. was founded in 1989 as a hardware vendor, building pioneering multiprocessing machines
around the PowerPC chip. BeOS was Be’s attempt to add value to the hardware by inventing a
new, network-ready operating system model incorporating the lessons of both Unix and the MacOS
family, without being either. The result was a tasteful, clean, and exciting design with excellent
performance in its chosen role as a multimedia platform.

BeOS's unifying ideas were ‘pervasive threading’, multimedia flows, and the file system as database.
BeOS was designed to minimize latency in the kernel, making it well-suited for processing large
volumes of data such as audio and video streams in real time. BeOS ‘threads’ were actually
lightweight processes in Unix terminology, since they supported thread-local storage and therefore
did not necessarily share all address spaces. IPC via shared memory was fast and efficient.

BeOS followed the Unix model in having no file structure above the byte level. Like the MacOS, it
supported and used file attributes. In fact, the BeOS file system was actually a database that could
be indexed by any attribute.

One of the things BeOS took from Unix was intelligent design of internal boundaries. It made full
use of an MMU, and sealed running processes off from each other effectively. While it presented as
a single-user operating system (no login), it supported Unix-like privilege groups in the file system
and elsewhere in the OS internals. These were used to protect system-critical files from being
touched by untrusted code; in Unix terms, the user was logged in as an anonymous guest at boot
time, with the only other ‘user’ being root. Full multiuser operation would have been a small change
to the upper levels of the system, and there was in fact a BeLogin utility.

BeOS tended to use binary file formats and the native database built into the file system, rather than
Unix-like textual formats.
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The preferred Ul style of BeOS was GUI, and it leaned heavily on MacOS experience in interface
design. CLI and scripting were, however, also fully supported. The command-line shell of BeOS
was a port of bash(1), the dominant open-source Unix shell, running through a POSIX compatibility
library. Porting of Unix CLI software was, by design, trivially easy. Infrastructure to support the
full panoply of scripting, filters, and service daemons that goes with the Unix model was in place.

BeOS'’s intended role was as a client operating system specialized for near-real-time multimedia
processing (especially sound and video manipulation). Its intended audience included technical
and business end users, implying a moderate tolerance for interface complexity.

Entry barriers to BeOS development were low; though the operating system was proprietary,
development tools were inexpensive and full documentation was readily available. The BeOS
effort began as part of one of the efforts to unseat Intel’s hardware with RISC technology, and was
continued as a software-only effort after the Internet explosion. Its strategists were paying attention
during Linux’s formative period in the early 1990s, and were fully aware of the value of a large
casual-developer base. In fact they succeeded in attracting an intensely loyal following; as of 2003
no fewer than five separate projects are attempting to resurrect BeOS in open source.

Unfortunately, the business strategy surrounding BeOS was not as astute as the technical design.
The BeOS software was originally bundled with dedicated hardware, and marketed with only vague
hints about intended applications. Later (1998) BeOS was ported to generic PCs and more closely
focused on multimedia applications, but never attracted a critical mass of applications or users.
BeOS finally succumbed in 2001 to a combination of anticompetitive maneuvering by Microsoft
(lawsuit in progress as of 2003) and competition from variants of Linux that had been adapted for
multimedia handling.

MVS

MVS (Multiple Virtual Storage) is IBM’s flagship operating system for its mainframe computers.

Its roots stretch back to OS/360, which began life in the mid-1960s as the operating system IBM
wanted its customers to use on the then-new System/360 computer systems. Descendants of this
code remain at the heart of today’s IBM mainframe operating systems. Though the code has
been almost entirely rewritten, the basic design is largely untouched; backward compatibility has
been religiously maintained, to the point that applications written for OS/360 run unmodified on the
MVS of 64-bit z/Series mainframe computers three architectural generations later.

Of all the operating systems surveyed here, MVS is the only one that could be considered older than
Unix (the ambiguity stems from the degree to which it has evolved over time). It is also the least
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influenced by Unix concepts and technology, and represents the strongest design contrast with Unix.
The unifying idea of MVS is that all work is batch; the system is designed to make the most efficient
possible use of the machine for batch processing of huge amounts of data, with minimal concessions
to interaction with human users.

Native MVS terminals (the 3270 series) operate only in block mode. The user is presented with
a screen that he fills in, modifying local storage in the terminal. No interrupt is presented to the

mainframe until the user presses the send key. Character-level interaction, in the manner of Unix’s
raw mode, is impossible.

TSO, the closest equivalent to the Unix interactive environment, is limited in native capabilities.
Each TSO user is represented to the rest of the system as a simulated batch job. The facility
is expensive — so much so that its use is typically limited to programmers and support staff.
Ordinary users who need to merely run applications from a terminal almost never use TSO.
Instead, they work through transaction monitors, a kind of multiuser application server that does
cooperative multitasking and supports asynchronous I/O. In effect, each kind of transaction monitor
is a specialized timesharing plugin (almost, but not entirely unlike a webserver running CGl).

Another consequence of the batch-oriented architecture is that process spawning is a slow operation.
The I/O system deliberately trades high setup cost (and associated latency) for better throughput.
These choices are a good match for batch operation, but deadly to interactive response. A predictable
result is that TSO users nowadays spend almost all their time inside a dialog-driven interactive
environment, ISPF. It is rare for a programmer to do anything inside native TSO except start up an
instance of ISPF. This does away with process-spawn overhead, at the cost of introducing a very
large program that does everything but start the machine room coffeepot.

MVS uses the machine MMU; processes have separate address spaces. Interprocess communication
is supported only through shared memory. There are facilities for threading (which MVS calls
“subtasking”), but they are lightly used, mainly because the facility is only easily accessible from
programs written in assembler. Instead, the typical batch application is a short series of heavyweight
program invocations glued together by JCL (Job Control Language) which provides scripting,
though in a notoriously difficult and inflexible way. Programs in a job communicate through
temporary files; filters and the like are nearly impossible to do in a usable manner.

Every file has a record format, sometimes implied (inline input files in JCL are implied to have
an 80-byte fixed-length record format inherited from punched cards, for example), but more often
explicitly specified. Many system configuration files are in text format, but application files are
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usually in binary formats specific to the application. Some general tools for examining files have
evolved out of sheer necessity, but it is still not an easy problem to solve.

File system security was an afterthought in the original design. However, when security was found

to be necessary, IBM added it in an inspired fashion: They defined a generic security API, then
made all file access requests pass by that interface before being processed. As a result, there are at
least three competing security packages with differing design philosophies — and all of them are
quite good, with no known cracks against them between 1980 and mid-2003. This variety allows an
installation to select the package that best suits local security policy.

Networking facilities are another afterthought. There is no concept of one interface for both network
connections and local files; their programming interfaces are separate and quite different. This
did allow TCP/IP to supplant IBM’s native SNA (Systems Network Architecture) as the network
protocol of choice fairly seamlessly. It is still common in 2003 to see both in use at a given
installation, but SNA is dying out.

Casual programming for MVS is almost nonexistent except within the community of large enter-
prises that run MVS. This is not due so much to the cost of the tools themselves as it is to the cost
of the environment — when one must spend several million dollars on the computer system, a few
hundred dollars a month for a compiler is almost incidental. Within that community, however, there
is a thriving culture of freely available software, mainly programming and system-administration
tools. The first computer user’s group, SHARE, was founded in 1955 by IBM users, and is still
going strong today.

Considering the vast architectural differences, it is a remarkable fact that MVS was the first non-
System-V operating system to meet the Single Unix Specification (there is less to this than meets
the eye, however, as ports of Unix software from elsewhere have a strong tendency to founder on
ASCII-vs.-EBCDIC character-set issues). It's possible to start a Unix shell from TSO; Unix file
systems are specially formatted MVS data sets. The MVS Unix character set is a special EBCDIC
codepage with newline and linefeed swapped (so that what appears as linefeed to Unix appears like
newline to MVS), but the system calls are real system calls implemented in the MVS kernel.

As the cost of the environment drops into the hobbyist range, there is a small but growing group of
users of the last public-domain version of MVS (3.8, dating from 1979). This system, as well as
development tools and the emulator to run them, are all available for the cost of& CD.

3Bhttp://www.cbttape.org/cdrom.htm
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The intended role of MVS has always been in the back office. Like VMS and Unix itself, MVS
predates the server/client distinction. Interface complexity for back-office users is not only tolerated
but expected, in the name of making the computer spend fewer expensive resources on interfaces
and more on the work it’s there to get done.

VM/CMS

VM/CMS is IBM’s other mainframe operating system. Historically speaking, it is Unix’s uncle:
the common ancestor is the CTSS system, developed at MIT around 1963 and running on the IBM
7094 mainframe. The group that developed CTSS then went on to write Multics, the immediate
ancestor of Unix. IBM established a group in Cambridge to write a timesharing system for the IBM
360/40, a modified 360 with (for the first time on an IBM system) a paging M The MIT and

IBM programmers continued to interact for many years thereafter, and the new system got a user
interface that was very CTSS-like, complete with a shell named EXEC and a large supply of utilities
analogous to those used on Multics and later on Unix.

In another sense, VM/CMS and Unix are funhouse mirror images of one another. The unifying idea
of the system, provided by the VM component, is virtual machines, each of which looks exactly like
the underlying physical machine. They are preemptively multitasked, and run either the single-
user operating system CMS or a complete multitasking operating system (typically MVS, Linux,
or another instance of VM itself). Virtual machines correspond to Unix processes, daemons, and
emulators, and communication between them is accomplished by connecting the virtual card punch
of one machine to the virtual card reader of another. In addition, a layered tools environment
called CMS Pipelines is provided within CMS, directly modeled on Unix’s pipes but architecturally
extended to support multiple inputs and outputs.

When communication between them has not been explicitly set up, virtual machines are completely
isolated from each other. The operating system has the same high reliability, scalability, and security
as MVS, and has far greater flexibility and is much easier to use. In addition, the kernel-like portions
of CMS do not need to be trusted by the VM component, which is maintained completely separately.

Although CMS is record-oriented, the records are essentially equivalent to the lines that Unix textual
tools use. Databases are much better integrated into CMS Pipelines than is typically the case on
Unix, where most databases are quite separate from the operating system. In recent years, CMS
has been augmented to fully support the Single Unix Specification.

%The development machine and initial target was a 40 with customized microcode, but it proved insufficiently powerful;
production deployment was on the 360/67.
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The Ul style of CMS is interactive and conversational, very unlike MVS but like VMS and Unix. A
full-screen editor called XEDIT is heavily used.

VM/CMS predates the client/server distinction, and is howadays used almost entirely as a server
operating system with emulated IBM terminals. Before Windows came to dominate the desktop
so completely, VM/CMS provided word-processing services and email both internally to IBM and
between mainframe customer sites — indeed, many VM systems were installed exclusively to run
those applications because of VM's ready scalability to tens of thousands of users.

A scripting language called Rexx supports programming in a style not unlike shell, awk, Perl or
Python. Consequently, casual programming (especially by system administrators) is very important
on VM/CMS. Free cycles permitting, admins often prefer to run production MVS in a virtual
machine rather than directly on the bare iron, so that CMS is also available and its flexibility can be
taken advantage of. (There are CMS tools that permit access to MVS file systems.)

There are even striking parallels between the history of VM/CMS within IBM and Unix within
Digital Equipment Corporation (which made the hardware that Unix first ran on). It took IBM
years to understand the strategic importance of its unofficial timesharing system, and during that
time a community of VM/CMS programmers arose that was closely analogous in behavior to the
early Unix community. They shared ideas, shared discoveries about the system, and above all
shared source code for utilities. No matter how often IBM tried to declare VM/CMS dead, the
community — which included IBM’s own MVS system developers! — insisted on keeping it alive.
VM/CMS even went through the same cycle of de facto open source to closed source back to open
source, though not as thoroughly as Unix did.

What VM/CMS lacks, however, is any real analog to C. Both VM and CMS were written in
assembler and have remained so implemented. The nearest equivalent to C was various cut-down
versions of PL/I that IBM used for systems programming, but did not share with its customers.
Therefore, the operating system remains trapped on its original architectural line, though it has
grown and expanded as the 360 architecture became the 370 series, the XA series, and finally the
current z/Series.

Since the year 2000, IBM has been promoting VM/CMS on mainframes to an unprecedented degree
— as ways to host thousands of virtual Linux machines at once.

Linux
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Linux, originated by Linus Torvalds in 1991, leads the pack of new-school open-source Unixes
that have emerged since 1990 (also including FreeBSD, NetBSD, OpenBSD, and Darwin), and is
representative of the design direction being taken by the group as a whole. The trends in it can be
taken as typical for this entire group.

Linux does not include any code from the original Unix source tree, but it was designed from Unix
standards to behave like a Unix. In the rest of this book, we emphasize the continuity between Unix
and Linux. That continuity is extremely strong, both in terms of technology and key developers —
but here we emphasize some directions Linux is taking that mark a departure from ‘classical’ Unix
tradition.

Many developers and activists in the Linux community have ambitions to win a substantial share
of end-user desktops. This makes Linux’s intended audience quite a bit broader than was ever the
case for the old-school Unixes, which have primarily aimed at the server and technical-workstation
markets. This has implications for the way Linux hackers design software.

The most obvious change is a shift in preferred interface styles. Unix was originally designed for
use on teletypes and slow printing terminals. Through much of its lifetime it was strongly associated
with character-cell video-display terminals lacking either graphics or color capabilities. Most Unix
programmers stayed firmly wedded to the command line long after large end-user applications had
migrated to X-based GUIs, and the design of both Unix operating systems and their applications
have continued to reflect this fact.

Linux users and developers, on the other hand, have been adapting themselves to address the
nontechnical user’s fear of CLIs. They have moved to building GUIs and GUI tools much more
intensively than was the case in old-school Unix, or even in contemporary proprietary Unixes. To a
lesser but significant extent, this is true of the other open-source Unixes as well.

The desire to reach end users has also made Linux developers much more concerned with smooth-
ness of installation and software distribution issues than is typically the case under proprietary Unix
systems. One consequence is that Linux features binary-package systems far more sophisticated
than any analogs in proprietary Unixes, with interfaces designed (as of 2003, with only mixed suc-
cess) to be palatable to nontechnical end users.

The Linux community wants, more than the old-school Unixes ever did, to turn their software into
a sort of universal pipefitting for connecting together other environments. Thus, Linux features
support for reading and (often) writing the file system formats and networking methods native to
other operating systems. It also supports multiple-booting with them on the same hardware, and
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simulating them in software inside Linux itself. The long-term goal is subsumption; Linux emulates
so it can absortf

The goal of subsuming the competition, combined with the drive to reach the end-user, has motivated
Linux developers to adopt design ideas from non-Unix operating systems to a degree that makes
traditional Unixes look rather insular.  Linux applications using Windows .INI format files for
configuration is a minor example we’ll cover in Chapter 10; Linux 2.5’s incorporation of extended
file attributes, which among other things can be used to emulate the semantics of the Macintosh
resource fork, is a recent major one at time of writing.

But the day Linux gives the Mac diagnostic that you can't open a file because you
don't have the application is the day Linux becomes non-Unix.

<author>DougMcllroy</author>

The remaining proprietary Unixes (such as Solaris, HP-UX, AlX, etc.) are designed to be big prod-

ucts for big IT budgets. Their economic niche encourages designs optimized for maximum power
on high-end, leading-edge hardware. Because Linux has part of its roots among PC hobbyists,
it emphasizes doing more with less. Where proprietary Unixes are tuned for multiprocessor and
server-cluster operation at the expense of performance on low-end hardware, core Linux develop-
ers have explicitly chosen not to accept more complexity and overhead on low-end machines for
marginal performance gains on high-end hardware.

Indeed, a substantial fraction of the Linux user community is understood to be wringing usefulness
out of hardware as technically obsolete today as Ken Thompson’s PDP-7 was in 1969. As a
consequence, Linux applications are under pressure to stay lean and mean that their counterparts
under proprietary Unix do not experience.

These trends have implications for the future of Unix as a whole, a topic we’ll return to in Chapter 20.

What Goes Around, Comes Around

We attempted to select for comparison timesharing systems that either are now or have in the past
been competitive with Unix. The field of plausible candidates is not wide. Most (Multics, ITS,
DTSS, TOPS-10, TOPS-20, MTS, GCOS, MPE and perhaps a dozen others) are so long dead that

“The results of Linux’s emulate-and-subsume strategy differ noticeably from the embrace-and-extend practiced by some of
its competitors. For starters, Linux does not break compatibility with what it is emulating in order to lock customers into the
“extended” version.
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they are fading from the collective memory of the computing field. Of those we surveyed, VMS
and OS/2 are moribund, and MacOS has been subsumed by a Unix derivative. MVS and VM/CMS
were limited to a single proprietary mainframe line. Only Microsoft Windows remains as a viable
competitor independent of the Unix tradition.

We pointed out Unix’s strengths in Chapter 1, and they are certainly part of the explanation. Butit's
actually more instructive to look at the obverse of that answer and ask which weaknesses in Unix’s
competitors did them in.

The most obvious shared problem is nonportability. Most of Unix’s pre-1980 competitors were
tied to a single hardware platform, and died with that platform. One reason VMS survived long
enough to merit inclusion here as a case study is that it was successfully ported from its original
VAX hardware to the Alpha processor (and in 2003 is being ported from Alpha to Itanium). MacOS
successfully made the jump from the Motorola 68000 to PowerPC chips in the late 1980s. Microsoft
Windows escaped this problem by being in the right place when commoditization flattened the
market for general-purpose computers into a PC monoculture.

From 1980 on, another particular weakness continually reemerges as a theme in different systems
that Unix either steamrollered or outlasted: an inability to support networking gracefully.

In a world of pervasive networking, even an operating system designed for single-user use needs
multiuser capability (multiple privilege groups) — because without that, any network transaction
that can trick a user into running malicious code will subvert the entire system (Windows macro
viruses are only the tip of this iceberg). Without strong multitasking, the ability of an operating
system to handle network traffic and run user programs at the same time will be impaired. The
operating system also needs efficient IPC so that its network programs can communicate with each
other and with the user’s foreground applications.

Windows gets away with having severe deficiencies in these areas only by virtue of having developed

a monopoly position before networking became really important, and by having a user population
that has been conditioned to accept a shocking frequency of crashes and security breaches as normal.
This is not a stable situation, and it is one that partisans of Linux have successfully (in 2003)
exploited to make major inroads in the server-operating-system market.

Around 1980, during the early heyday of personal computers, operating-system designers dismissed
Unix and traditional timesharing as heavyweight, cumbersome, and inappropriate for the brave new
world of single-user personal machines — despite the fact that GUI interfaces tended to demand
the reinvention of multitasking to cope with threads of execution bound to different windows and
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widgets. The trend toward client operating systems was so intense that server operating systems
were at times dismissed as steam-powered relics of a bygone age.

But as the designers of BeOS noticed, the requirements of pervasive networking cannot be met
without implementing something very close to general-purpose timesharing.  Single-user client
operating systems cannot thrive in an Internetted world.

This problem drove the reconvergence of client and server operating systems. The first, pre-Internet
attempts at peer-to-peer networking over LANSs, in the late 1980s, began to expose the inadequacy of
the client-OS design model. Data on a network has to have rendezvous points in order to be shared;
thus, we can't do without servers. At the same time, experience with the Macintosh and Windows
client operating systems raised the bar on the minimum quality of user experience customers would
tolerate.

With non-Unix models for timesharing effectively dead by 1990, there were not many possible
responses client operating-system designers could mount to this challenge. They could co-opt Unix
(as MacOS X has done), re-invent roughly equivalent features a patch at a time (as Windows has
done), or attempt to reinvent the entire world (as BeOS tried and failed to do). But meanwhile, open-
source Unixes were growing client-like capabilities to use GUIs and run on inexpensive personal
machines.

These pressures turned out, however, not to be as symmetrically balanced as the above description
might imply. Retrofitting server-operating-system features like multiple privilege classes and full
multitasking onto a client operating system is very difficult, quite likely to break compatibility with
older versions of the client, and generally produces a fragile and unsatisfactory result rife with
stability and security problems. Retrofitting a GUI onto a server operating system, on the other
hand, raises problems that can largely be finessed by a combination of cleverness and throwing
ever-more-inexpensive hardware resources at the problem. As with buildings, it's easier to repair
superstructure on top of a solid foundation than it is to replace the foundations without trashing the
superstructure.

Besides having the native architectural strengths of a server operating system, Unix was always
agnostic about its intended audience. Its designers and implementers never assumed they knew all
potential uses the system would be put to.

Thus, the Unix design proved more capable of reinventing itself as a client than any of its client-
operating-system competitors were of reinventing themselves as servers. While many other factors
of technology and economics contributed to the Unix resurgence of the 1990s, this is one that really
foregrounds itself in any discussion of operating-system design style.
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Chapter 4. Modularity
Keeping It Clean, Keeping It Simple

There are two ways of constructing a software design. One is to make it so simple that there
are obviously no deficiencies; the other is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

<author>C.A. R.Hoare</author>

The Emperor’s Old Clothes, CACM February 1981

There is a natural hierarchy of code-partitioning methods that has evolved as programmers have had
to manage ever-increasing levels of complexity. In the beginning, everything was one big lump of
machine code. The earliest procedural languages brought in the notion of partition by subroutine.
Then we invented service libraries to share common utility functions among multiple programs.
Next, we invented separated address spaces and communicating processes. Today we routinely
distribute program systems across multiple hosts separated by thousands of miles of network cable.

The early developers of Unix were among the pioneers in software modularity. Before them, the
Rule of Modularity was computer-science theory but not engineering practiceDedign Rules
[Baldwin-Clark], a path-breaking study of the economics of modularity in engineering design, the
authors use the development of the computer industry as a case study and argue that the Unix
community was in fact the first to systematically apply modular decomposition to production
software, as opposed to hardware. Modularity of hardware has of course been one of the
foundations of engineering since the adoption of standard screw threads in the late 1800s.

The Rule of Modularity bears amplification here: The only way to write complex software that won't
fall on its face is to build it out of simple modules connected by well-defined interfaces, so that most
problems are local and you can have some hope of fixing or optimizing a part without breaking the
whole.

The tradition of being careful about modularity and of paying close attention to issues like orthogo-
nality and compactness are still much deeper in the bone among Unix programmers than elsewhere.

Early Unix programmers became good at modularity because they had to be. An
OS is one of the most complicated pieces of code around. If it is not well
structured, it will fall apart. There were a couple of early failures at building
Unix that were scrapped. One can blame the early (structureless) C for this, but
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basically it was because the OS was too complicated to write. We needed both
refinements in tools (like C structures) and good practice in using them (like Rob
Pike’s rules for programming) before we could tame that complexity.

<author>KenThompson</author>

Early Unix hackers struggled with this in many ways. In the languages of 1970 function calls were
expensive, either because call semantics were complicated (PL/1. Algol) or because the compiler
was optimizing for other things like fast inner loops at the expense of call time. Thus, code tended
to be written in big lumps. Ken and several of the other early Unix developers knew modularity was
a good idea, but they remembered PL/1 and were reluctant to write small functions lest performance
go to hell.

Dennis Ritchie encouraged modularity by telling all and sundry that function calls
were really, really cheap in C. Everybody started writing small functions and
modularizing. Years later we found out that function calls were still expensive
on the PDP-11, and VAX code was often spending 50% of its time in the CALLS
instruction. Dennis had lied to us! But it was too late; we were all hooked...

<author>SteveJohnson</author>

All programmers today, Unix natives or not, are taught to modularize at the subroutine level within
programs. Some learn the art of doing this at the module or abstract-data-type level and call that
‘good design’. The design-patterns movement is making a noble effort to push up a level from there
and discover successful design abstractions that can be applied to organize the large-scale structure
of programs.

Getting better at all these kinds of problem partitioning is a worthy goal, and many excellent
treatments of them are available elsewhere. We shall not attempt to cover all the issues relating to
modularity within programs in too much detail: first, because that is a subject for an entire volume
(or several volumes) in itself; and second, because this is a book about th&Jarx pfogramming.

What we will do here is examine more specifically what the Unix tradition teaches us about
how to follow the Rule of Modularity. In this chapter, our examples will live within process
units. Later, in Chapter 7, we’ll examine the circumstances under which partitioning programs into
multiple cooperating processes is a good idea, and discuss more specific techniques for doing that
partitioning.
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Encapsulation and Optimal Module Size

The first and most important quality of modular codemsapsulation Well-encapsulated modules
don’'t expose their internals to each other. They don’t call into the middle of each others’
implementations, and they don’'t promiscuously share global data. @~ They communicate using
application programming interfaces (APIs) — narrow, well-defined sets of procedure calls and data
structures. This is what the Rule of Modularity is about.

The APIs between modules have a dual role. On the implementation level, they function as choke
points between the modules, preventing the internals of each from leaking into its neighbors. On
the design level, it is the APIs (not the bits of implementation between them) that really define your
architecture.

One good test for whether an API is well designed is this one: if you try to write a description of

it in purely human language (with no source-code extracts allowed), does it make sense? Itis a
very good idea to get into the habit of writing informal descriptions of your APIs before you code
them. Indeed, some of the most able developers start by defining their interfaces, writing brief
comments to describe them, and then writing the code — since the process of writing the comment
clarifies what the code must do. Such descriptions help you organize your thoughts, they make
useful module comments, and eventually you might want to turn them into a roadmap document for
future readers of the code.

As you push module decomposition harder, the pieces get smaller and the definition of the APIs gets

more important. Global complexity, and consequent vulnerability to bugs, decreases. It has been

received wisdom in computer science since the 1970s (exemplified in papers such as [Parnas]) that
you ought to design your software systems as hierarchies of nested modules, with the grain size of
the modules at each level held to a minimum.

It is possible, however, to push this kind of decomposition too hard and make your modules too
small. There is evidence [Hatton97] that when one plots defect density versus module size, the
curve is U-shaped and concave upwards (see Figure 4.1). Very small and very large modules are
associated with more bugs than those of intermediate size. A different way of viewing the same
data is to plot lines of code per module versus total bugs. The curve looks roughly logarithmic up
to a ‘sweet spot’ where it flattens (corresponding to the minimum in the defect density curve), after
which it goes up as the square of the number of the lines of code (which is what one might intuitively
expect for the whole curve, following Brooks’s L&

“1Brooks’s Law predicts that adding programmers to a late project makes it later. More generally, it predicts that costs and
error rates rise as the square of the number of programmers on a project.
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Figure 4.1. Qualitative plot of defect count and density vs. module size.
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This unexpectedly increasing incidence of bugs at small module sizes holds across a wide variety of

systems implemented in different languages. Hatton has proposed a model relating this nonlinearity
to the chunk size of human short-term memrAnother way to interpret the nonlinearity is that at

4?|n Hatton’s model, small differences in the maximum chunk size a programmer can hold in short-term memory have a large
multiplicative effect on the programmer’s efficiency. This might be a major contributor to the order-of-magnitude (or larger)
variations in effectiveness observed by Fred Brooks and others.
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small module grain sizes, the increasing complexity of the interfaces becomes the dominating term;
it's difficult to read the code because you have to understand everything before you can understand
anything. In Chapter 7 we’ll examine more advanced forms of program partitioning; there, too,
the complexity of interface protocols comes to dominate the total complexity of the system as the
component processes get smaller.

In nonmathematical terms, Hatton's empirical results imply a sweet spot between 200 and 400
logical lines of code that minimizes probable defect density, all other factors (such as programmer
skill) being equal. This size is independent of the language being used — an observation which
strongly reinforces the advice given elsewhere in this book to program with the most powerful
languages and tools you can. Beware of taking these numbers too literally however. Methods for
counting lines of code vary considerably according to what the analyst considers a logical line, and
other biases (such as whether comments are stripped). Hatton himself suggests as a rule of thumb a
2x conversion between logical and physical lines, suggesting an optimal range of 400—800 physical
lines.

Compactness and Orthogonality

Code is not the only sort of thing with an optimal chunk size. Languages and APIs (such as sets of
library or system calls) run up against the same sorts of human cognitive constraints that produce
Hatton'’s U-curve.

Accordingly, Unix programmers have learned to think very hard about two other properties when
designing APIs, command sets, protocols, and other ways to make computers detimksctness
andorthogonality

Compactness

Compactness is the property that a design can fit inside a human being’s head. A good practical test
for compactness is this: Does an experienced user normally need a manual? If not, then the design
(or at least the subset of it that covers normal use) is compact.

Compact software tools have all the virtues of physical tools that fit well in the hand. They feel
pleasant to use, they don't obtrude themselves between your mind and your work, they make you
more productive — and they are much less likely than unwieldy tools to turn in your hand and injure
you.
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Compact is not equivalent to ‘weak’. A design can have a great deal of power and flexibility and
still be compact if it is built on abstractions that are easy to think about and fit together well. Nor is
compact equivalent to ‘easily learned’; some compact designs are quite difficult to understand until
you have mastered an underlying conceptual model that is tricky, at which point your view of the
world changes and compagsécomesimple. For a lot of people, the Lisp language is a classic
example of this.

Nor does compact mean ‘small’. If a well-designed system is predictable and
‘obvious’ to the experienced user, it might have quite a few pieces.

<author>KenArnold</author>

Very few software designs are compact in an absolute sense, but many are compact in a slightly
looser sense of the term. They have a compact working set, a subset of capabilities that suffices
for 80% or more of what expert users normally do with them. Practically speaking, such designs
normally need a reference card or cheat sheet but not a manual. We’'ll call such designs
compactas opposed tetrictly compact

The concept is perhaps best illustrated by examples. The Unix system call APl is semi-compact, but
the standard C library is not compact in any sense. While Unix programmers easily keep a subset of
the system calls sufficient for most applications programming (file system operations, signals, and
process control) in their heads, the C library on modern Unixes includes many hundreds of entry
points, e.g., mathematical functions, that won't all fit inside a single programmer’s cranium.

The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information[Miller] is one of the foundation papers in cognitive psychology (and, incidentally, the
specific reason that U.S. local telephone numbers have seven digits). It showed that the number of
discrete items of information human beings can hold in short-term memory is seven, plus or minus
two. This gives us a good rule of thumb for evaluating the compactness of APIs: Does a programmer
have to remember more than seven entry points? Anything larger than this is unlikely to be strictly
compact.

Among Unix tools, make(1) is compact; autoconf(1) and automake(1) are not. Among markup
languages, HTML is semi-compact, but DocBook (a documentation markup language we shall
discuss in Chapter 18) is not. The man(7) macros are compact, but troff(1) markup is not.

Among general-purpose programming languages, C and Python are semi-compact; Perl, Java,
Emacs Lisp, and shell are not (especially since serious shell programming requires you to know
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half-a-dozen other tools like sed(1) and awk(1)). C++ is anti-compact — the language’s designer
has admitted that he doesn't expect any one programmer to ever understand it all.

Some designs that are not compact have enough internal redundancy of features that individual
programmers end up carving out compact dialects sufficient for that 80% of common tasks by
choosing a working subset of the language. Perl has this kind of pseudo-compactness, for example.
Such designs have a built-in trap; when two programmers try to communicate about a project, they
may find that differences in their working subsets are a significant barrier to understanding and
modifying the code.

Noncompact designs are not automatically doomed or bad, however. Some problem domains are
simply too complex for a compact design to span them. Sometimes it's necessary to trade away
compactness for some other virtue, like raw power and range. Troff markup is a good example of

this. So is the BSD sockets API. The purpose of emphasizing compactness as a virtue is not to
condition you to treat compactness as an absolute requirement, but to teach you to do what Unix
programmers do: value compactness properly, design for it whenever possible, and not throw it

away casually.

Orthogonality

Orthogonality is one of the most important properties that can help make even complex designs
compact. In a purely orthogonal design, operations do not have side effects; each action (whether
it's an API call, a macro invocation, or a language operation) changes just one thing without affecting
others.  There is one and only one way to change each property of whatever system you are
controlling.

Your monitor has orthogonal controls. You can change the brightness independently of the contrast
level, and (if the monitor has one) the color balance control will be independent of both. Imagine
how much more difficult it would be to adjust a monitor on which the brightness knob affected the
color balance: you'd have to compensate by tweaking the color balance every time after you changed
the brightness. Worse, imagine if the contrast control also affected the color balance; then, you'd
have to adjust both knobs simultaneously in exactly the right way to change either contrast or color
balance alone while holding the other constant.

Far too many software designs are non-orthogonal. =~ One common class of design mistake, for
example, occurs in code that reads and parses data from one (source) format to another (target)
format. A designer who thinks of the source format as always being stored in a disk file may write
the conversion function to open and read from a named file. Usually the input could just as well
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have been any file handle. If the conversion routine were designed orthogonally, e.g., without the
side effect of opening a file, it could save work later when the conversion has to be done on a data
stream supplied from standard input, a network socket, or any other source.

Doug Mcliroy’s advice to “Do one thing well” is usually interpreted as being about simplicity. But
it's also, implicitly and at least as importantly, about orthogonality.

It's not a problem for a program to do one thing well and other things as side effects, provided
supporting those other things doesn't raise the complexity of the program and its vulnerability to
bugs. In Chapter 9 we’ll examine a program calketii that prints synonyms for the names of
ASCII characters, including hex, octal, and binary values; as a side effect, it can serve as a quick
base converter for numbers in the range 0-255. This second use is not an orthogonality violation
because the features that support it are all necessary to the primary function; they do not make the
program more difficult to document or maintain.

The problems with non-orthogonality arise when side effects complicate a programmer’s or user’s
mental model, and beg to be forgotten, with results ranging from inconvenient to dire. Even when
you do not forget the side effects, you're often forced to do extra work to suppress them or work
around them.

There is an excellent discussion of orthogonality and how to achieve'tiénPragmatic Program-
mer[Hunt-Thomas]. As they point out, orthogonality reduces test and development time, because
it's easier to verify code that neither causes side effects nor depends on side effects from other code
— there are fewer combinations to test. If it breaks, orthogonal code is more easily replaced without
disturbance to the rest of the system. Finally, orthogonal code is easier to document and reuse.

The concept ofefactoring which first emerged as an explicit idea from the ‘Extreme Programming’
school, is closely related to orthogonality. To refactor code is to change its structure and
organization without changing its observable behavior. Software engineers have been doing this
since the birth of the field, of course, but naming the practice and identifying a stock set of refactoring
techniques has helped concentrate peoples’ thinking in useful ways. Because these fit so well
with the central concerns of the Unix design tradition, Unix developers have quickly coopted the
terminology and ideas of refactorir).

“3In the foundation text on this topi®efactoring[Fowler], the author comes very close to stating that the principal goal of
refactoring is to improve orthogonality. But lacking the concept, he can only approximate this idea from several different
directions: eliminating code duplication and various other “bad smells” many of which are some sort of orthogonality
violation.
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The basic Unix APIs were designed for orthogonality with imperfect but considerable success. We
take for granted being able to open a file for write access without exclusive-locking it for write,
for example; not all operating systems are so graceful. Old-style (System Ill) signals were non-
orthogonal, because signal receipt had the side-effect of resetting the signal handler to the default
die-on-receipt. There are large non-orthogonal patches like the BSD sockets A rsmarge

ones like the X windowing system’s drawing libraries.

But on the whole the Unix API is a good example: Otherwise it not only would notduid not
be so widely imitated by C libraries on other operating systems. This is also a reason that the Unix
API repays study even if you are not a Unix programmer; it has lessons about orthogonality to teach.

The SPOT Rule

The Pragmatic Programmearticulates a rule for one particular kind of orthogonality that is
especially important. Their “Don’t Repeat Yourself” rule is: every piece of knowledge must have a
single unambiguous, authoritative representation within a system. In this book we prefer, following
a suggestion by Brian Kernighan, to call this the Single Point Of Truth or SPOT rule.

Repetition leads to inconsistency and code that is subtly broken, because you changed only some
repetitions when you needed to charagjeof them. Often, it also means that you haven't properly
thought through the organization of your code.

Constants, tables, and metadata should be declared and initiatizednd imported elsewhere.
Any time you see duplicate code, that's a danger sign. Complexity is a cost; don't pay it twice.

Often it’s possible to remove code duplication fgfactoring that is, changing the organization of
your code without changing the core algorithms. Data duplication sometimes appears to be forced
on you. Butwhen you see it, here are some valuable questions to ask:

« If you have duplicated data in your code because it has to have two different representations in
two different places, can you write a function, tool or code generator to make one representation
from the other, or both from a common source?

«If your documentation duplicates knowledge in your code, can you generate parts of the
documentation from parts of the code, or vice-versa, or both from a common higher-level
representation?
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« If your header files and interface declarations duplicate knowledge in your implementation code,
is there a way you can generate the header files and interface declarations from the code?

There is an analog of the SPOT rule for data structures: “No junk, no confusion”. “No junk” says
that the data structure (the model) should be minimal, e.g., not made so general that it can represent
situations which cannot exist. “No confusion” says that states which must be kept distinct in the
real-world problem must be kept distinct in the model. In short, the SPOT rule advocates seeking
a data structure whose states have a one-to-one correspondence with the states of the real-world
system to be modeled.

From deeper within the Unix tradition, we can add some of our own corollaries of the SPOT rule:

* Are you duplicating data because you're caching intermediate results of some computation or
lookup? Consider carefully whether this is premature optimization; stale caches (and the layers
of code needed to keep caches synchronized) are a fertile source df laungiscan even slow
down overall performance if (as often happens) the cache-management overhead is higher than
you expected.

« If you see lots of duplicative boilerplate code, can you generate all of it from a single higher-level
representation, twiddling a few knobs to generate the different cases?

The reader should begin to see a pattern emerging here.

In the Unix world, the SPOT Rule as a unifying idea has seldom been explicit — but heavy use of
code generators to implement particuitémdsof SPOT are very much part of the tradition. We'll
survey these techniques in Chapter 9.

Compactness and the Strong Single Center

One subtle but powerful way to promote compactness in a design is to organize it around a strong
core algorithm addressing a clear formal definition of the problem, avoiding heuristics and fudging.

Formalization often clarifies a task spectacularly. It is not enough for a
programmer to recognize that bits of his task fall within standard computer-
science categories — a little depth-first search here and a quicksort there. The

“4An archetypal example of bad caching is teaashdirective in csh(1); typenan 1 cshfor details. See the section called
“Caching Operation Results” for another example.
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best results occur when the nub of the task can be formalized, and a clear model
of the job at hand can be constructed. It is not necessary that ultimate users
comprehend the model. The very existence of a unifying core will provide a
comfortable feel, unencumbered with the why-in-hell-did-they-do-that moments
that are so prevalent in using Swiss-army-knife programs.

<author>DougMcllroy</author>

This is an often-overlooked strength of the Unix tradition. Many of its most effective tools are thin
wrappers around a direct translation of some single powerful algorithm.

Perhaps the clearest example of this is diff(1), the Unix tool for reporting differences between related
files. This tool and its dual, patch(1), have become central to the network-distributed development
style of modern Unix. A valuable property of diff is that it seldom surprises anyone. It doesn't have
special cases or painful edge conditions, because it uses a simple, mathematically sound method of
sequence comparison. This has consequences:

By virtue of a mathematical model and a solid algorithm, Unix diff contrasts
markedly with its imitators. First, the central engine is solid, small, and has never
needed one line of maintenance. Second, the results are clear and consistent,
unmarred by surprises where heuristics fail.

<author>DougMcllroy</author>

Thus, people who use diff can develop an intuitive feel for what it will do in any given situation
without necessarily understanding the central algorithm perfectly. Other well-known examples of
this special kind of clarity achieved through a strong central algorithm abound in Unix:

« The grep(2) utility for selecting lines out of files by pattern matching is a simple wrapper around
a formal algebra of regular-expression patterns (see the section called “Case Study: Regular
Expressions” for discussion). If it had lacked this consistent mathematical model, it would
probably look like the design of the original glob(1) facility in the oldest Unixes, a handful of
ad-hoc wildcards that can’t be combined.

» The yacc(1) utility for generating language parsers is a thin wrapper around the formal theory
of LR(1) grammars. Its partner, the lexical analyzer generator lex(1), is a similarly thin wrapper
around the theory of nondeterministic finite-state automata.
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All three of these programs are so bug-free that their correct functioning is taken utterly for granted,
and compact enough to fit easily in a programmer’s hand. Only a part of these good qualities are
due to the polishing that comes with a long service life and frequent use; most of it is that, having
been constructed around a strong and provably correct algorithmic core, they never needed much
polishing in the first place.

The opposite of a formal approach is usinguristics—rules of thumb leading toward a solution

that is probabilistically, but not certainly, correct. Sometimes we use heuristics because a deter-
ministically correct solution is impossible. Think of spam filtering, for example; an algorithmically
perfect spam filter would need a full solution to the problem of understanding natural language as
a module. Other times, we use heuristics because known formally correct methods are impossibly
expensive. Virtual-memory management is an example of this; there are near-perfect solutions, but
they require so much runtime instrumentation that their overhead would swamp any theoretical gain
over heuristics.

The trouble with heuristics is that they proliferate special cases and edge cases. If nothing else,
you usually have to backstop a heuristic with some sort of recovery mechanism when it fails. All
the usual problems with escalating complexity follow. To manage the resulting tradeoffs, you have
to start by being aware of them. Always ask if a heuristic actually pays off in performance what
it costs in code complexity — and don't guess at the performance difference, actually measure it
before making a decision.

The Value of Detachment

We began this book with a reference to Zen: “a special transmission, outside the scriptures”. This
was not mere exoticism for stylistic effect; the core concepts of Unix have always had a spare,
Zen-like simplicity that continues to shine through the layers of historical accidents that have
accreted around them. This quality is reflected in the cornerstone documents of Unikhdike

C Programming LanguaggKernighan-Ritchie] and the 1974 CACM paper that introduced Unix to

the world; one of the famous quotes from that paper observes “...constraint has encouraged not only
economy, but also a certain elegance of design”. That simplicity came from trying to think not
about how much a language or operating system could do, but ofitiait could do — not by
carrying assumptions but by starting from zero (what in Zen is called “beginner’s mind” or “empty
mind”).

To design for compactness and orthogonality, start from zero. Zen teaches that attachment leads to
suffering; experience with software design teaches that attachment to unnoticed assumptions leads
to non-orthogonality, noncompact designs, and projects that fail or become maintenance nightmares.
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To achieve enlightenment and surcease from suffering, Zen teaches detachment. The Unix tradition
teaches the value of detachment from the particular, accidental conditions under which a design
problem was posed. Abstract. Simplify. Generalize. Because we write software to solve
problems, we cannot completely detach from the problems — but it is well worth the mental
effort to see how many preconceptions you can throw away, and whether the design becomes more
compact and orthogonal as you do that. Possibilities for code reuse often result.

Jokes about the relationship between Unix and Zen are a live part of the Unix tradition 4% well.
This is not an accident.

Software Is a Many-Layered Thing

Broadly speaking, there are two directions one can go in designing a hierarchy of functions or
objects. Which direction you choose, and when, has a profound effect on the layering of your code.

Top-Down versus Bottom-Up

One direction is bottom-up, from concrete to abstract — working up from the specific operations
in the problem domain that you know you will need to perform. For example, if one is designing
firmware for a disk drive, some of the bottom-level primitives might be ‘seek head to physical block’,
‘read physical block’, ‘write physical block’, ‘toggle drive LED’, etc.

The other direction is top-down, abstract to concrete — from the highest-level specification describ-
ing the project as a whole, or the application logic, downwards to individual operations. Thus, if one
is designing software for a mass-storage controller that might drive several different sorts of media,
one might start with abstract operations like ‘seek logical block’, ‘read logical block’, ‘write logical
block’, ‘toggle activity indication’. These would differ from the similarly named hardware-level
operations above in that they're intended to be generic across different kinds of physical devices.

These two examples could be two ways of approaching design for the same collection of hardware.
Your choice, in cases like this, is one of these: either abstract the hardware (so the objects encap-
sulate the real things out there and the program is merely a list of manipulations on those things),
or organize around some behavioral model (and then embed the actual hardware manipulations that
carry it out in the flow of the behavioral logic).

“For a recent example of Unix/Zen crossover, see Appendix D.
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An analogous choice shows up in a lot of different contexts. Suppose you're writing MIDI sequencer
software. You could organize that code around its top level (sequencing tracks) or around its bottom
level (switching patches or samples and driving wave generators).

A very concrete way to think about this difference is to ask whether the design is organized around
its main event loop (which tends to have the high-level application logic close to it) or around a
service library of all the operations that the main loop can invoke. A designer working from the top
down will start by thinking about the program’s main event loop, and plug in specific events later.
A designer working from the bottom up will start by thinking about encapsulating specific tasks and
glue them together into some kind of coherent order later on.

For a larger example, consider the design of a Web browser.  The top-level design of a Web
browser is a specification of the expected behavior of the browser: what types of URht{pike

or ftp: orfile: ) it interprets, what kinds of images it is expected to be able to render, whether
and with what limitations it will accept Java or JavaScript, etc. The layer of the implementation
that corresponds to this top-level view is its main event loop; each time around, the loop waits for,
collects, and dispatches on a user action (such as clicking a Web link or typing a character into a
field).

But the Web browser has to call a large set of domain primitives to do its job. One group of these is
concerned with establishing network connections, sending data over them, and receiving responses.
Another set is the operations of the GUI toolkit the browser will use. Yet a third set might be
concerned with the mechanics of parsing retrieved HTML from text into a document object tree.

Which end of the stack you start with matters a lot, because the layer at the other end is quite likely to
be constrained by your initial choices. In particular, if you program purely from the top down, you
may find yourself in the uncomfortable position that the domain primitives your application logic
wants don’t match the ones you can actually implement. On the other hand, if you program purely
from the bottom up, you may find yourself doing a lot of work that is irrelevant to the application
logic — or merely designing a pile of bricks when you were trying to build a house.

Ever since the structured-programming controversies of the 1960s, novice programmers have
generally been taught that the correct approach is the top-down one: stepwise refinement, where
you specify what your program is to do at an abstract level and gradually fill in the blanks of
implementation until you have concrete working code. Top-down tends to be good practice when
three preconditions are true: (a) you can specify in advance precisely what the program is to do, (b)
the specification is unlikely to change significantly during implementation, and (c) you have a lot of
freedom in choosing, at a low level, how the program is to get that job done.
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These conditions tend to be fulfilled most often in programs relatively close to the user and high
in the software stack — applications programming. But even there those preconditions often fail.
You can’t count on knowing what the ‘right’ way for a word processor or a drawing program to
behave is until the user interface has had end-user testing. Purely top-down programming often has
the effect of overinvesting effort in code that has to be scrapped and rebuilt because the interface
doesn’t pass a reality check.

In self-defense against this, programmers try to do both things — express the abstract specification
as top-down application logi@nd capture a lot of low-level domain primitives in functions or
libraries, so they can be reused when the high-level design changes.

Unix programmers inherit a tradition that is centered in systems programming, where the low-level
primitives are hardware-level operations that are fixed in character and extremely important. They
therefore lean, by learned instinct, more toward bottom-up programming.

Whether you're a systems programmer or not, bottom-up can also look more attractive when you
are programming in an exploratory way, trying to get a grasp on hardware or software or real-world
phenomena you don’t yet completely understand. Bottom-up programming gives you time and
room to refine a vague specification.  Bottom-up also appeals to programmers’ natural human
laziness — when you have to scrap and rebuild code, you tend to have to throw away larger pieces
if you're working top-down than you do if you’re working bottom-up.

Real code, therefore tends to be programmed both top-down and bottom-up. Often, top-down and
bottom-up code will be part of the same project. That's where ‘glue’ enters the picture.

Glue Layers

When the top-down and bottom-up drives collide, the result is often a mess. The top layer of
application logic and the bottom layer of domain primitives have to be impedance-matched by a
layer of glue logic.

One of the lessons Unix programmers have learned over decades is that glue is nasty stuff and that
it is vitally important to keep glue layers as thin as possible. Glue should stick things together, but
should not be used to hide cracks and unevenness in the layers.

In the Web-browser example, the glue would include the rendering code that maps a document
object parsed from incoming HTML into a flattened visual representation as a bitmap in a display
buffer, using GUI domain primitives to do the painting. This rendering code is notoriously the most
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bug-prone part of a browser. It attracts into itself kluges to address problems that originate both in
the HTML parsing (because there is a lot of ill-formed markup out there) and the GUI toolkit (which
may not have quite the primitives that are really needed).

A Web browser’s glue layer has to mediate not merely between specification and domain primitives,
but between several different external specifications: the network behavior standardized in HTTP,
HTML document structure, and various graphics and multimedia formats as well as the users’
behavioral expectations from the GUI.

And one single bug-prone glue layer is not the worst fate that can befall a design. A designer who
is aware that the glue layer exists, and tries to organize it into a middle layer around its own set of
data structures or objects, can end up witio layers of glue — one above the midlayer and one
below. Programmers who are bright but unseasoned are particularly apt to fall into this trap; they’ll
get each fundamental set of classes (application logic, midlayer, and domain primitives) right and
make them look like the textbook examples, only to flounder as the multiple layers of glue needed
to integrate all that pretty code get thicker and thicker.

The thin-glue principle can be viewed as a refinement of the Rule of Separation.  Policy (the
application logic) should be cleanly separated from mechanism (the domain primitives), but if there
is a lot of code that is neither policy nor mechanism, chances are that it is accomplishing very little
besides adding global complexity to the system.

Case Study: C Considered as Thin Glue
The C language itself is a good example of the effectiveness of thin glue.

In the late 1990s, Gerrit Blaauw and Fred Brooks observeddamputer Architecture: Concepts

and Evolution[BlaauwBrooks] that the architectures in every generation of computers, from early
mainframes through minicomputers through workstations through PCs, had tended to converge.
The later a design was in its technology generation, the more closely it approximated what Blaauw
& Brooks called the “classical architecture”: binary representation, flat address space, a distinction
between memory and working store (registers), general-purpose registers, address resolution to
fixed-length bytes, two-address instructions, big-endianffemsg data types a consistent set with
sizes a multiple of either 4 or 6 bits (the 6-bit families are now extinct).

“The termsbig-endianandlittle-endianrefer to architectural choices about the order in which bits are interpreted within a
machine word. Though it has no canonical location, a Web seardBrfddoly Wars and a Plea for Peashould turn up a
classic and entertaining paper on this subject.
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Thompson and Ritchie designed C to be a sort of structured assembler for an idealized processor
and memory architecture that they expected could be efficiently modeled on most conventional
computers. By happy accident, their model for the idealized processor was the PDP-11, a
particularly mature and elegant minicomputer design that closely approximated Blaauw & Brooks’s
classical architecture. By good judgment, Thompson and Ritchie declined to wire into their

language most of the few traits (such as little-endian byte order) where the PDP-11 didn’t match
it.4’

The PDP-11 became an important model for the following generations of microprocessor architec-
tures. The basic abstractions of C turned out to capture the classical architecture rather neatly.
Thus, C started out as a good fit for microprocessors and, rather than becoming irrelevant as its
assumptions fell out of date, actually becamme#terfit as hardware converged more closely on the
classical architecture. One notable example of this convergence was when Intel’s 386, with its large
flat memory-address space, replaced the 286's awkward segmented-memory addressing after 1985;
pure C was actually a better fit for the 386 than it had been for the 286.

Itis not a coincidence that the experimental era in computer architectures ended in the mid-1980s at
the same time that C (and its close descendant C++) were sweeping all before them as general-
purpose programming languages. C, designed as a thin but flexible layer over the classical
architecture, looks with two decades’ additional perspective like almost the best possible design
for the structured-assembler niche it was intended to fill. In addition to compactness, orthogonality,
and detachment (from the machine architecture on which it was originally designed), it also has the
important quality of transparency that we will discuss in Chapter 6. The few language designs since
that are arguably better have needed to make large changes (like introducing garbage collection) in
order to get enough functional distance from C not to be swamped by it.

This history is worth recalling and understanding because C shows us how powerful a clean,
minimalist design can be. If Thompson and Ritchie had been less wise, they would have designed
a language that did much more, relied on stronger assumptions, never ported satisfactorily off its
original hardware platform, and withered away as the world changed out from under it. Instead,
C has flourished — and the example Thompson and Ritchie set has influenced the style of Unix
development ever since. As the writer, adventurer, artist, and aeronautical engineer Antoine de
Saint-Exupéry once put it, writing about the design of airplandsa perfection est atteinte non
qguand il ne reste rien a ajouter, mais quand il ne reste rien a enleyg¢Berfection is attained not

when there is nothing more to add, but when there is nothing more to remove”.)

“"The widespread belief that the autoincrement and autodecrement features entered C because they represented PDP-11
machine instructions is a myth. According to Dennis Ritchie, these operations were present in the ancestral B language
before the PDP-11 existed.
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Ritchie and Thompson lived by this maxim. Long after the resource constraints on early Unix
software had eased, they worked at keeping C as thin a layer over the hardware as possible.

Dennis used to say to me, when | would ask for some particularly extravagant
feature in C, “If you want PL/1, you know where to get it". He didn't have to
deal with some marketer saying “But we need a check in the box on the sales
viewgraph!”

<author>MikeLesk</author>

The history of C is also a lesson in the value of having a working reference implemeriiafmes
you standardize. We'll return to this point in Chapter 17 when we discuss the evolution of C and
Unix standards.

Libraries

One consequence of the emphasis that the Unix programming style put on modularity and well-
defined APIs is a strong tendency to factor programs into bits of glue connecting collections of
libraries, especially shared libraries (the equivalents of what are called dynamically-linked libraries
or DLLs under Windows and other operating systems).

If you are careful and clever about design, it is often possible to partition a program so that it consists
of a user-interface-handling main section (policy) and a collection of service routines (mechanism)
with effectively no glue at all. This approach is especially appropriate when the program has to do a
lot of very specific manipulations of data structures like graphic images, network-protocol packets,
or control blocks for a hardware interface. Some good general architectural advice from within the
Unix tradition, particularly applicable to the resource-management challenges of this sort of library
is collected inThe Discipline and Method Architecture for Reusable Librafiés.

Under Unix, it is normal practice to make this layering explicit, with the service routines collected
in a library that is separately documented. In such programs, the front end gets to specialize in
user-interface considerations and high-level protocol. With a little more care in design, it may be
possible to detach the original front end and replace it with others adapted for different purposes.
Some other advantages should become evident from our case study.

There is a flip side to this. In the Unix world, libraries which are delivaasdibrariesshould come
with exerciser programs.

124



Chapter 4. Modularity

APIs should come with programs, and vice versa. An API that you must write C
code to use, which cannot be invoked easily from the command line, is harder to
learn and use. And contrariwise, it's a royal pain to have interfaces wdrdge
open, documented form is a program, so you cannot invoke them easily from a C
program — for example, route(1) in older Linuxes.

<author>HenrySpencer</author>

Besides easing the learning curve, library exercisers often make excellent test frameworks. Expe-
rienced Unix programmers therefore see them not just as a form of thoughtfulness to the library’s
users but as an indication that the code has probably been well tested.

An important form of library layering is thplugin, a library with a set of known entry points that is
dynamically loaded after startup time to perform a specialized task. For plugins to work, the calling
program has to be organized largely as a documented service library that the plugin can call back
into.

Case Study: GIMP Plugins

The GIMP (GNU Image Manipulation program) is a graphics editor designed to be driven through an
interactive GUI. But GIMP is built as a library of image-manipulation and housekeeping routines
called by a relatively thin layer of control code. The driver code knows about the GUI, but not
directly about image formats; the library routines reverse this by knowing about image formats and
operations but not about the GUI.

The library layer is documented (and, in fact shipped as “libgimp” for use by other programs). This
means that C programs called “plugins” can be dynamically loaded by GIMP and call the library to
do image manipulation, effectively taking over control at the same level as the GUI (see Figure 4.2).
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Figure 4.2. Caller/callee relationships in GIMP with a plugin loaded.

/ plugin \

GU1 libgimp
—

GIMP

Plugins are used to perform lots of special-purpose transformations such as colormap hacking,
blurring and despeckling; also for reading and writing file formats not native to the GIMP core;
for extensions like editing animations and window manager themes; and for lots of other sorts of
image-hacking that can be automated by scripting the image-hacking logic in the GIMP core. A
registry of GIMP plugins is available on the World Wide Web.

Though most GIMP plugins are small, simple C programs, it is also possible to write a plugin that
exposes the library API to a scripting language; we’ll discuss this possibility in Chapter 11 when we
examine the ‘polyvalent program’ pattern.

Unix and Object-Oriented Languages

Since the mid-1980s most new language designs have included native supmtjefdroriented
programming(O0O). Recall that in object-oriented programming, the functions that act on a
particular data structure are encapsulated with the data in an object that can be treated as a unit.
By contrast, modules in non-OO languages make the association between data and the functions
that act on it rather accidental, and modules frequently leak data or bits of their internals into each
other.

The OO design concept initially proved valuable in the design of graphics systems, graphical user
interfaces, and certain kinds of simulation. To the surprise and gradual disillusionment of many, it
has proven difficult to demonstrate significant benefits of OO outside those areas. It's worth trying
to understand why.
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There is some tension and conflict between the Unix tradition of modularity and the usage patterns
that have developed around OO languages. Unix programmers have always tended to be a bit more
skeptical about OO than their counterparts elsewhere. Part of this is because of the Rule of Diversity;
OO0 has far too often been promoted as the One True Solution to the software-complexity problem.
But there is something else behind it as well, an issue which is worth exploring as background before
we evaluate specific OO (object-oriented) languages in Chapter 14. It will also help throw some
characteristics of the Unix style of non-OO programming into sharper relief.

We observed above that the Unix tradition of modularity is one of thin glue, a minimalist approach
with few layers of abstraction between the hardware and the top-level objects of a program. Part
of this is the influence of C. It takes serious effort to simulate true objects in C. Because that’s so,
piling up abstraction layers is an exhausting thing to do. Thus, object hierarchies in C tend to be
relatively flat and transparent. Even when Unix programmers use other languages, they tend to want
to carry over the thin-glue/shallow-layering style that Unix models have taught them.

OO0 languages make abstraction easy — perhaps too easy. They encourage architectures with thick
glue and elaborate layers. This can be good when the problem domain is truly complex and demands
a lot of abstraction, but it can backfire badly if coders end up doing simple things in complex ways
just because they can.

All OO languages show some tendency to suck programmers into the trap of excessive layering.
Object frameworks and object browsers are not a substitute for good design or documentation, but
they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see
down through them and mentally model what the code is actually doing. The Rules of Simplicity,
Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and
continuing maintenance problems.

This tendency is probably exacerbated because a lot of programming courses teach thick layering
as a way to satisfy the Rule of Representation. In this view, having lots of classes is equated with
embedding knowledge in your data. The problem with this is that too often, the ‘smart data’ in the
glue layers is not actually about any natural entity in whatever the program is manipulating — it’s
just about being glue. (One sure sign of this is a proliferation of abstract subclasses or ‘mixins’.)

Another side effect of OO abstraction is that opportunities for optimization tend to disappear. For
examplea + a+ a+ acan become * 4 and evera << 2 if a is an integer. But if one creates a
class with operators, there is nothing to indicate if they are commutative, distributive, or associative.
Since one isn’t supposed to look inside the object, it's not possible to know which of two equivalent
expressions is more efficient. Thisisn'tin itself a good reason to avoid using OO techniques on new
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projects; that would be premature optimization. But it is reason to think twice before transforming
non-OO0 code into a class hierarchy.

Unix programmers tend to share an instinctive sense of these problems. This tendency appears to
be one of the reasons that, under Unix, OO languages have failed to displace non-OO workhorses
like C, Perl (which actually has OO facilities, but they're not heavily used), and shell. There is more
vocal criticism of OO in the Unix world than orthodoxy permits elsewhere; Unix programmers know
whennotto use OO; and when they do use OO languages, they spend more effort on trying to keep
their object designs uncluttered. As the authofbé Elements of Networking Stylece observed

in a slightly different context [Padlipsky]: “If you know what you're doing, three layers is enough;

if you don'’t, even seventeen levels won't help”.

One reason that OO has succeeded most where it has (GUIs, simulation, graphics) may be because
it's relatively difficult to get the ontology of types wrong in those domains. In GUIs and graphics,

for example, there is generally a rather natural mapping between manipulable visual objects and
classes. If you find yourself proliferating classes that have no obvious mapping to what goes on in
the display, it is correspondingly easy to notice that the glue has gotten too thick.

One of the central challenges of design in the Unix style is how to combine the virtue of detachment
(simplifying and generalizing problems from their original context) with the virtue of thin glue and
shallow, flat, transparent hierarchies of code and design.

We'll return to some of these points and apply them when we discuss object-oriented languages in
Chapter 14.

Coding for Modularity

Modularity is expressed in good code, but it primarily comes from good design. Here are some
guestions to ask about any code you work on that might help you improve its modularity:

« How many global variables does it have? Global variables are modularity poison, an easy way
for components to leak information to each other in careless and promiscuou&ways.

“8Globals also mean your code cannot be reentrant; that is, multiple instances in the same process are likely to step on each
other.
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« Is the size of your individual modules in Hatton’s sweet spot? If your answer is “No, many are
larger”, you may have a long-term maintenance problem. Do you know what your own sweet
spot is? Do you know what it is for other programmers you are cooperating with? If not, best
be conservative and stick to sizes near the low end of Hatton’s range.

* Are the individual functions in your modules too large? This is not so much a matter of line
count as it is of internal complexity. If you can’t informally describe a function’s contract with
its callers in one line, the function is probably too laf§e.

Personally | tend to break up a subprogram when there are too many local variables. Another
clue is [too many] levels of indentation. | rarely look at length.

<author>KenThompson</author>

» Does your code have internal APIs — that is, collections of function calls and data structures that
you can describe to others as units, each sealing off some layer of function from the rest of the
code? A good APl makes sense and is understandable without looking at the implementation
behind it. The classic test is this: Try to describe it to another programmer over the phone. If
you fail, it is very probably too complex, and poorly designed.

« Do any of your APIs have more than seven entry points? Do any of your classes have more than
seven methods each? Do your data structures have more than seven members?

« What is the distribution of the number of entry points per module across the pr8jBci@s
it seem uneven? Do the modules with lots of entry points really need that many? Module
complexity tends to rise as the square of the number of entry points, too — yet another reason
simple APIs are better than complicated ones.

You might find it instructive to compare these with our checklist of questions about transparency,
and discoverability in Chapter 6.

“Many years ago, | learned from Kernighan & Plaugéitse Elements of Programming Stdeuseful rule. Write that
one-line comment immediately after the prototype of your function.everyfunction, without exception.
50A cheap way to collect this information is to analyze the tags files generated by a utility like etags(1) or ctags(1).
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Good Protocols Make Good Practice

It's a well-known fact that computing devices such as the abacus were invented thousands of years
ago. But it's not well known that the first use of a common computer protocol occurred in the Old
Testament. This, of course, was when Moses aborted the Egyptians’ process with a control-sea.
<author>TomGalloway</author>

rec.arts.comics , February 1992

In this chapter, we'll look at what the Unix tradition has to tell us about two different kinds of
design that are closely related: the design of file formats for retaining application data in permanent
storage, and the design of application protocols for passing data and commands between cooperating
programs, possibly over a network.

What unifies these two kinds of design is that they both involve the serialization of in-memory data
structures. For the internal operation of computer programs, the most convenient representation
of a complex data structure is one in which all fields have the machine’s native data format (e.g.
two’'s-complement binary for integers) and all pointers are actual memory addresses (as opposed,
say, to being named references). But these representations are not well suited to storage and
transmission; memory addresses in the data structure lose their meaning outside memory, and
emitting raw native data formats causes interoperability problems passing data between machines
with different conventions (big- vs. little-endian, say, or 32-bit vs. 64-bit).

For transmission and storage, the traversable, quasi-spatial layout of data structures like linked lists
needs to be flattened or serialized into a byte-stream representation from which the structure can
later be recovered. The serialization (save) operation is sometimes oadlesthalingand its

inverse (load) operationnmarshaling These terms are usually applied with respect to objects

in an OO language like C++ or Python or Java, but could be used with equal justice of operations
like loading a graphics file into the internal storage of a graphics editor and saving it out after
modifications.

A significant percentage of what C and C++ programmers maintain is ad-hoc code for marshaling
and unmarshaling operations — even when the serialized representation chosen is as simple as a
binary structure dump (a common technique under non-Unix environments). Modern languages
like Python and Java tend to have built-in unmarshal and marshal functions that can be applied to
any object or byte-stream representing an object, and that reduce this labor substantially.
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But these naive methods are often unsatisfactory for various reasons, including both the machine-
interoperability problems we mentioned above and the negative trait of being opaque to other tools.
When the application is a network protocol, economy may demand that an internal data structure
(such as, say, a message with source and destination addresses) be serialized not into a single blob of
data but into a series of attempted transactions or messages which the receiving machine may reject
(so that, for example, a large message can be rejected if the destination address is invalid).

Interoperability, transparency, extensibility, and storage or transaction economy: these are the
important themes in designing file formats and application protocols. Interoperability and
transparency demand that we focus such designs on clean data representations, rather than putting
convenience of implementation or highest possible performance first.  Extensibility also favors
textual protocols, since binary ones are often harder to extend or subset cleanly.  Transaction
economy sometimes pushes in the opposite direction — but we shall see that putting that criterion
first is a form of premature optimization that it is often wise to resist.

Finally, we must note a difference between data file formats and the run-control files that are often
used to set the startup options of Unix programs. The most basic difference is that (with sporadic
exceptions like GNU Emacs’s configuration interface) programs don’t normally modify their own
run-control files — the information flow is one-way, from file read at startup time to application
settings. Data-file formats, on the other hand, associate properties with named resources and are
both read and written by their applications. Configuration files are generally hand-edited and small,
whereas data files are program-generated and can become arbitrarily large.

Historically, Unix has related but different sets of conventions for these two kinds of representation.
The conventions for run control files are surveyed in Chapter 10; only conventions for data files are
examined in this chapter.

The Importance of Being Textual

Pipes and sockets will pass binary data as well as text. But there are good reasons the examples we’ll
see in Chapter 7 are textual: reasons that hark back to Doug Mcllroy’s advice quoted in Chapter 1.
Text streams are a valuable universal format because they're easy for human beings to read, write,
and edit without specialized tools. These formats are (or can be designed to be) transparent.

Also, the very limitations of text streams help enforce encapsulation. By discouraging elaborate
representations with rich, densely encoded structure, text streams also discourage programs from
being promiscuous with each other about their internal states and help enforce encapsulation. We'll
return to this point at the end of Chapter 7 when we discuss RPC.
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When you feel the urge to design a complex binary file format, or a complex binary application
protocol, it is generally wise to lie down until the feeling passes. If performance is what you're
worried about, implementing compression on the text protocol stream either at some level below or
above the application protocol will give you a cleaner and perhaps better-performing design than a
binary protocol (text compresses well, and quickly).

A bad example of binary formats in Unix history was the way device-independent
troff read a binary file containing device information, supposedly for speed. The
initial implementation generated that binary file from a text description in a
somewhat unportable way. Faced with a need to ginrdff quickly to a new
machine, rather than reinvent the binary goo, | ripped it out and justheaff

read the text file. With carefully crafted file-reading code, the speed penalty was
negligible.

<author>HenrySpencer</author>

Designing a textual protocol tends to future-proof your system. One specific reason is that ranges on
numeric fields aren't implied by the format itself. Binary formats usually specify the number of bits
allocated to a given value, and extending them is difficult. For example, IPv4 only allows 32 bits
for an address. To extend address size to 128 bits (as done by IPv6) requires a major revamping.
In contrast, if you need a larger value in a text format, just write it. It may be that a given program
can't receive values in that range, but it's usually easier to modify the program than to modify all
the data stored in that format.

The only good justification for a binary protocol is if you're going to be manipulating large enough
data sets that you're genuinely worried about getting the most bit-density out of your media, or if
you're very concerned about the time or instruction budget required to interpret the data into an in-
core structure. Formats for large images and multimedia are sometimes an example of the former,
and network protocols with hard latency requirements sometimes an example of the latter.

The reciprocal problem with SMTP or HTTP-like text protocols is that they tend

to be expensive in bandwidth and slow to parse. The smallest X request is 4
bytes: the smallest HTTP request is about 100 bytes. X requests, including
amortized overhead of transport, can be executed in the order of 100 instructions;
at one point, an Apache [web server] developer proudly indicated they were down

5IThere is a legend that some early airline reservation systems allocated exactly one byte for a plane’s passenger count.
Supposedly they became very confused by the arrival of the Boeing 747, the first plane that could carry more than 255
passengers.
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to 7000 instructions.  For graphics, bandwidth becomes everything on output;
hardware is designed such that these days the graphics-cardtbasd@tlieneck

for small operations, so any protocol had better be very tight if it is not to be a
worse bottleneck. This is the extreme case.

<author>JimGettys</author>

These concerns are valid in other extreme cases as well as in X — for example, in the design of
graphics file formats intended to hold very large images. But they are usually just another case
of premature-optimization fever. Textual formats don’t necessarily have much lower bit density
than binary ones; they do after all use seven out of eight bits per byte. And what you gain by not
having to parse text, you generally lose the first time you need to generate a test load, or to eyeball
a program-generated example of your format and figure out what'’s in there.

In addition, the kind of thinking that goes into designing tight binary formats tends to fall down on
making them cleanly extensible. The X designers experienced this:

Against the current X framework is the fact we didn’t design enough of a structure
to make it easier to ignore trivial extensions to the protocol; we can do this some
of the time, but a bit better framework would have been good.

<author>JimGettys</author>

When you think you have an extreme case that justifies a binary file format or protocol, you need to
think very carefully about extensibility and leaving room in the design for growth.

Case Study: Unix Password File Format

On many operating systems, the per-user data required to validate logins and start a user’s session
is an opaque binary database. Under Unix, by contrast, it's a text file with records one per line and
colon-separated fields.

Example 5.1 consists of some randomly-chosen example lines:

Example 5.1. Password file example.

games:*:12:100:games:/usr/games:
gopher:*:13:30:gopher:/ust/lib/gopher-data:
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ftp:*:14:50:FTP User:/home/ftp:
esr:0SmFuPnH5JINs:23:23:Eric S. Raymond:/home/esr:
nobody:*:99:99:Nobody:/:

Without even knowing anything about the semantics of the fields, we can notice that it would be
hard to pack the data much tighter in a binary format. The colon sentinel characters would have to
have functional equivalents taking at least as much space (usually either count bytes or NULs). The
per-user records would either have to have terminators (which could hardly be shorter than a single
newline) or else be wastefully padded out to a fixed length.

Actually the prospects for saving space through binary encoding pretty much vanish if you know
the actual semantics of the data. The numeric user ID (3rd) and group ID (4th) fields are integers,
thus on most machines a binary representation would be at least 4 bytes, and longer than the text for
values up to 999. But let’s agree to ignore this for now and suppose the best case that the numeric
fields have a 0-255 range.

We could tighten up the numeric fields (3rd and 4th) by collapsing the numerics to single bytes, and
the password strings (2nd) to an 8-bit encoding. On this example, that would give about an 8% size
decrease.

That 8% of putative inefficiency buys us a lot. It avoids putting an arbitrary limit on the range of
the numeric fields. It gives us the ability to modify the password file with any old text editor of our
choice, rather than having to build a specialized tool to edit a binary format (though in the case of the
password file itself, we have to be extra careful about concurrent edits). And it gives us the ability
to do ad-hoc searches and filters and reports on the user account information with text-stream tools
such as grep(1).

We do have to be a bit careful about not embedding a colon in any of the textual fields. Good
practice is to tell the file write code to precede embedded colons with an escape character, and then
to tell the file read code to interpret it. Unix tradition favors backslash for this use.

The fact that structural information is conveyed by field position rather than an explicit tag makes
this format faster to read and write, but a bit rigid. If the set of properties associated with a key is
expected to change with any frequency, one of the tagged formats described below might be a better
choice.
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Economy is not a major issue with password files to begin with, as they’re normally read eldom
and infrequently modified. Interoperability is not an issue, since various data in the file (notably
user and group numbers) are not portable off the originating machine.  For password files, it's
therefore quite clear that going where the transparency criterion leads was the right thing.

Case Study: .newsrc Format

Usenet news is a worldwide distributed bulletin-board system that anticipated today’s P2P network-
ing by two decades. It uses a message format very similar to that of RFC 822 electronic-mail
messages, except that instead of being directed to personal recipients messages are sent to topic
groups. Articles posted at any participating site are broadcast to each site that it has registered as a
neighbor, and eventually flood-fill to all news sites.

Almost all Usenet news readers understandrbesrc file, which records which Usenet messages
have been seen by the calling user. Though it is named like a run-control file, it is not only read at
startup but typically updated at the end of the newsreader run..nétverc  format has been fixed
since the first newsreaders around 1980. Example 5.2 is a representative sectionrfeasra

file.

Example 5.2. A.newsrc example.

rec.arts.sf.misc! 1-14774,14786,14789

rec.arts.sf.reviews! 1-2534

rec.arts.sf.written: 1-876513

news.answers! 1-199359,213516,215735

news.announce.newusers! 1-4399

news.newusers.questions! 1-645661

news.groups.questions! 1-32676

news.software.readers! 1-95504,137265,137274,140059,140091,140117
alt.test! 1-1441498

Each line sets properties for the newsgroup named in the first field. The name is immediately
followed by a character that indicates whether the owning user is currently subscribed to the group
or not; a colon indicates subscription, and an exclamation mark indicates nonsubscription. The

52password files are normally read once per user session at login time, and after that occasionally by file-system utilities like
Is(1) that must map from numeric user and group IDs to names.
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remainder of the line is a sequence of comma-separated article numbers or ranges of article numbers,
indicating which articles the user has seen.

Non-Unix programmers might have automatically tried to design a fast binary format in which
each newsgroup status was described by either a long but fixed-length binary record, or a sequence
of self-describing binary packets with internal length fields. The main point of such a binary
representation would be to express ranges with binary data in paired word-length fields, in order to
avoid the overhead of parsing all the range expressions at startup.

Such a layout could be read and written faster than a textual format, but it would have other
problems. A naive implementation in fixed-length records would have placed artificial length
limits on newsgroup names and (more seriously) on the maximum number of ranges of seen-article
numbers. A more sophisticated binary-packet format would avoid the length limits, but could not
be edited with the user’s eyeballs and fingers — a capability that can be quite useful when you want
to reset just some of the read bits in an individual newsgroup. Also, it would not necessarily be
portable to different machine types.

The designers of the original newsreader chose transparency and interoperability over economy.
The case for going in the other direction was not completely ridiculowsysrc  files can get

very large, and one modern reader (GNOME's Pan) uses a speed-optimized private format to avoid
startup lag. But to other implementers, textual representation looked like a good tradeoff in 1980,
and has looked better as machines increased in speed and storage dropped in price.

Case Study: The PNG Graphics File Format

PNG (Portable Network Graphics) is a file format for bitmap graphics. It is like GIF, and unlike
JPEG, in that it uses lossless compression and is optimized for applications such as line art and
icons rather than photographic images. Documentation and open-source reference libraries of high
guality are available at the Portable Network Graphics website [http://www.libpng.org/pub/png/].

PNG is an excellent example of a thoughtfully designed binary format. =~ A binary format is
appropriate since graphics files may contain very large amounts of data, such that storage size and
Internet download time would go up significantly if the pixel data were stored textually. Transaction
economy was the prime consideration, with transparency sacrificEde designers were, however,
careful about interoperability; PNG specifies byte orders, integer word lengths, endianness, and (lack
of) padding between fields.

S3Confusingly, PNG supports a different kind of transparency — transparent pixels in the PNG image.
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A PNG file consists of a sequence of chunks, each in a self-describing format beginning with the
chunk type name and the chunk length. Because of this organization, PNG does not need a release
number. New chunk types can be added at any time; the case of the first letter in the chunk type
name informs PNG-using software whether or not each chunk can be safely ignored.

The PNG file header also repays study. It has been cleverly designed to make various common
kinds of file corruption (e.g., by 7-bit transmission links, or mangling of CR and LF characters) easy
to detect.

The PNG standard is precise, comprehensive, and well written. It could serve as a model for how to
write file format standards.

Data File Metaformats

A data file metaformat is a set of syntactic and lexical conventions that is either formally standardized
or sufficiently well established by practice that there are standard service libraries to handle
marshaling and unmarshaling it.

Unix has evolved or adopted metaformats suitable for a wide range of applications. It is good
practice to use one of these (rather than an idiosyncratic custom format) wherever possible. The
benefits begin with the amount of custom parsing and generation code that you may be able to avoid
writing by using a service library.  But the most important benefit is that developers and even
many users will instantly recognize these formats and feel comfortable with them, which reduces
the friction costs of learning new programs.

In the following discussion, when we refer to “traditional Unix tools” we are intending the
combination of grep(1), sed(1), awk(1), tr(1), and cut(1) for doing text searches and transformations.
Perl and other scripting languages tend to have good native support for parsing the line-oriented
formats that these tools encourage.

Here, then, are the standard formats that can serve you as models.

DSV Style

DSV stands foDelimiter-Separated Values Our first case study in textual metaformats was the
letc/passwd  file, which is a DSV format with colon as the value separator. Under Unix, colon is
the default separator for DSV formats in which the field values may contain whitespace.
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letc/passwd ~ format (one record per line, colon-separated fields) is very traditional under Unix and
frequently used for tabular data. Other classic examples includettiigroup  file describing
security groups and thietc/inittab file used to control startup and shutdown of Unix service
programs at different run levels of the operating system.

Data files in this style are expected to support inclusion of colons in the data fields by backslash

escaping. More generally, code that reads them is expected to support record continuation by
ignoring backslash-escaped newlines, and to allow embedding nonprintable character data by C-
style backslash escapes.

This format is most appropriate when the data is tabular, keyed by a name (in the first field), and
records are typically short (less than 80 characters long). It works well with traditional Unix tools.

One occasionally sees field separators other than the colon, such as the pipe character | or even an
ASCII NUL. Old-school Unix practice used to favor tabs, a preference reflected in the defaults for
cut(1) and paste(1); but this has gradually changed as format designers became aware of the many
small irritations that ensue from the fact that tabs and spaces are not visually distinguishable.

This format is to Unix what CSV (comma-separated value) format is under Microsoft Windows and
elsewhere outside the Unix world. CSV (fields separated by commas, double quotes used to escape
commas, no continuation lines) is rarely found under Unix.

In fact, the Microsoft version of CSV is a textbook example of mmtto design a textual file format.

Its problems begin with the case in which the separator character (in this case, a comma) is found
inside a field. The Unix way would be to simply escape the separator with a backslash, and have a
double escape represent a literal backslash. This design gives us a single special case (the escape
character) to check for when parsing the file, and only a single action when the escape is found (treat
the following character as a literal). The latter conveniently not only handles the separator character,
but gives us a way to handle the escape character and newlines for free. CSV, on the other hand,
encloses the entire field in double quotes if it contains the separator. If the field contains double
quotes, it must also be enclosed in double quotes, and the individual double quotes in the field must
themselves be repeated twice to indicate that they don't end the field.

The bad results of proliferating special cases are twofold. First, the complexity of the parser
(and its vulnerability to bugs) is increased. Second, because the format rules are complex and
underspecified, different implementations diverge in their handling of edge cases. Sometimes
continuation linesare supported, by starting the last field of the line with an unterminated double
quote — but only in some products! Microsoft has incompatible versions of CSV files between its

138



Chapter 5. Textuality

own applications, and in some cases between different versions of the same application (Excel being
the obvious example here).

RFC 822 Format

The RFC 822 metaformat derives from the textual format of Internet electronic mail messages; RFC
822 is the principal Internet RFC describing this format (since superseded by RFC 2822). MIME
(Multipurpose Internet Media Extension) provides a way to embed typed binary data within RFC-
822-format messages. (Web searches on either of these names will turn up the relevant standards.)

In this metaformat, record attributes are stored one per line, named by tokens resembling mail
header-field names and terminated with a colon followed by whitespace. Field names do not
contain whitespace; conventionally a dash is substituted instead. The attribute value is the entire
remainder of the line, exclusive of trailing whitespace and newline. A physical line that begins with
tab or whitespace is interpreted as a continuation of the current logical line. A blank line may be
interpreted either as a record terminator or as an indication that unstructured text follows.

Under Unix, this is the traditional and preferred textual metaformat for attributed messages or
anything that can be closely analogized to electronic mail. More generally, it's appropriate for
records with a varying set of fields in which the hierarchy of data is flat (no recursion or tree
structure).

Usenet news uses it; so do the HTTP 1.1 (and later) formats used by the World Wide Web. Itis very
convenient for editing by humans. Traditional Unix search tools are still good for attribute searches,
though finding record boundaries will be a little more work than in a record-per-line format.

One weakness of RFC 822 format is that when more than one RFC 822 message or record is put in
a file, the record boundaries may not be obvious — how is a poor literal-minded computer to know
where the unstructured text body of a message ends and the next header begins? Historically, there
have been several different conventions for delimiting messages in mailboxes. The oldest and most
widely supported, leading each message with a line that begins with the'strang " and sender
information, is not appropriate for other kinds of records; it also requires that lines in message text
beginning with'From " be escaped (typically with) — a practice which not infrequently leads to
confusion.

Some mail systems use delimiter lines consisting of control characters unlikely to appear in
messages, such as several ASCII 01 (control-A) characters in succession. The MIME standard
gets around the problem by including an explicit message length in the header, but this is a fragile
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solution which is very likely to break if messages are ever manually edited. For a somewhat better
solution, see the record-jar style described later in this chapter.

For examples of RFC 822 format, look in your mailbox.

Cookie-Jar Format

Cookie-jar format is used by the fortune(1) program for its database of random quotes. It is
appropriate for records that are just bags of unstructured text. It simply uses newline followed by
%%or sometimes newline followed t9y as a record separator. Example 5.3 is an example section
from a file of email signature quotes:

Example 5.3. A fortune file example.

"Among the many misdeeds of British rule in India, history will look
upon the Act depriving a whole nation of arms as the blackest.”

-- Mohandas Gandhi, "An Autobiography”, pg 446
%
The people of the various provinces are strictly forbidden to have
in their possession any swords, short swords, bows, spears, firearms,
or other types of arms. The possession of unnecessary implements
makes difficult the collection of taxes and dues and tends to foment
uprisings.

-- Toyotomi Hideyoshi, dictator of Japan, August 1588
%
"One of the ordinary modes, by which tyrants accomplish their
purposes without resistance, is, by disarming the people, and making
it an offense to keep arms."

-- Supreme Court Justice Joseph Story, 1840

It is good practice to accept whitespace aftewhen looking for record delimiters.  This helps
cope with human editing mistakes. It's even better practice t@4dsand ignore all text fromo%o
end-of-line.

The cookie-jar separator was originatg?o\n | wanted something a bit more
visible than%would have been. In fact, any stuff after theds treated as a
comment (or at least that's how | wrote it).
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<author>KenArnold</author>

Simple cookie-jar format is appropriate for pieces of text that have no natural ordering, distinguish-
able structure above word level, or search keys other than their text context.

Record-Jar Format

Cookie-jar record separators combine well with the RFC 822 metaformat for records, yielding a
format we’'ll call ‘record-jar’. If you need a textual format that will support multiple records with a
variable repertoire of explicit fieldnames, one of the least surprising and human-friendliest ways to
do it would look like Example 5.4.

Example 5.4. Basic data for three planets in a record-jar format.

Planet: Mercury

Orbital-Radius: 57,910,000 km

Diameter: 4,880 km

Mass: 3.30e23 kg

%%

Planet: Venus

Orbital-Radius: 108,200,000 km
Diameter: 12,103.6 km

Mass: 4.869e24 kg

%%

Planet: Earth

Orbital-Radius: 149,600,000 km
Diameter: 12,756.3 km

Mass: 5.972e24 kg

Moons: Luna

Of course, the record delimiter could be a blank line, but a line consistirg@fi' is more explicit

and less likely to be introduced by accident during editing (two printable characters are better than
one because it can't be generated by a single-character typo). In aformat like this it is good practice
to simply ignore blank lines.

If your records have an unstructured text part, your record-jar format is closely approaching a
mailbox format. In this case, it's important that you have a well-defined way to escape the record
delimiter so it can appear in text; otherwise, your record reader is going to choke on an ill-formed
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text part someday. Some technique analogous to byte-stuffing (described later in this chapter) is
indicated.

Record-jar format is appropriate for sets of field-attribute associations that are like DSV files, but
have a variable repertoire of fields, and possibly unstructured text associated with them.

XML

XML is a very simple syntax resembling HTML — angle-bracketed tags and ampersand-led literal
sequences. It is about as simple as a plain-text markup can be and yet express recursively nested
data structures. XML is just a low-level syntax; it requires a document type definition (such as
XHTML) and associated application logic to give it semantics.

XML is well suited for complex data formats (the sort of things for which the old-school Unix
tradition would use an RFC-822-like stanza format) though overkill for simpler ones. Itis especially
appropriate for formats that have a complex nested or recursive structure of the sort that the RFC
822 metaformat does not handle well. For a good introduction to the formaxMkeén a Nutshell
[Harold-Means].

Among the hardest things to get right in designing any text file format are issues
of quoting, whitespace and other low-level syntax details. Custom file formats
often suffer from slightly broken syntax that doesn’t quite match other similar
formats. Using a standard format such as XML, which is verifiable and parsed
by a standard library, eliminates most of these issues.

<author>KeithPackard</author>

Example 5.5 is a simple example of an XML-based configuration file. It is part dkdkerint

tool shipped with the open-source KDE office suite hosted under Linux. It describes options for an
image-to-PostScript filtering operation, and how to map them into arguments for a filter command.
For another instructive example, see the discussidbladein Chapter 8.

Example 5.5. An XML example.

<?xml version="1.0"?>
<kprintfilter name="imagetops">
<filtercommand
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data="imagetops %filterargs %filterinput %filteroutput” />
<filterargs>
<filterarg name="center"
description="Image centering"
format="-nocenter" type="bool" default="true">
<value name="true" description="Yes" />
<value name="false" description="No" />
<[filterarg>
<filterarg name="turn"
description="Image rotation"
format="-%value" type="list" default="auto">
<value name="auto" description="Automatic" />
<value name="noturn" description="None" />
<value name="turn" description="90 deg" />
<[filterarg>
<filterarg name="scale"
description="Image scale"
format="-scale %value"
type="float"
min="0.0" max="1.0" default="1.000" />
<filterarg name="dpi"
description="Image resolution"
format="-dpi %value"
type="int" min="72" max="1200" default="300" />
<[filterargs>
<filterinput>
<filterarg name="file" format="%in" />
<filterarg name="pipe" format="" />
<ffilterinput>
<filteroutput>
<filterarg name="file" format="> %out" />
<filterarg name="pipe" format="" />
<ffilteroutput>
</kprintfilter>

One advantage of XML is that it is often possible to detect ill-formed, corrupted, or incorrectly
generated data through a syntax check, without knowing the semantics of the data.
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The most serious problem with XML is that it doesn’t play well with traditional Unix tools.
Software that wants to read an XML format needs an XML parser; this means bulky, complicated
programs. Also, XML is itself rather bulky; it can be difficult to see the data amidst all the markup.

One application area in which XML is clearly winning is in markup formats for document files
(we'll have more to say about this in Chapter 18). Tagging in such documents tends to be relatively
sparse among large blocks of plain text; thus, traditional Unix tools still work fairly well for simple
text searches and transformations.

One interesting bridge between these worlds is PYX format — a line-oriented translation of XML
that can be hacked with traditional line-oriented Unix text tools and then losslessly translated back
to XML. A Web search for “Pyxie” will turn up resources. The xmltk toolkit takes the opposite
tack, providing stream-oriented tools analogous to grep(1) and sort(1) for filtering XML documents;
Web search for “xmltk” to find it.

XML can be a simplifying choice or a complicating one. There is a lot of hype surrounding it, but
don’t become a fashion victim by either adopting or rejecting it uncritically. Choose carefully and
bear the KISS principle in mind.

Windows INI Format

Many Microsoft Windows programs use a textual data format that looks like Example 5.6. This ex-
ample associates optional resources naaeedunt , directory , numeric_id , anddeveloper

with named projectgython , sng, fetchmail , andpy-howto . The DEFAULT entry supplies
values that will be used when a named entry fails to supply them.

Example 5.6. A.INI file example.

[DEFAULT]
account = esr

[python]
directory = /home/esr/cvs/python/

developer = 1

[sng]
directory = /home/esr/WWW/sng/
numeric_id = 1012
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developer = 1

[fetchmail]
numeric_id = 18364

[py-howto]

account = eric

directory = /home/esr/cvs/py-howto/
developer = 1

This style of data-file format is not native to Unix, but some Linux programs (notably Samba, the
suite of tools for accessing Windows file shares from Linux) support it under Windows’s influence.
This format is readable and not badly designed, but like XML it doesn’t play well with grep(1) or
conventional Unix scripting tools.

The .INI format is appropriate if your data naturally falls into its two-level organization of name-
attribute pairs clustered under named records or sections. It's not good for data with a fully recursive
treelike structure (XML is more appropriate for that), and it would be overkill for a simple list of
name-value associations (use DSV format for that).

Unix Textual File Format Conventions

There are long-standing Unix traditions about how textual data formats ought to look. Most of
these derive from one or more of the standard Unix metaformats we've just described. It is wise to
follow these conventions unless you have strong and specific reasons to do otherwise.

In Chapter 10 we will discuss a different set of conventions used for program run-control files, but
you should notice that it will share some of these same rules (especially about the lexical level, the
rules by which characters are assembled into tokens).

* One record per newline-terminated line, if possibldis makes it easy to extract records with
text-stream tools. For data interchange with other operating systems, it's wise to make your
file-format parser indifferent to whether the line ending is LF or CR-LF. It's also conventional to
ignore trailing whitespace in such formats; this protects against common editor bobbles.
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« Less than 80 characters per line, if possiblthis makes the format browseable in an ordinary-
sized terminal window. If many records must be longer than 80 characters, consider a stanza
format (see below).

«Use# as an introducer for commentslt is good to have a way to embed annotations and
comments in data files. It's best if they're actually part of the file structure, and so will be
preserved by tools that know its format. For comments that are not preserved during parsing,
is the conventional start character.

 Support the backslash conventidrhe least surprising way to support embedding nonprintable
control characters is by parsing C-like backslash escaps fer a newline\r for a carriage
return,\t for a tab,\b for backspace\f for formfeed,\e for ASCII escape (27)\nnn or
\onnn or\onnn for the character with octal valuen, \xnn for the character with hexadecimal
valuenn, \dnnn for the character with decimal valuan, \\ for a literal backslash. A newer
convention, but one worth following, is the use\afinnn for a hexadecimal Unicode literal.

« In one-record-per-line formats, use colon or any run of whitespace as a field sepafdater.
colon convention seems to have originated with the Unix password file. If your fields must
contain instances of the separator(s), use a backslash as the prefix to escape them.

« Do not allow the distinction between tab and whitespace to be signifiddms. is a recipe for
serious headaches when the tab settings on your users’ editors are different; more generally, it's
confusing to the eye. Using tab alone as a field separator is especially likely to cause problems;
allowing any run of tabs and spaces to be a field separator, on the other hand, works well.

« Favor hex over octalHex-digit pairs and quads are easier to eyeball-map into bytes and today’s
32- and 64-bit words than octal digits of three bits each; also marginally more efficient. This
rule needs emphasizing because some older Unix tools such as od(1) violate it; that's a legacy
from the instruction field sizes in the machine languages of older PDP minicomputers.

« For complex records, use a ‘stanza’ format: multiple lines per record, with a record separator
line of %%\nor %\n. The separators make useful visual boundaries for human beings eyeballing
the file.

« In stanza formats, either have one record field per line or use a record format resembling RFC
822 electronic-mail headers, with colon-terminated field-name keywords leading fi€las.
second choice is appropriate when fields are often either absent or longer than 80 characters, or
when records are sparse (e.g., often with empty fields).
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« In stanza formats, support line continuatiofthen interpreting the file, either discard backslash
followed by whitespace or interpret newline followed by whitespace equivalently to a single
space, so that a long logical line can be folded into short (easily editable!) physical lines. It's
also conventional to ignore trailing whitespace in these formats; this convention protects against
common editor bobbles.

« Either include a version number or design the format as self-describing chunks independent of
each other.If there is even the faintest possibility that the format will have to be changed or
extended, include a version number so your code can conditionally do the right thing on all
versions. Alternatively, design the format as self-describing chunks so that you can add new
chunk types without instantly breaking old code.

« Beware of floating-point round-off problentSonversion of floating-point numbers from binary
to text format and back can lose precision, depending on the quality of the conversion library you
are using. If the structure you are marshaling/unmarshaling contains floating point, you should
test the conversion in both directions. If it looks like conversion in either direction is subject
to roundoff errors, be prepared to dump the floating-point field as raw binary instead, or a string
encoding thereof. If you're coding in C or some language that has access to C printf/scanf, the
C99%aspecifier may solve this problem.

« Don't bother compressing or binary-encoding just part of the filee below...

The Pros and Cons of File Compression

Many modern Unix projects, such as OpenOffice.org and AbiWord, now use XML compressed with
zip(1) or gzip(1) as a data file format. Compressed XML combines space economy with some of
the advantages of a textual format — notably, it avoids the problem that binary formats must often
allocate space for information that may not be used in particular cases (e.g., for unusual options or
large ranges). But there is some dispute about this, dispute which turns on some of the central
tradeoffs discussed in this chapter.

On the one hand, experiments have shown that documents in a compressed XML file are usually
significantly smaller than the Microsoft Word’s native file format, a binary format that one might
imagine would take less space. The reason relates to a fundamental of the Unix philosophy: Do
one thing well. Creating a single tool to do the compression job well is more effective than ad-
hoc compression on parts of the file, because the tool can look across all the data andaéixploit
repetition in the information.
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Also, by separating the representation design from the particular compression method used, you
leave open the possibility of using different compression methods in the future with no more than
minimal changes to the actual file parsing — perhaps, with no changes at all.

On the other hand, compression does some damage to transparency. While a human being can
estimate from context whether uncompressing the file is likely to show him anything useful, tools
such as file(1) cannot as of mid-2003 see through the wrapping.

Some would advocate a less structured compression format — straight gzip(1)-compressed XML
data, say, without the internal structure and self-identifying header chunk provided by zip(1). While

using a format similar to that of zip(1) solves the identification problem, it means that decoding such

files will be tricky for programs written in the simpler scripting languages.

Any of these solutions (straight text, straight binary, or compressed text) may be optimal depending
on the relative weight you give to storage economy, discoverability, or making browsing tools as
simple as possible to write. The point of the preceding discussion is not to advocate any one of
these approaches over the others, but rather to suggest how you can think about the options and
design tradeoffs clearly.

This having been said, the truly Unixy solution would probably be to fix file(1) to see file prefixes
through the compression — and, failing that, to write a shellscript wrapper around file(1) that would
interpret compression as a direction to apply gunzip(1) and take a second look.

Application Protocol Design

In Chapter 7, we'll discuss the advantages of breaking complicated applications up into cooperating
processes speaking an application-specific command set or protocol with each other. All the good
reasons for data file formats to be textual apply to these application-specific protocols as well.

When your application protocol is textual and easily parsed by eyeball, many good things become
easier. Transaction dumps become much easier to interpret. Test loads become easier to write.

Server processes are often invoked by harness programs such as inetd(8) in such a way that the
server sees commands on standard input and ships responses to standard output. We describe this
“CLI server” pattern in more detail in Chapter 11.
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A CLI server with a command set that is designed for simplicity has the valuable property that a
human tester will be able to type commands direct to the server process to probe the software’s
behavior.

Another issue to bear in mind is the end-to-end design principle. Every protocol designer should
read the classi€nd-to-End Arguments in System Dedi8altzer]. There are often serious questions
about which level of the protocol stack should handle features like security and authentication; this
paper provides some good conceptual tools for thinking about them. Yet a third issue is designing
application protocols for good performance. We'll cover that issue in more detail in Chapter 12.

The traditions of Internet application protocol design evolved separately from Unix beforé“980.
But since the 1980s these traditions have become thoroughly naturalized into Unix practice.

We'll illustrate the Internet style by looking at three application protocols that are both among the
most heavily used, and are widely regarded among Internet hackers as paradigmatic: SMTP, POP3,
and IMAP. All three address different aspects of mail transport (one of the net’s two most important
applications, along with the World Wide Web), but the problems they address (passing messages,
setting remote state, indicating error conditions) are generic to non-email application protocols as
well and are normally addressed using similar techniques.

Case Study: SMTP, a Simple Socket Protocol

Example 5.7 is an example transaction in SMTP (Simple Mail Transfer Protocol), which is described
by RFC 2821. In the exampl€;: lines are sent by a mail transport agent (MTA) sending mail, and
S:lines are returned by the MTA receiving it. Textthphasized like this comments, not part of the
actual transaction.

Example 5.7. An SMTP session example.

C: <client connects to service port 25>

C: HELO snark.thyrsus.com sending host identifies self
S: 250 OK Hello snark, glad to meet you receiver acknowledges
C: MAIL FROM: <esr@thyrsus.com> identify sending user

S: 250 <esr@thyrsus.com>... Sender ok receiver acknowledges
C: RCPT TO: cor@cpmy.com identify target user

540One relic of this pre-Unix history is that Internet protocols normally use CR-LF as a line terminator rather than Unix’s bare
LF.
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S: 250 root... Recipient ok receiver acknowledges
C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Scratch called. He wants to share

C: a room with us at Balticon.

C: . end of multiline send

S: 250 WAA01865 Message accepted for delivery

C: QUIT sender signs off

S: 221 cpmy.com closing connection receiver disconnects
C

: <client hangs up>

This is how mail is passed among Internet machines. Note the following features: command-
argument format of the requests, responses consisting of a status code followed by an informational
message, the fact that the payload of the DATA command is terminated by a line consisting of a
single dot.

SMTP is one of the two or three oldest application protocols still in use on the Internet. Itis simple,
effective, and has withstood the test of time. The traits we have called out here are tropes that recur
frequently in other Internet protocols. If there is any single archetype of what a well-designed
Internet application protocol looks like, SMTP is it.

Case Study: POP3, the Post Office Protocol

Another one of the classic Internet protocols is POP3, the Post Office Protocol. It is also used
for mail transport, but where SMTP is a ‘push’ protocol with transactions initiated by the mail
sender, POP3 is a ‘pull’ protocol with transactions initiated by the mail receiver. Internet users with
intermittent access (like dial-up connections) can let their mail pile up on a mail-drop machine, then
use a POP3 connection to pull mail up the wire to their personal machines.

Example 5.8 is an example POP3 session. In the exa@plmes are sent by the client, agdlines

by the mail server. Observe the many similarities with SMTP. This protocol is also textual and line-
oriented, sends payload message sections terminated by a line consisting of a single dot followed by
line terminator, and even uses the same exit command, QUIT. Like SMTP, each client operation is
acknowledged by a reply line that begins with a status code and includes an informational message
meant for human eyes.
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Example 5.8. A POP3 example session.

: <client connects to service port 110>

. +OK POP3 server ready <1896.6971@mailgate.dobbs.org>
: USER bob

+OK bob

PASS redqueen

+OK bob’s maildrop has 2 messages (320 octets)
STAT

+0OK 2 320

LIST

+0OK 2 messages (320 octets)

1120

2 200

RETR 1
+OK 120 octets
<the POP3 server sends the text of message 1>

DELE 1

+OK message 1 deleted

RETR 2

+OK 200 octets

<the POP3 server sends the text of message 2>

DELE 2

+OK message 2 deleted

QUIT

: +OK dewey POP3 server signing off (maildrop empty)
: <client hangs up>

There are a few differences. The most obvious one is that POP3 uses status tokens rather than
SMTP’s 3-digit status codes. Of course the requests have different semantics. But the family
resemblance (one we’ll have more to say about when we discuss the generic Internet metaprotocol
later in this chapter) is clear.

Case Study: IMAP, the Internet Message Access Protocol
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To complete our triptych of Internet application protocol examples, we’ll look at IMAP, another post
office protocol designed in a slightly different style. See Example 5.9; as b&folimes are sent

by the client, and: lines by the mail server. Texmphasized like this comments, not part of the
actual transaction.

Example 5.9. An IMAP session example.

C: <client connects to service port 143>

S: * OK example.com IMAP4revl v12.264 server ready

C: A0001 USER "frobozz" "xyzzy"

S: * OK User frobozz authenticated

C: A0002 SELECT INBOX

S: * 1 EXISTS

S: * 1 RECENT

S: * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

S: * OK [UNSEEN 1] first unseen message in /var/spool/mail/esr

S: A0002 OK [READ-WRITE] SELECT completed

C: AOO0O3 FETCH 1 RFC822.SIZE Get message sizes
S: * 1 FETCH (RFCB822.SIZE 2545)

S: A0003 OK FETCH completed

C: A0004 FETCH 1 BODY[HEADER] Get first message header
S: * 1 FETCH (RFC822.HEADER {1425}

<server sends 1425 octets of message payload>

S:)

S: A0004 OK FETCH completed

C: A0005 FETCH 1 BODY[TEXT] Get first message body
S: * 1 FETCH (BODY[TEXT] {1120}

<server sends 1120 octets of message payload>

S:)

S: * 1 FETCH (FLAGS (\Recent \Seen))

S: A0005 OK FETCH completed

C: A0006 LOGOUT

S: * BYE example.com IMAP4revl server terminating connection

S: A0006 OK LOGOUT completed

C: <client hangs up>

IMAP delimits payloads in a slightly different way. Instead of ending the payload with a dot, the
payload length is sent just before it. This increases the burden on the server a little bit (messages
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have to be composed ahead of time, they can't just be streamed up after the send initiation) but
makes life easier for the client, which can tell in advance how much storage it will need to allocate
to buffer the message for processing as a whole.

Also, naotice that each response is tagged with a sequence label supplied by the request; in this
example they have the form A00OnN, but the client could have generated any token into that slot.
This feature makes it possible for IMAP commands to be streamed to the server without waiting for
the responses; a state machine in the client can then simply interpret the responses and payloads as
they come back. This technique cuts down on latency.

IMAP (which was designed to replace POP3) is an excellent example of a mature and powerful
Internet application protocol design, one well worth study and emulation.

Application Protocol Metaformats

Just as data file metaformats have evolved to simplify serialization for storage, application protocol
metaformats have evolved to simplify serialization for transactions across networks. The tradeoffs
are a little different in this case; because network bandwidth is more expensive than storage, there is
more of a premium on transaction economy. Still, the transparency and interoperability benefits of
textual formats are sufficiently strong that most designers have resisted the temptation to optimize
for performance at the cost of readability.

The Classical Internet Application Metaprotocol

Marshall Rose’s RFC 31170n the Design of Application Protocgl$ provides an excellent
overview of the design issues in Internet application protocols. It makes explicit several of the
tropes in classical Internet application protocols that we observed in our examination of SMTP, POP,
and IMAP, and provides an instructive taxonomy of such protocols. Itis recommended reading.

The classical Internet metaprotocol is textual. It uses single-line requests and responses, except for
payloads which may be multiline. Payloads are shipped either with a preceding length in octets
or with a terminator that is the lin&n\n" . In the latter case the payloadiigte-stuffegall lines

that start with a period get another period prepended, and the receiver side is responsible for both
recognizing the termination and stripping away the stuffing. Response lines consist of a status code
followed by a human-readable message.

%5See RFC 3117 [ftp://ftp.rfc-editor.org/in-notes/rfc3117.txt].
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One final advantage of this classical style is that it is readily extensible. The parsing and state-
machine framework doesn’t need to change much to accommodate new requests, and it is easy
to code implementations so that they can parse unknown requests and return an error or simply
ignore them. SMTP, POP3, and IMAP have all been extended in minor ways fairly often during
their lifetimes, with minimal interoperability problems. Naively designed binary protocols are, by
contrast, notoriously brittle.

HTTP as a Universal Application Protocol

Ever since the World Wide Web reached critical mass around 1993, application protocol designers
have shown an increasing tendency to layer their special-purpose protocols on top of HTTP, using
web servers as generic service platforms.

This is a viable option because, at the transaction layer, HTTP is very simple and general. An HTTP
request is a message in an RFC-822/MIME-like format; typically, the headers contain identification
and authentication information, and the first line is a method call on some resource specified by
a Universal Resource Indicator (URI). The most important methods are GET (fetch the resource),
PUT (modify the resource) and POST (ship data to a form or back-end process). The mostimportant
form of URI is a URL or Uniform Resource Locator, which identifies the resource by service type,
host name, and a location on the host. An HTTP response is simply an RFC-822/MIME message
and can contain arbitrary content to be interpreted by the client.

Web servers handle the transport and request-multiplexing layers of HTTP, as well as standard
service types like http and ftp. It is relatively easy to write web server plugins that will handle
custom service types, and to dispatch on other elements of the URI format.

Besides avoiding a lot of lower-level details, this method means the application protocol will tunnel
through the standard HTTP service port and not need a TCP/IP service port of its own. This can be
a distinct advantage; most firewalls leave port 80 open, but trying to punch another hole through can
be fraught with both technical and political difficulties.

With this advantage comes arisk. It means that your web server and its plugins grow more complex,
and cracks in any of that code can have large security implications. It may become more difficult
to isolate and shut down problem services. The usual tradeoffs between security and convenience

apply.

154



Chapter 5. Textuality

RFC 3205,0n the Use of HTTP As a Substrafenas good design advice for anyone considering
using HTTP as the underlayer of an application protocol, including a summary of the tradeoffs and
problems involved.

Case Study: The CDDB/freedb.org Database

Audio CDs consist of a sequence of music tracks in a digital format called CDDA-WAV. They were
designed to be played by very simple consumer-electronics devices a few years before general-
purpose computers developed enough raw speed and sound capability to decode them on the fly.
Because of this, there is no provision in the format for even simple metainformation such as the
album and track titles. But modern computer-hosted CD players want this information so the user
can assemble and edit play lists.

Enter the Internet. There are (at least two) repositories that provide a mapping between a hash
code computed from the track-length table on a CD and artist/album-title/track-title records. The
original wascddb.org , but another site callefteedb.org  which is probably now more complete

and widely used. Both sites rely on their users for the enormous task of keeping the database current
as new CDs come outreedb.org  arose from a developer revolt after CDDB elected to take all

that user-contributed information proprietary .

Queries to these services could have been implemented as a custom application protocol on top of
TCP/IP, but that would have required steps such as getting a new TCP/IP port humber assigned
and fighting to get a hole for it punched through thousands of firewalls. Instead, the service is
implemented over HTTP as a simple CGI query (as if the CD’s hash code had been supplied by a
user filling in a Web form).

This choice makes all the existing infrastructure of HTTP and Web-access libraries in various
programming languages available to support programs for querying and updating this database. As
a result, adding such support to a software CD player is nearly trivial, and effectively every software
CD player knows how to use them.

Case Study: Internet Printing Protocol

Internet Printing Protocol (IPP) is a successful, widely implemented standard for the control of
network-accessible printers. Pointers to RFCs, implementations, and much other related material
are available at the IETF’s Printer Working Group [http://www.pwg.org/ipp/] site.

%6See RFC 3205 [http://www.fags.org/rfcs/rfc3205.html].
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IPP uses HTTP 1.1 as a transport layer. All IPP requests are passed via an HTTP POST method
call; responses are ordinary HTTP responses. (Section 4.2 of RFCR&at@nale for the Structure

of the Model and Protocol for the Internet Printing Protocdbes an excellent job of explaining this
choice; it repays study by anyone considering writing a new application protocol.)

From the software side, HTTP 1.1 is widely deployed. It already solves many of the transport-level
problems that would otherwise distract protocol developers and implementers from concentrating
on the domain semantics of printing. It is cleanly extensible, so there is room for IPP to grow. The
CGl programming model for handling the POST requests is well understood and development tools
are widely available.

Most network-aware printers already embed a web server, because that’s the natural way to make
the status of the printer remotely queryable by human beings. Thus, the incremental cost of adding
IPP service to the printer firmware is not large. (This is an argument that could be applied to a
remarkably wide range of other network-aware hardware, including vending machines and coffee
makers’ and hot tubs!)

About the only serious drawback of layering IPP over HTTP is that the protocol is completely
driven by client requests. Thus there is no space in the model for printers to ship asynchronous alert
messages back to clients. (However, smarter clients could run a trivial HTTP server to receive such
alerts formatted as HTTP requests from the printer.)

BEEP: Blocks Extensible Exchange Protocol

BEEP (formerly BXXP) is a generic protocol machine that competes with HTTP for the role

of universal underlayer for application protocols. There is a niche open because there is
not as yet any other more established metaprotocol that is appropriate for truly peer-to-peer
applications, as opposed to the client-server applications that HTTP handles well. A project website
[http://www.beepcore.org/beepcore/docs/sl-beep.jsp] provides access to standards and open-source
implementations in several languages.

BEEP has features to support both client-server and peer-to-peer modes. The authors designed the
BEEP protocol and support library so that picking the right options abstracts away messy issues like
data encoding, flow control, congestion-handling, support of end-to-end encryption, and assembling
a large response composed of multiple transmissions,

5’See RFC 2324 [http://www.ietf.org/rfc/rfc2324.txt] and RFC 2325 [http://www.ietf.org/rfc/rfc2325.txt].
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Internally, BEEP peers exchange sequences of self-describing binary packets not unlike chunk types
in PNG. The design is tuned more for economy and less for transparency than the classical Internet
protocols or HTTP, and might be a better choice when data volumes are large. BEEP also avoids the
HTTP problem that all requests have to be client-initiated; it would be better in situations in which

a server needs to send asynchronous status messages back to the client.

BEEP is still new technology in mid-2003, and has only a few demonstration projects. But the
BEEP papers are good analytical surveys of best practice in protocol design; even if BEEP itself
fails to gain widespread adoption, the papers will retain considerable tutorial value.

XML-RPC, SOAP, and Jabber

There is a developing trend in application protocol design toward using XML within MIME to
structure requests and payloads. BEEP peers use this format for channel negotiations. Three
major protocols are going the XML route throughout: XML-RPC and SOAP (Simple Object Access
Protocol) for remote procedure calls, and Jabber for instant messaging and presence. All three are
XML document types.

XML-RPC is very much in the Unix spirit (its author observes that he learned how to program in the
1970s by reading the original source code for Unix). It's deliberately minimalist but nevertheless
quite powerful, offering a way for the vast majority of RPC applications that can get by on passing
around scalar boolean/integer/float/string datatypes to do their thing in a way that is lightweight and
easy to understand and monitor. XML-RPC's type ontology is richer than that of a text stream, but
still simple and portable enough to act as a valuable check on interface complexity. Open-source
implementations are available. An excellent XML-RPC home page [http://www.xmlrpc.com/]
points to specifications and multiple open-source implementations.

SOAP is a more heavyweight RPC protocol with a richer type ontology that includes arrays and C-
like structs. It was inspired by XML-RPC, but has been plausibly accused of being an overdesigned
victim of the second-system effect. As of mid-2003 the SOAP standard is still a work in progress,

but a trial implementation in Apache is tracking the drafts. Open-source client modules in Perl,

Python, Tcl, and Java are readily discoverable by a Web search. The W3C draft specification is
available on the Web [http://www.w3.0rg/TR/SOAP/].

XML-RPC and SOAP, considered as remote procedure call methods, have some associated risks
that we discuss at the end of Chapter 7.
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Jabber is a peer-to-peer protocol designed to support instant messaging and presence. What makes
it interesting as an application protocol is that it supports passing around XML forms and live
documents. Specifications, documentation, and open-source implementations are available at the
Jabber Software Foundation [http://www.jabber.org/about/overview.html] site.
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Let There Be Light

Beauty is more important in computing than anywhere else in technology because software is so
complicated. Beauty is the ultimate defense against complexity.

<author>DavidGelernter</author>

Machine Beauty: Elegance and the Heart of Technology (1998)

In the previous chapter we discussed the importance of textual data formats and application
protocols, representations that are easy for human beings to examine and interact with. These
promote qualities in design that are much valued in the Unix tradition but seldom if ever talked
about explicitly:transparencyanddiscoverability

Software systems are transparent when they don’'t have murky corners or hidden depths. Trans-
parency is a passive quality. A program is transparent when it is possible to form a simple mental
model of its behavior that is actually predictive for all or most cases, because you can see through
the machinery to what is actually going on.

Software systems are discoverable when they include features that are designed to help you build
in your mind a correct mental model of what they do and how they work. So, for example, good
documentation helps discoverability to a user. Good choice of variable and function names helps
discoverability to a programmer. Discoverability is an active quality. To achieve it in your software
you cannot merely fail to be obscure, you have to go out of your way to be hépful.

Transparency and discoverability are important for both users and software developers. But they're
important in different ways. Users like these properties in a Ul because they mean an easier learning
curve. Ul transparency and discoverability are a large part of what people mean when they say a Ul
is ‘intuitive’; most of the rest is the Rule of Least Surprise. We'll examine the properties that make
user interfaces pleasant and effective in more depth in Chapter 11.

Software developers like these qualities in the code itself (the part users don’t see) because they so
often need to understand it well enough to modify and debug it. Also, a program designed so that
its internal data flows are readily comprehensible is more likely to be one that does not fail because

%8An economically-minded friend comments: “Discoverability is about reducing barriers to entry; transparency is about
reducing the cost of living in the code”.

159



Chapter 6. Transparency

of bad interactions that the designer didn’t notice, and more likely to be able to evolve forward
gracefully (including accommodating change when new maintainers pick up the baton).

Transparency is a major component of what David Gelernter refers to as “beauty” in this chapter’s
epigraph. Unix programmers, borrowing from mathematicians, often use the more specific term
“elegance” for the quality Gelernter speaks of. Elegance is a combination of power and simplicity.
Elegant code does much with little. Elegant code is not only correct but vidialysparently

correct. It does not merely communicate an algorithm to a computer, but also conveys insight
and assurance to the mind of a human that reads it. By seeking elegance in our code, we build
better code. Learning to write transparent code is a first, long step toward learning how to write
elegant code — and taking care to make code discoverable helps us learn how to make it transparent.
Elegant code is both transparent and discoverable.

It may be easier to appreciate the difference between transparency and discoverability with a pair
of extreme examples.  The Linux kernel source is remarkably transparent (given the intrinsic
complexity of what it does) but not at all discoverable — acquiring the minimum knowledge needed
to live in the code and understand the idiom of the developers is difficult, but once you do the whole
makes sens¥. On the other hand, the Emacs Lisp libraries are discoverable but not transparent.
It's easy to acquire enough knowledge to tweak just one thing, but quite difficult to comprehend the
whole system.

In this chapter, we’ll examine features of Unix designs that promote transparency and discoverability
not just in Uls but in the parts users don’t normally see. We'll develop some useful rules you can
apply to your coding and development practice.  Later on, in Chapter 19 we’ll see how good
release-engineering practices (like having@ADMHile with appropriate content) can make your
source code as discoverable as your design.

If you need a practical reminder why these qualities are important, remember that the sanity you
save by writing transparent, discoverable systems may well be that of your own future self.

Studying Cases

Normal practice in this book has been to intersperse case studies with philosophy. But in this
chapter we’'ll begin by looking at several Unix designs that exhibit transparency and discoverability,

%The Linux kernel makes a number of attempts at discoverability, including the Documentation subdirectory in the Linux
kernel source tarball and quite a number of tutorial websites and books. These attempts are frustrated by the speed at which
the kernel changes; the documentation has a chronic tendency to fall behind.
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and attempt to draw lessons from them only after all have been presented. Each major point of
the analysis in the latter half of this chapter draws on several of these, and the arrangement avoids
forward references to case studies the reader hasn't seen yet.

Case Study: audacity

First, we'll look at an example of transparency in Ul design. #uslacity an open-source editor for
sound files that runs on Unix systems, Mac OS X, and Windows. Sources, downloadable binaries,
documentation, and screen shots are available at the project site [http://audacity.sourceforge.net/].

This program supports cutting, pasting, and editing of audio samples. It supports multitrack editing
and mixing. The Ul is superbly simple; the sound waveforms are shown iautiacitywindow.

The image of the waveform can be cut and pasted; operations on that image are directly reflected in
the audio sample as soon as they are performed.
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Figure 6.1. Screen shot oaudacity.
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Multitrack editing is supported in the simplest possible way; the screen splits into multiple per-track
displays in a spatial relationship that conveys their concurrency and makes it easy to match features
by inspection. Tracks can be dragged right or left with the mouse to change their relative timing.

Several features of this Ul are subtly excellent and worthy of emulation: the large, easily visible
and clickable operation buttons with distinguishing colors, the presence of an undo command that
removes most of the risk from experimentation, the volume slider that makes softness/loudness
visually obvious in its shape.

But these are details. The central virtue of this program is that it has a superbly transparent and
natural user interface, one that erects as few barriers between the user and the sound file as possible.

Case Study: fetchmail 's -v option

fetchmailis a network gateway program. Its main purpose is to translate between POP3 or IMAP
remote-mail protocols and the Internet’s native SMTP protocol for email exchange. Itis in extremely
widespread use on Unix machines that use intermittent SLIP or PPP connections to Internet service
providers, and as such probably touches an appreciable fraction of the Internet's mail traffic.

fetchmailhas no fewer than 60 command-line options (which, as we’'ll establish later in this book,
is probably too many), and a number of other options that are settable from the run-control file but
not from the command line. Of all these, the most important — by far -+ jgshe verbose option.

When-v is on, fetchmaildumps each one of its POP, IMAP, and SMTP transactions to standard
output as they happen. A developer can actually see the code doing protocol with remote
mailservers and the mail transport program it forwards to, in real time. Users can send session
transcripts with their bug reports. Example 6.1 shows a representative session transcript.

Example 6.1. An exampldetchmail-v transcript.

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP)
at Mon, 09 Dec 2002 08:41:37 -0500 (EST): poll started
fetchmail: running ssh %h /usr/sbin/imapd
(host hurkle.thyrsus.com service imap)
fetchmail: IMAP< * PREAUTH [42.42.1.0] IMAP4revl v12.264 server ready
fetchmail: IMAP> A0001 CAPABILITY
fetchmail: IMAP< * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE SCAN
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fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:

fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:

SORT MAILBOX-REFERRALS LOGIN-REFERRALS AUTH=LOGIN
THREAD=ORDEREDSUBJECT
IMAP< A0001 OK CAPABILITY completed
IMAP> A0002 SELECT "INBOX"
IMAP< * 2 EXISTS
IMAP< * 1 RECENT
IMAP< * OK [UIDVALIDITY 1039260713] UID validity status
IMAP< * OK [UIDNEXT 23982] Predicted next UID
IMAP< * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
IMAP< * OK [PERMANENTFLAGS
(\* \Answered \Flagged \Deleted \Draft \Seen)]
Permanent flags
IMAP< * OK [UNSEEN 2] first unseen in /var/spool/mail/esr
IMAP< A0002 OK [READ-WRITE] SELECT completed
IMAP> A0003 EXPUNGE
IMAP< A0003 OK Mailbox checkpointed, no messages expunged
IMAP> A0004 SEARCH UNSEEN
IMAP< * SEARCH 2
IMAP< A0004 OK SEARCH completed

2 messages (1 seen) for esr at hurkle.thyrsus.com.

fetchmail:
fetchmail:
fetchmail:
fetchmail:

IMAP> A0005 FETCH 1:2 RFC822.SIZE
IMAP< * 1 FETCH (RFC822.SIZE 2545)
IMAP< * 2 FETCH (RFC822.SIZE 8328)
IMAP< A0005 OK FETCH completed

skipping message esr@hurkle.thyrsus.com:1 (2545 octets) not flushed

fetchmail:
fetchmail:

IMAP> A0006 FETCH 2 RFC822.HEADER
IMAP< * 2 FETCH (RFC822.HEADER {1586}

reading message esr@hurkle.thyrsus.com:2 of 2 (1586 header octets)

fetchmail:

SMTP< 220 snark.thyrsus.com ESMTP Sendmail 8.12.5/8.12.5;
Mon, 9 Dec

2002 08:41:41 -0500

fetchmail:
fetchmail:

fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:
fetchmail:

SMTP> EHLO localhost
SMTP< 250-snark.thyrsus.com
Hello localhost [127.0.0.1], pleased to meet you
SMTP< 250-ENHANCEDSTATUSCODES
SMTP< 250-8BITMIME
SMTP< 250-SIZE
SMTP> MAIL FROM:<mutt-dev-owner@mutt.org> SIZE=8328
SMTP< 250 2.1.0 <mutt-dev-owner@mutt.org>... Sender ok
SMTP> RCPT TO:<esr@Ilocalhost>
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fetchmail: SMTP< 250 2.1.5 <esr@localhost>... Recipient ok
fetchmail: SMTP> DATA

fetchmail: SMTP< 354 Enter mail, end with "." on a line by itself
#

fetchmail: IMAP< )

fetchmail: IMAP< A0006 OK FETCH completed

fetchmail: IMAP> A0007 FETCH 2 BODY.PEEK[TEXT]
fetchmail: IMAP< * 2 FETCH (BODY[TEXT] {6742}

(6742 body octets) ****¥xxx* ek kk ke *

kkkkkkkkhkk kkkkkkkkkkkkhkkkhkkkkhkkkk kkkkkhkkkkkkkkkk

fetchmail: IMAP< )
fetchmail: IMAP< A0007 OK FETCH completed
fetchmail: SMTP>. (EOM)
fetchmail: SMTP< 250 2.0.0 gB9ffWo08245 Message accepted for delivery
flushed
fetchmail: IMAP> A0O008 STORE 2 +FLAGS (\Seen \Deleted)
fetchmail: IMAP< * 2 FETCH (FLAGS (\Recent \Seen \Deleted))
fetchmail: IMAP< A0O008 OK STORE completed
fetchmail: IMAP> A0009 EXPUNGE
fetchmail: IMAP< * 2 EXPUNGE
fetchmail: IMAP< * 1 EXISTS
fetchmail: IMAP< * 0 RECENT
fetchmail: IMAP< A0009 OK Expunged 1 messages
fetchmail: IMAP> A0010 LOGOUT
fetchmail: IMAP< * BYE hurkle IMAP4revl server terminating connection
fetchmail: IMAP< A0010 OK LOGOUT completed
fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP)
at Mon, 09 Dec 2002 08:41:42 -0500: poll completed
fetchmail: SMTP> QUIT
fetchmail: SMTP< 221 2.0.0 snark.thyrsus.com closing connection
fetchmail: normal termination, status O

The -v option makes whafetchmailis doing discoverable (by letting you see the protocol ex-
changes). This isnmenselyseful. | considered it so important that | wrote special code to mask
account passwords out ef transaction dumps so that they could be passed around and posted
without anyone having to remember to edit sensitive information out of them.

This turned out to be a good call. At least eight out of ten problems reported get diagnosed
within seconds of a knowledgeable person’s eyes seeing a session transcript. There are several
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knowledgeable people on the fetchmail mailing list — in fact, because most bugs are easy to
diagnose, | seldom have to handle them myself.

Over the yearsfetchmailhas acquired a reputation as a rather bulletproof program. It can be
misconfigured, but it very seldom outright breaks. Betting that this has nothing to do with the fact
that the exact circumstances of eight out of ten bugs are rapidly discoverable would not be smatrt.

We can learn from this example. The lesson is this: Don't let your debugging tools be mere
afterthoughts or treat them as throwaways. They are your windows into the code; don't just knock
crude holes in the walls, finish and glaze them. If you plan to keep the code maintained, you're
always going to need to let light into it.

Case Study: GCC

GCC, the GNU C compiler used on most modern Unixes, is perhaps an even better example of
engineering for transparency. GCC is organized as a sequence of processing stages knit together by
a driver program. The stages are: preprocessor, parser, code generator, assembler, and linker.

Each of the first three stages takes in a readable textual format and emits a readable textual format
(the assembler has to emit and the linker to accept binary formats, pretty much by definition).
With various command-line options of the gcc(1) driver, you can see not just the results after C
preprocessing, after assembly generation, and after object code generation — but you can also
monitor the results of many intermediate steps in parsing and code generation.

This is exactly the structure of cc, the first (PDP-11) C compiler.

<author>KenThompson</author>

There are many benefits of this organization.  One that is particularly important for GCC is
regression testingf. Because most of the various intermediate formats are textual, deviations
from expected results in a regression test are easily spotted and analyzed using simple textual diff
operations on the intermediate results; there is no need for specialist dump-analysis tools that may
well harbor their own bugs, and in any case would represent an additional maintenance burden.

80Regression testing is a method for detecting bugs introduced as software is modified. It consists of periodically checking
the output of the changing software for some fixed test input against a snapshot of output captured at an earlier stage of the
process and known (or assumed) to be correct.
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The design pattern to extract from this example is that the driver program has monitoring switches
that merely (but sufficiently) expose the textual data flows among the components.  As with
fetchmail's-v option, these options are not afterthoughts; they are designed in for discoverability.

Case Study: kmail

kmalil is the GUI mailreader distributed with the KDE environment. Knmeail Ul is tastefully

and well designed, with many good features including automatic display of enclosed images in a
MIME multipart and support for PGP key encryption/decryption. Itis friendly to end-users — my
beloved but nontechie wife uses and enjoys it.

Many mail user agents make one gesture in the direction of discoverability by having a command
that toggles display of all the mail headers, as opposed to a select few like From and Subject. The
Ul of kmail takes this a long step further.

A runningkmail displays status natifications in a one-line subwindow at the bottom of its window, in
small type over a steel-gray background clearly modeled on the Netscape/Mozilla status bar. When
you open a mailbox, for example, the status bar displays counts of total and unread messages. The
visual presentation is unobtrusive; it is easy to ignore the notifications, but also easy to focus on
them if you want to.
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Figure 6.2. Screen shot okmail.
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Thekmail GUI is good user-interface design. It's informative, but not distracting; it gets around the
reason we adduce in Chapter 11 that the best policy for Unix tools operating normally is usually
silence. The authors showed excellent taste in borrowing the look and feel of the browser status
bar.

But the extent of thekmail developers’ tastefulness will not become clear until you have to
troubleshoot an installation that is having trouble sending mail. If you watch closely during the
send, you will observe that each line of the SMTP transaction with the remote mail transport is
echoed into thé&mail status bar as it happens.

Thekmail developers neatly avoid a trap that often makes GUI programg&tilel a terrible pain in

a troubleshooter’s fundament. Most design teams with kmail's objectives would have suppressed
those messages entirely, fearing that they would give Aunt Tillie a touch of the vapors that would
drive her back to the meretricious pseudo-simplicity of a Windows box.

Instead, they designed for transparency — they made the transaction messages show, but also made
them visually easy to ignore. By getting the presentation right, they managed to please both Aunt
Tillie and her geeky nephew Melvin who fixes her computer problems. This was brilliant; it's a
technique other GUI interfaces could and should emulate.

Ultimately, of course, the visibility of those messages is good for Aunt Tillie, because they mean
Melvin is far less likely to throw up his hands in frustration while trying to solve her email problems.

The lesson here is clear. Dumbing down your Ul is only the half-smart thing to do. The really
smart thing is to find a way to leave the details accessible, but make them unobtrusive.

Case Study: SNG

The programsng translates between PNG format and an all-text representation of it (SNG or

Scriptable Network Graphics format) that can be examined and modified with an ordinary text editor.
Run on a PNG file, it produces an SNG file; run on an SNG file, it recovers the equivalent PNG.
The transformation is 100% faithful and lossless in both directions.

In syntactic style, SNG resembles CSS (Cascading Style Sheets), another language for controlling
presentation of graphics; this makes at least a gesture in the direction of the Rule of Least Surprise.
Here is a test example:

171



Chapter 6. Transparency

Example 6.2. An SNG Example.

#SNG: This is a synthetic SNG test file

# Our first test is a paletted (type 3) image.
IHDR: {

width: 16;

height: 19;

bitdepth: 8;

using color: palette;

with interlace;

}

# Sample bit depth chunk
sBIT: {

red: 8;

green: 8;

blue: 8;
}

# An example palette: three colors, one of which
# we will render transparent
PLTE: {

(0, 0, 255)

(255, 0, 0)

"dark slate gray",

}

# Suggested palette
sPLT {
name: "A random suggested palette";
depth: 8;
(o, 0, 255), 255, 7;
(255, 0, 0), 255, 5;
(70, 70, 70), 255, 3;
}

# The viewer will actually use this...
IMAGE: {
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pixels base64
2222222222222222
2222222222222222
0000001111100000
0000011111110000
0000111001111000
0001110000111100
0001110000111100
0000110001111000
0000000011110000
0000000111100000
0000001111000000
0000001111000000
0000000000000000
0000000110000000
0000001111000000
0000001111000000
0000000110000000
2222222222222222
2222222222222222

}

tEXt: {
keyword: "Title";

}

text: "Sample SNG script";

# Test file ends here

The point of this tool is to enable users to edit various obscure PNG chunk types that are not
necessarily supported by conventional graphics editors. Rather than writing special-purpose code
to grovel through the PNG binary format, the user can simply flip an image into an all-text
representation, edit that, and massage it back. Another potential application is in making images
amenable to version control; under most version-control systems, text files are much easier to
manage than binary blobs, and diff operations on SNG representations actually have some possibility
of yielding useful information.

The gains here go beyond the time not spent writing special-purpose code for manipulating binary
PNGs, however. The code of tisagprogram itself is not especially transparent, but it promotes
transparency in larger systems of programs by making the entire contents of PNGs discoverable.

# Ordinary text chunk
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Case Study: The Terminfo Database

The terminfo database is a collection of descriptions of video-display terminals.  Each entry
describes the escape sequences that perform various manipulations on the terminal screen, such
as inserting or deleting lines, erasing from the cursor position to end of line or screen, or beginning
and ending screen highlights such as reverse video, underline, or blink.

The terminfo database is primarily used by the curses(3) libraries. These underlie the “roguelike”
interface style we discuss in Chapter 11, and some very widely used programs such as mutt(1),
lynx(1), and slrn(1). Though the terminal emulators such as xterm(1) that run on today’s bitmapped
displays all have capabilities that are minor variations on those of the ANSI X3.64 standard and
the venerable VT100 terminal, there is still enough variation that hardwiring ANSI capabilities
into applications would be a bad idea. Terminfo is also worth studying because problems that
are logically similar to the one it addressed arise constantly in managing other kinds of peripheral
hardware that doesn’t have a standard way to report their own capabilities.

The design of terminfo benefits from experience with an earlier capability format called termcap.
The database of termcap descriptions lived in a textual format in one bigefidtermcap
though this format is now obsolete, your Unix system almost certainly includes a copy.

Normally, the key used to look up your terminal type entry is the environment vafias® which

for purposes of this case study is set by magi@pplications that use terminfo (or termcap) pay a
small penalty in startup lag; when the curses(3) library initializes itself, it has to look up the entry
corresponding tdERMand load the entry into memory.

Experience with termcap showed that the startup penalty was dominated by the time required to
parse the textual representation of capabilities. Accordingly, terminfo entries are binary structure
dumps that can be marshaled and unmarshaled more quickly. There is a master textual format for
the entire database, the terminfo capability file. That file (or individual entries) can be compiled to
binary form with the terminfo compiler tic(1); binary entries can be decompiled to the editable text
format by infocmp(1).

The design superficially contradicts the advice we gave in Chapter 5 against binary caches, but this
is actually the extreme case in which that's a good tactic. Edits to the text masters are very rare
— in fact, Unixes normally ship with the terminfo database precompiled and the text master serving

SlActually, TERMis set by the system at login time. For actual terminals on serial lines, the mapping from tty liFeRMo
values is set from a system configuration file at boot time; the details vary among Unixes. Terminal emulators like xterm(1)
set this variable themselves.
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primarily as documentation. Thus, the synchronization and inconsistency problems that would
normally militate against this approach almost never arise.

The designers of terminfo could have optimized for speed in a second way. The entire database of
binary entries could have been put in some kind of big opaque database file. What they actually did
instead was more clever and more in the Unix spirit. Terminfo entries live in a directory hierarchy,
usually on modern Unixes undessr/share/terminfo . Consult the terminfo(5) man page to

find the location on your system.

If you look in the terminfo directory, you'll see subdirectories named by single printable characters.
Under each of these are the entries for each terminal type that has a name beginning with that letter.
The goal of this organization was to avoid having to do a linear search of a very large directory;
under more modern Unix file systems, which represent directories with B-trees or other structures
optimized for fast lookup, the subdirectories won't be necessary.

| found that even on a fairly modern Unix, splitting a big directory up into
subdirectories can improve performance substantially. It was tens of thousands
of files, an authorized-user database for a big educational institution, on a late-
model DEC Alpha running DEC’s Unix. (Subdirectories named by first and last
letter of name — e.g., "johnson" would be in directory "j_n" — worked best of
the schemes we tested. Using the first two letters wasn’t nearly as good, because
there were a lot of systematically-generated names which differed only toward
the end.) This may just say that sophisticated directory indexing is still not as
common as it should be... but even so, that makes an organization which works
well without it more portable than one which requires it.

<author>HenrySpencer</author>

Thus, the cost of opening a terminfo entry is two file system lookups and a file open.  But
since mining the same entry from one big database would have required a lookup and open for
the database, the incremental cost for terminfo’s organization is at most one file system lookup.
Actually, it's less than that; it's the cost difference between one file system lookup and whatever
retrieval method the one big database would have used. This is probably marginal, and quite
tolerable once per application at startup time.

Terminfo uses the file system itself as a simple hierarchical database. This is a superb bit of
constructive laziness, obeying the Rule of Economy and the Rule of Transparency. It means that all
the ordinary tools for navigating, examining and modifying the file system can be used to navigate,
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examine, and modify the terminfo database; no special ones (other than tic(1) and infocmp(1) for
packing and unpacking the individual records) need to be written and debugged. It also means that
work on speeding up database access would be work on speeding up the file system itself, tuning
that would benefit many more applications than just users of curses(3).

There is one additional advantage of this organization that doesn’t come up in the terminfo case; you
get to use Unix’s permissions mechanism rather than having to invent your own access-control layer
with its own bugs. This falls out as a consequence of adopting the “everything is a file” philosophy
of Unix rather than trying to fight it.

The terminfo directory layout is rather space-inefficient on most Unix file systems. The entries are
usually between 400 and 1400 bytes long, but file systems normally allocate a minimum of 4K for
every nonempty disk file. The designers accepted this cost for the same reason they chose a packed
binary format, to cut the startup latency of terminfo-using programs to a minimum. Disk capacity
for constant price has exploded over a thousandfold since, tending to vindicate that decision.

The contrast with the formats used by the Microsoft Windows registry files is instructive. Registries
are property databases used by both Windows itself and applications. Each registry lives in one
big file. Registries contain a mix of text and binary data that requires specialized editing tools.
The one-big-file approach leads, among other things, to the notorious ‘registry creep’ phenomenon;
average access time rises without bound as new entries are added. Because there is no standard API
for editing the registry provided by the system, applications use ad-hoc code to edit it themselves,
making it notoriously subject to corruption that can lock up the entire system.

Using the Unix file system as a database is a tactic other applications with simple database
requirements might do well to emulate. Good reasons not to do it are more likely to have to do
with the database keys not naturally looking like filenames than they are with any performance
problems. In any case, it's the sort of good fast hack that can be very useful in prototyping.

Case Study: Freeciv Data Files

Freeciv is an open-source strategy game inspired by Sid Meier’s clasgiization II. In it, each

player begins with a wandering band of neolithic nomads and builds a civilization. Player civiliza-
tions may explore and colonize the world, fight wars, engage in trade, and research technological
advances. Some players may actually be artificial intelligences; solitaire play against these can be
challenging. One wins either by conquering the world or by being the first player to reach a tech-
nology level sufficient to get a starship to Alpha Centauri. Sources and documentation are available
at the project site [http://www.freeciv.org/].
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Figure 6.3. Main window of a Freeciv game.
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In Chapter 7 we’'ll exhibit the Freeciv strategy game as an example of client-server partitioning, with
the server maintaining shared state and the client concentrating on GUI presentation. But this game
has another notable architectural feature; much of the game’s fixed data, rather than being wired into
the server code, is expressed in a property registry read in by the game server at startup time.

The game’s registry files are written in a textual data-file format that assembles text strings (with
associated text and numeric properties) into various internal lists of important data (such as nations
and unit types) in the game server. The minilanguage has an include directive, so game data can be
broken up into semantic units (different files) that are each separately editable. This design choice
has been carried through to such an extent that it's possible to define new nations and new unit types
simply by creating new declarations in the data files, without touching the server code at all.

The Freeciv server’s startup parsing has an interesting feature that creates something of a conflict
between two of Unix’s design rules, and is therefore worth closer examination. The server ignores
property names it doesn’t know how to use. This makes it possible to declare properties that the
server doesn't yet use without breaking the startup parsing. It means that development of the game
data (policy) and the server engine (mechanism) can be cleanly separated. On the other hand, it also
means startup parsing won’t catch simple misspellings of attribute names. This quiet failure seems
to violate the Rule of Repair.

To resolve this conflict, notice that it's the server’s jobusethe registry data, but the task of
carefully error-checking that data could be handed off to another program to be run by human editors
each time the registry is modified. One Unix solution would be a separate auditing program that
analyzes either a machine-readable specification of the ruleset format or the source of the server
code to determine the set of properties it uses, parses the Freeciv registry to determine the set of
properties it provides, and prepares a difference rédort.

The aggregate of all Freeciv data files is functionally similar to a Windows registry, and even uses
a syntax resembling the textual portions of registries. But the creep and corruption problems we
noted with the Windows registry don’t crop up here because no program (either within or outside the
Freeciv suiteritesto these files. It's a read-only registry edited only by the game’s maintainers.

The performance impact of data-file parsing is minimized because for each file the operation is
performed only once, at either client or server startup time.

%2The ur-ancestor of such validator programs under Unix livas a validator for C code separate from the C compiler.
Though GCC has absorbed its functions, old Unix hands are still apt to refer to the process of running a validator as ‘linting’,
and the name survives in utilities suchxasllint.
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Designing for Transparency and Discoverability

To design for transparency and discoverability, you need to apply every tactic for keeping your
code simple, and also concentrate on the ways in which your code is a communication to other
human beings. The first questions to ask, after “Will this design work?” are “Will it be readable
to other people? Is it elegant?” We hope it is clear by now that these questions are not fluff and
that elegance is not a luxury. These qualities in the human reaction to software are essential for
reducing its bugginess and increasing its long-term maintainability.

The Zen of Transparency

One pattern that emerges from the examples we've examined so far in this chapter is this: If you
want transparent code, the most effective route is simply not to layer too much abstraction over what
you are manipulating with the code.

In Chapter 4’s section on the value of detachment, our advice was to abstract and simplify and
generalize, to try and detach from the particular, accidental conditions under which a design problem
was posed. The advice to abstract does not actually contradict the advice against excessive
abstractions we're developing here, because there is a difference between getting free of assumptions
and forgetting the problem you're trying to solve. This is part of what we were driving at when we
developed the idea that glue layers need to be kept thin.

One of the main lessons of Zen is that we ordinarily see the world through a haze of preconceptions
and fixed ideas that proceed from our desires. To achieve enlightenment, we must follow the Zen
teaching not merely to let go of desire and attachment, but to experience reality exactly as it is —
without the preconceptions and the fixed ideas getting in the way.

This is excellent pragmatic advice for software designers. It's part of what's implicit in the classic
Unix advice to be minimalist. Software designers are clever people who form ideas (abstractions)
about the application domains they deal with. They organize the software they write around those
ideas. Then, when debugging, they often find they have great trouble seeing through those ideas to
what is actually going on.

Any Zen master would recognize this problem instantly, yell “Three pounds of flax!”, and probably
clout the student a good ofie.Consciously designing for transparency is a slightly less mystical
way of addressing it.

53See the koan calletbzan’s Three Poundas the Gateless Gat@Mumon)].
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In Chapter 4 we criticized object-oriented programming in terms likely to prove a bit shocking to
programmers who were raised on the 1990s gospel of OO. Object-oriented design doesn't have to
be over-complicated design, but we've observed that too often it is. Too many OO designs are
spaghetti-like tangles of is-a and has-a relationships, or feature thick layers of glue in which many
of the objects seem to exist simply to hold places in a steep-sided pyramid of abstractions. Such
designs are the opposite of transparent; they are (notoriously) opaque and difficult to debug.

As we've previously noted, Unix programmers are the original zealots about modularity, but tend
to go about it in a quieter way. Keeping glue layers thin is part of it; more generally, our tradition
teaches us to build lower, hugging the ground with algorithms and structures that are designed to be
simple and transparent.

As with Zen art, the simplicity of good Unix code depends on exacting self-discipline and a high
level of craft, neither of which are necessarily apparent on casual inspection.  Transparency is
hard work, but worth the effort for more than merely artistic reasons. Unlike Zen art, software
requires debugging — and usually needs continuing maintenance, forward-porting, and adaptation
throughout its lifetime. Transparency is therefore more than an esthetic triumph; it is a victory that
will be reflected in lower costs throughout the software’s life cycle.

Coding for Transparency and Discoverability

Transparency and discoverability, like modularity, are primarily properties of designs, not code. It
is not sufficient to get right the low-level elements of style, such as indenting code in a clear and
consistent way or having good variable-naming conventions. These qualities have much more to
do with code properties that are less obvious to inspection. Here are a few to think about:

*What is the maximum static depth of your procedure-call hierarchy?  That is, leaving out
recursions, how many levels of call might a human have to model mentally to understand the
operation of the code? Hint: If it's more than four, beware.

« Does the code have invariant propeifetaat are both strong and visible? Invariant properties
help human beings reason about code and detect problem cases.

54An invariant is a property of a software design that is preserved by every operation in it. For example, in most databases
it is an invariant that no two records may have the same key. In a C program that correctly manipulates strings, every string
buffer must contain a terminating NUL byte on exit from each string function. In an inventory system, no parts count can
hold a number less than zero.
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« Are the function calls in your APIs individually orthogonal, or do they have too many magic
flags and mode bits that have a single call doing multiple tasks? Avoiding mode flags entirely
can lead to a cluttered API with too many nigh-identical functions, but the obverse error (lots of
easily-forgotten and confusable mode flags) is even more common.

« Are there a handful of prominent data structures or a single global scoreboard that captures the
high-level state of the system? Is this state easy to visualize and inspect, or is it diffused among
many individual global variables or objects that are hard to find?

* Is there a clean, one-to-one mapping between data structures or classes in your program and the
entities in the world that they represent?

«Is it easy to find the portion of the code responsible for any given function? How much attention
have you paid to the readability not just of individual functions and modules but of the whole
codebase?

 Does the code proliferate special cases or avoid them? Every special case could interact with
every other special case; all those potential collisions are bugs waiting to happen. But even more
importantly, special cases make the code harder to understand.

« How many magic numbers (unexplained constants) does the code have in it? Is it easy to
discover the implementation’s limits (such as critical buffer sizes) by inspection?

It's best for code to be simple. But if it answers these sorts of questions well, it can be very complex
without putting an impossible cognitive burden on a human maintainer.

The reader might find it instructive to compare these with our checklist questions about modularity
in Chapter 4.

Transparency and Avoiding Overprotectiveness

Close kin to the programmer tendency to build overelaborate castles of abstractions is a tendency
to overprotect others from the low-level details. While it's not bad practice to hide those details
in the program’s normal mode of operatidetthmails -v switch is off by default), they should be
discoverable. There’s an important difference between hiding them and making them inaccessible.

Programs thatannotreveal what they are doing make troubleshooting far more difficult. Thus,
experienced Unix users actually take the presence of debugging and instrumentation switches as a
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good sign, and their absence as possibly a bad one. Absence suggests an inexperienced or careless
developer; presence suggests one with enough wisdom to follow the Rule of Transparency.

The temptation to overprotect is especially strong in GUI applications targeted for end users, like

mail readers. One reason Unix developers have been cool toward GUI interfaces is that, in their
designers’ haste to make them ‘user-friendly’ each one often becomes frustratingly opaque to anyone
who has to solve user problems — or, indeed, interact with it anywhere outside the narrow range
predicted by the user-interface designer.

Worse, programs that are opaque about what they are doing tend to have a lot of assumptions baked
into them, and to be frustrating or brittle or both in any use case not anticipated by the designer.
Tools that look glossy but shatter under stress are not good long-term value.

Unix tradition pushes for programs that are flexible for a broader range of uses and troubleshooting
situations, including the ability to present as much state and activity information to the user as the
user indicates he is willing to handle. This is good for troubleshooting; it is also good for growing
smarter, more self-reliant users.

Transparency and Editable Representations

Another theme that emerges from these examples is the value of programs that flip a problem out
of a domain in which transparency is hard into one in which it is easy. = Audacity, sng(1) and
the tic(1)/infocmp(1) pair all have this property.  The objects they manipulate are not readily
conformable to the hand and eye; audio files are not visual objects, and although images expressed in
PNG format are visual, the complexities of PNG annotation chunks are not. All three applications
turn manipulation of their binary file formats into a problem to which human beings can more readily
apply intuition and competences gained from everyday experience.

Arule all these examples follow is that they degrade the representation as little as possible — in fact,
they translate it reversibly and losslessly. This property is very important, and worth implementing
even if there is no obvious application demand for that kind of 100% fidelity. It gives potential
users confidence that they can experiment without degrading their data.

All the advantages of textual data-file formats that we discussed in Chapter 5 also apply to the
textual formats that sng(1), infocmp(1) and their kin generate. One important application for sng(1)
is robotic generation of PNG image annotations by scripts — because sng(1) exists, such scripts are
easier to write.
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Whenever you face a design problem that involves editing some kind of complex binary object, the
Unix tradition encourages asking first off whether you can write a tool analogous to sng(1) or the
tic(1)/infocmp(1) pair that can do a lossless mapping to an editable textual format and back. There
is no established term for programs of this kind, but we’ll call thertualizers

If the binary object is dynamically generated or very large, then it may not be practical or possible
to capture all the state with a textualizer. In that case, the equivalent task is to write a browser.
The paradigm example is fsdb(1), the file-system debugger supported under various Unixes; there
is a Linux equivalent called debugfs(1). The psql(1) used to browse PostgreSQL databases, and the
smbclient(1) program that can be used to query Windows file shares on a SAMBA-equipped Linux
machine, are two more. All five are simple CLI programs that could be driven by scripts and test
harnesses.

Writing a textualizer or browser is a valuable exercise for at least four reasons:

«* You gain an excellent learning experiencéhere may be other ways that are as good to learn
about the structure of the object, but none that are obviously better.

« You gain the ability to dump the contents of the structure for inspection and debuggiogLise

such a tool makes dumping easy, you'll do it more. You'll get more information, probably
leading to more insight.

*You gain the ability to easily generate test loads and unusual ca¥bgs means you are more
likely to probe the odd corners of the object’s state space — and to break the associated software,
so you can fix it before your users break it.

*You gain code you may be able to reusdf you're careful about how you write the
browser/textualizer and keep the CLI interpreter properly separated from the marshal-

ing/unmarshaling library, you may find you have code that can be reused for your actual
application.
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After you've done this, you may well discover that it's possible to apply the “separated engine and
interface” pattern (see Chapter 11) using your textualizer/debugger as the engine. All the usual
benefits of this pattern will apply.

Itis desirable, although often difficult, for a textualizer to be able to read and write
even a damaged binary object. For one thing, it lets you generate damaged test
cases to stress-test software; for another, it can make emergency repairs a whole
lot easier. It may be hard to handle cases in whichstiectureof the object

is messed up, but at least you should handle cases in whictotitentof the
structure is nonsense, e.g., by showing nonsense values in hex and converting the
hex back to the values.

<author>HenrySpencer</author>

Transparency, Fault Diagnosis, and Fault Recovery

Yet another benefit of transparency, related to ease of debugging, is that transparent systems are
easier to perform recovery actions on after a bug bites — and, often, more resistant to damage from
bugs in the first place.

In comparing the terminfo database with Windows registries we noted that registries are notoriously
subject to being corrupted by buggy application code. This can make the entire system unusable.
Even if it doesn't, recovery can be difficult if the corruption confuses the specialized registry-editing
tools.

Our Unix case studies illustrate ways that designing for transparency can prevent this class of
problem. Because the terminfo database is not one big file, botching one terminfo entry does
not make the whole terminfo data set unusable. Fully textual one-big-file formats like termcap
are usually parsed with methods which (unlike block reads of binary structure dumps) can recover
from single-point errors. Syntax errors in an SNG file can be corrected by hand without requiring
specialized editors that might refuse to load a damaged PNG image.

Going back to thekmail case study, that program makes fault diagnosis easier because it obeys
the Rule of Repair: SMTP failures are noisy, usefully so. You don’t have to decode a layer of
obfuscatory messages generatedkinail itself to see what the interaction with the SMTP server
looks like. All you have to do is look in the right place, becaliswil is being transparent and not
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throwing away information about the error state. (It helps that SMTP itself is textual and includes
human-readable status messages in its transactions.)

Discoverability tools like textualizers and browsers also make fault diagnosis easier. We've already
touched on one reason: they make inspecting the state of the system easier. But there is another
effect at work as well; textualized versions of data tend to have useful redundancies (such as using
whitespace for visual separation as well as explicit delimiters for parsing). These are present to
make them easier to read for humans, but also have the effect of making them more resistant to
being irreparably trashed by point failures. A corrupted chunk in a PNG file is seldom recoverable,
but the human capacity for pattern recognition and reasoning from context might be able to repair
the equivalent SNG form.

Over and over again, the Rule of Robustness is clear. Simplicity plus transparency lowers costs,
reduces everybody’s stress, and frees people to concentrate on new problems rather than cleaning up
after old mistakes.

Designing for Maintainability

Software is maintainable to the extent that people who are not its author can successfully understand
and modify it. Maintainability demands more than code that works; it demands code that follows
the Rule of Clarity and communicates successfully to human beings as well as the computer.

Unix programmers have a lot of implicit knowledge available to them about what makes for
maintainable code, because Unix hosts source code that goes back decades. For reasons we’ll
discuss in Chapter 17, Unix programmers learn a tendency to scrap and rebuild rather than patching
grubby code (see Rob Pike’s meditation on this subject in Chapter 1). Thus, any sources that have
survived more than a decade of evolutionary pressure have been selected for maintainability. These
old, successful, well-established projects with maintainable code are the community’s models for
practice.

A question Unix programmers — and especially Unix programmers in the open-source world —
learn to ask about tools they are evaluating for use is: “Is this code live, dormant, or dead?” Live
code has an active developer community attached to it. Dormant code has often become dormant
because the pain of maintaining it exceeded its utility to its originators. Dead code has been dormant
for so long that it would be easier to reimplement an equivalent from scratch. If you want your code
to live, investing effort to make it maintainable (and therefore attractive to future maintainers) will
be one of the most effective ways you can spend your time.

186



Chapter 6. Transparency

Code that is designed to be both transparent and discoverable has gone a long way toward being
maintainable. Butthere are other practices we can observe in the model projects in this chapter that
are worth emulating.

One very important practice is an application of the Rule of Clarity: choosing simple algorithms.
In Chapter 1 we quoted Ken Thompson: “When in doubt, use brute force”. Thompson understood
the full cost of complicated algorithms — not just that they're more bug-prone when initially
implemented, but that they're harder for maintainers down the line to understand.

Another important practice is the inclusion of hacker’s guides. It has always been highly approved
behavior for source code distributions to include guide documents informally describing the key
data structures and algorithms in the code. In fact, Unix programmers have often been better about
producing hacker’s guides than they are about writing end-user documentation.

The open-source community has seized on and elaborated this custom. Besides being advice to
future maintainers, hacker’s guides for open-source projects are also designed to make it easy for
casual contributors to add features or fix bugs. The Design Notes file shippeéeteitimailis
representative. The Linux kernel sources include literally dozens of these.

In Chapter 19 we’ll describe conventions that Unix developers have evolved for making source code
distributions easy to examine and easy to build running code from. These practices, too, promote
maintainability.

187



Chapter 7. Multiprogramming
Separating Processes to Separate Function

If we believe in data structures, we must believe in independent (hence simultaneous) processing.
For why else would we collect items within a structure? Why do we tolerate languages that give us
the one without the other?

<author>AlanPerlis</author>

Epigrams in Programming, in ACM SIGPLAN (Vol 17 #9, 1982)

The most characteristic program-modularization technique of Unix is splitting large programs into
multiple cooperating processes. This has usually been called ‘multiprocessing’ in the Unix world,
but in this book we revive the older term ‘multiprogramming’ to avoid confusion with multiprocessor
hardware implementations.

Multiprogramming is a particularly murky area of design, one in which there are few guidelines
to good practice. Many programmers with excellent judgment about how to break up code into
subroutines nevertheless wind up writing whole applications as monster single-process monoliths
that founder on their own internal complexity.

The Unix style of design applies the do-one-thing-well approach at the level of cooperating programs
as well as cooperating routines within a program, emphasizing small programs connected by well-
defined interprocess communication or by shared files. Accordingly, the Unix operating system
encourages us to break our programs into simpler subprocesses, and to concentrate on the interfaces
between these subprocesses. It does this in at least three fundamental ways:

« by making process-spawning cheap;

« by providing methods (shellouts, I/O redirection, pipes, message-passing, and sockets) that make
it relatively easy for processes to communicate;

* by encouraging the use of simple, transparent, textual data formats that can be passed through
pipes and sockets.
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Inexpensive process-spawning and easy process control are critical enablers for the Unix style of
programming. On an operating system such as VAX VMS, where starting processes is expensive
and slow and requires special privileges, one must build monster monoliths because one has no
choice. Fortunately the trend in the Unix family has been toward lower fork(2) overhead rather
than higher. Linux, in particular, is famously efficient this way, with a process-spawn faster than
thread-spawning on many other operating syst&éms.

Historically, many Unix programmers have been encouraged to think in terms of multiple cooperat-
ing processes by experience with shell programming. Shell makes it relatively easy to set up groups
of multiple processes connected by pipes, running either in background or foreground or a mix of
the two.

In the remainder of this chapter, we’ll look at the implications of cheap process-spawning and
discuss how and when to apply pipes, sockets, and other interprocess communication (IPC) methods
to partition your design into cooperating processes. (In the next chapter, we'll apply the same
separation-of-functions philosophy to interface design.)

While the benefit of breaking programs up into cooperating processes is a reduction in global
complexity, the cost is that we have to pay more attention to the design of the protocols which
are used to pass information and commands between processes. (In software systems of all kinds,
bugs collect at interfaces.)

In Chapter 5 we looked at the lower level of this design problem — how to lay out application
protocols that are transparent, flexible and extensible. But there is a second, higher level to the
problem which we blithely ignored. That is the problem of designing state machines for each side
of the communication.

It is not hard to apply good style to the syntax of application protocols, given models like SMTP
or BEEP or XML-RPC. The real challenge is not protocol syntax but protiegit—designing a
protocol that is both sufficiently expressive and deadlock-free. Almost as importantly, the protocol
has to beseento be expressive and deadlock-free; human beings attempting to model the behavior
of the communicating programs in their heads and verify its correctness must be able to do so.

In our discussion, therefore, we will focus on the kinds of protocol logic one naturally uses with
each kind of interprocess communication.

%See, for example, the results quotedritproving Context Switching Performance of Idle Tasks under Liiapgleton].
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Separating Complexity Control from Performance
Tuning

First, though, we need to dispose of a few red herrings. Our discussiohgsing to be about using
concurrency to improve performance. Putting that concern before developing a clean architecture
that minimizes global complexity is premature optimization, the root of all evil (see Chapter 12 for
further discussion).

A closely related red herring is threads (that is, multiple concurrent processes sharing the same
memory-address space). Threading is a performance hack. To avoid a long diversion here, we’ll
examine threads in more detail at the end of this chapter; the summary is that they do not reduce
global complexity but rathe@ncreaset, and should therefore be avoided save under dire necessity.

Respecting the Rule of Modularity, on the other hanehdsa red herring; doing so can make your
programs — and your life — simpler. All the reasons for process partitioning are continuous with
the reasons for module partitioning that we developed in Chapter 4.

Another important reason for breaking up programs into cooperating processes is for better security.
Under Unix, programs that must be run by ordinary users, but must have write access to security-
critical system resources, get that access through a feature callsetthe bit®® Executable files

are the smallest unit of code that can hold a setuid bit; thus, every line of code in a setuid executable
must be trusted. (Well-written setuid programs, however, take all necessary privileged actions first
and then drop their privileges back to user level for the remainder of their existence.)

Usually a setuid program only needs its privileges for one or a small handful of operations. Itis
often possible to break up such a program into cooperating processes, a smaller one that needs setuid
and a larger one that does not. When we can do this, only the code in the smaller program has to
be trusted. It is in significant part because this kind of partitioning and delegation is possible that
Unix has a better security track recéfthan its competitors.

Taxonomy of Unix IPC Methods

A setuid program runs not with the privileges of the user calling it, but with the privileges of the owner of the executable.
This feature can be used to give restricted, program-controlled access to things like the password file that nonadministrators
should not be allowed to modify directly.

57That is, a better record measured in security breaches per total machine hours of Internet exposure.
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As in single-process program architectures, the simplest organization is the best. The remainder of
this chapter will present IPC techniques roughly in order of escalating complexity of programming
them. Before using a later, more complex technique, you should prove by demonstration — with
prototypes and benchmark results — that no earlier and simpler technique will do. Often you will
surprise yourself.

Handing off Tasks to Specialist Programs

In the simplest form of interprogram cooperation enabled by inexpensive process spawning, a
program runs another to accomplish a specialized task. Because the called program is often specified
as a Unix shell command through the system(3) call, this is often csitleting outto the called
program. The called program inherits the user’s keyboard and display and runs to completion. When
it exits, the calling program resumes control of the keyboard and display and resumes eX&cution.
Because the calling program does not communicate with the called program during the callee’s
execution, protocol design is not an issue in this kind of cooperation, except in the trivial sense that
the caller may pass command-line arguments to the callee to change its behavior.

The classic Unix case of shelling out is calling an editor from within a mail or news program. In
the Unix tradition one doesot bundle purpose-built editors into programs that require general text-
edited input. Instead, one allows the user to specify an editor of his or her choice to be called when
editing needs to be done.

The specialist program usually communicates with its parent through the file system, by reading or
modifying file(s) with specified location(s); this is how editor or mailer shellouts work.

In a common variant of this pattern, the specialist program may accept input on its standard input,
and be called with the C library entry poipbpen(..., "w") or as part of a shellscript. Or

it may send output to its standard output, and be called patien(..., "r) or as part of a
shellscript. (If it both reads from standard input and writes to standard output, it does so in a batch
mode, completing all reads before doing any writes.) This kind of child process is not usually
referred to as a shellout; there is no standard jargon for it, but it might well be called a ‘bolt-on’.

They key point about all these cases is that the specialist programs don’t handshake with the parent
while they are running. They have an associated protocol only in the trivial sense that whichever
program (master or slave) is accepting input from the other has to be able to parse it.

%A common error in programming shellouts is to forget to block signals in the parent while the subprocess runs. Without
this precaution, an interrupt typed to the subprocess can have unwanted side effects on the parent process.
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Case Study: The mutt Mail User Agent

The mutt mail user agent is the modern representative of the most important design tradition in
Unix email programs. It has a simple screen-oriented interface with single-keystroke commands for
browsing and reading mail.

When you usenuttas a mail composer (either by calling it with an address as a command-line
argument or by using one of the reply commands), it examines the process environment variable
EDITOR and then generates a temporary file name. The value &DheORvariable is called as a
command with the tempfile name as an arguni&énihen that command terminatesuttresumes

on the assumption that the temporary file contains the desired mail text.

Almost all Unix mail- and nethews-composition programs observe the same convention. Because
they do, composer implementers don’t need to write a hundred inevitably diverging editors, and
users don’'t need to learn a hundred divergent interfaces. Instead, users can carry their chosen
editors with them.

An important variant of this strategy shells out to a small proxy program that passes the specialist job
to an already-running instance of a big program, like an editor or a Web browser. Thus, developers
who normally have an instance efmacsunning on their X display can sEDITOR=emacsclient

and have a buffer pop open in theimacswvhen they request editing mutt The point of this is

not really to save memory or other resources, it's to enable the user to unify all editing in a single
emacsprocess (so that, for example, cut and paste among buffers can carry along iateatal

state information like font highlighting).

Pipes, Redirection, and Filters

After Ken Thompson and Dennis Ritchie, the single most important formative figure of early Unix
was probably Doug Mcllroy. His invention of th@pe construct reverberated through the design of
Unix, encouraging its nascent do-one-thing-well philosophy and inspiring most of the later forms of
IPC in the Unix design (in particular, the socket abstraction used for networking).

Pipes depend on the convention that every program has initially available to it (at least) two 1/0O data
streams: standard input and standard output (numeric file descriptors 0 and 1 respectively). Many
programs can be written diters, which read sequentially from standard input and write only to
standard output.

5Actually, the above is a slight oversimplification. See the discussi®@DoFOR andVISUAL in Chapter 10 for the rest of
the story.
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Normally these streams are connected to the user’s keyboard and display, respectively. But Unix
shells universally supporedirection operations which connect these standard input and output
streams to files. Thus, typing

Is >foo

sends the output of the directory lister Is(1) to a file named ‘foo’. On the other hand, typing:

wc <foo

causes the word-count utility wc(1) to take its standard input from the file ‘foo’, and deliver a
character/word/line count to standard output.

The pipe operation connects the standard output of one program to the standard input of another. A
chain of programs connected in this way is callgaeline If we write

Is | we

we'll see a character/word/line count for the current directory listing. (In this case, only the line
count is really likely to be useful.)

One favorite pipeline wasbt | speak—a talking desk calculator. It knew
number names up to a vigintillion.

<author>DougMcllroy</author>

It's important to note that all the stages in a pipeline run concurrently. Each stage waits for input on
the output of the previous one, but no stage has to exit before the next can run. This property will
be important later on when we look at interactive uses of pipelines, like sending the lengthy output
of a command to more(1).

It's easy to underestimate the power of combining pipes and redirection. As an instructive example,
The Unix Shell As a 4G]Schaffer-Wolf] shows that with these facilities as a framework, a handful of
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simple utilities can be combined to support creating and manipulating relational databases expressed
as simple textual tables.

The major weakness of pipes is that they are unidirectional. It's not possible for a pipeline
component to pass control information back up the pipe other than by terminating (in which case the
previous stage will get 8IGPIPE signal on the next write). Accordingly, the protocol for passing
data is simply the receiver’s input format.

So far, we have discussed anonymous pipes created by the shell. There is a variantreahhed a
pipewhich is a special kind of file. If two programs open the file, one for reading and the other for
writing, a named pipe acts like a pipe-fitting between them. Named pipes are a bit of a historical
relic; they have been largely displaced from use by nasoettetswhich we’ll discuss below. (For
more on the history of this relic, see the discussion of System V IPC below.)

Case Study: Piping to a Pager

Pipelines have many uses. For one example, Unix’s process lister ps(1) lists processes to standard
output without caring that a long listing might scroll off the top of the user’s display too quickly

for the user to see it. Unix has another program, more(1), which displays its standard input in
screen-sized chunks, prompting for a user keystroke after displaying each screenful.

Thus, if the user typesgs | mor€’, piping the output of ps(1) to the input of more(1), successive
page-sized pieces of the list of processes will be displayed after each keystroke.

The ability to combine programs like this can be extremely useful. But the real win here is not cute
combinations; it's that because both pipes and more(1) etlstr programs can be simplePipes

mean that programs like Is(1) (and other programs that write to standard out) don’t have to grow
their own pagers — and we're saved from a world of a thousand built-in pagers (each, naturally,
with its own divergent look and feel). Code bloat is avoided and global complexity reduced.

As a bonus, if anyone needs to customize pager behavior, it can be doneptace, by changing
oneprogram. Indeed, multiple pagers can exist, and will all be useful with every application that
writes to standard output.

In fact, this has actually happened. On modern Unixes, more(1) has been largely replaced by less(1),
which adds the capability to scroll back in the displayed file rather than just forvaBkcause
less(1) is decoupled from the programs that use it, it's possible to simply alias ‘more’ to ‘less’ in

“The less(1) man page explains the name by observing “Less is more”.
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your shell, set the environment varialdaGERO ‘less’ (see Chapter 10), and get all the benefits of
a better pager with all properly-written Unix programs.

Case Study: Making Word Lists

A more interesting example is one in which pipelined programs cooperate to do some kind of data
transformation for which, in less flexible environments, one would have to write custom code.

Consider the pipeline
tr -c [:alnum:] '\n*T' | sort -iu | grep -v "M0-9]*$’

The first command translates non-alphanumerics on standard input to newlines on standard output.
The second sorts lines on standard input and writes the sorted data to standard output, discarding alll
but one copy of spans of adjacent identical lines. The third discards all lines consisting solely of
digits. Together, these generate a sorted wordlist to standard output from text on standard input.

Case Study: pic2graph

Shell source code for the program pic2graph(1) ships withgth# suite of text-formatting tools
from the Free Software Foundation. It translates diagrams written in the PIC language to bitmap
images. Example 7.1 shows the pipeline at the heart of this code.

Example 7.1. Thepic2graphpipeline.

(echo ".EQ"; echo $egndelim; echo ".EN"; echo ".PS";cat;echo ".PE")|\
groff -e -p $groffpic_opts -Tps >${tmp}.ps \
&& convert -crop 0x0 $convert_opts ${tmp}.ps ${tmp}.${format} \
&& cat ${tmp}.${format}

The pic2graph(1) implementation illustrates how much one pipeline can do purely by calling
preexisting tools. It starts by massaging its input into an appropriate form, continues by feeding it
through groff(1) to produce PostScript, and finishes by converting the PostScript to a bitmap. All
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these details are hidden from the user, who simply sees PIC source go in one end and a bitmap ready
for inclusion in a Web page come out the other.

This is an interesting example because it illustrates how pipes and filtering can adapt programs to
unexpected uses. The program that interprets PIC, pic(1), was originally designed only to be used
for embedding diagrams in typeset documents. Most of the other programs in the toolchain it was
part of are now semiobsolescent. But PIC remains handy for new uses, such as describing diagrams
to be embedded in HTML. It gets a renewed lease on life because tools like pic2graph(1) can bundle
together all the machinery needed to convert the output of pic(1) into a more modern format.

We'll examine pic(1) more closely, as a minilanguage design, in Chapter 8.

Case Study: bc(1) and dc(1)

Part of the classic Unix toolkit dating back to Version 7 is a pair of calculator programs. The dc(1)
program is a simple calculator that accepts text lines consisting of reverse-Polish notation (RPN) on
standard input and emits calculated answers to standard output. The bc(1) program accepts a more
elaborate infix syntax resembling conventional algebraic notation; it includes as well the ability to
set and read variables and define functions for elaborate formulas.

While the modern GNU implementation of bc(1) is standalone, the classic version passed commands
to dc(1) over a pipe. In this division of labor, bc(1) does variable substitution and function expansion
and translates infix notation into reverse-Polish — but doesn't actually do calculation itself, instead
passing RPN translations of input expressions to dc(1) for evaluation.

There are clear advantages to this separation of function. It means that users get to choose their
preferred notation, but the logic for arbitrary-precision numeric calculation (which is moderately
tricky) does not have to be duplicated. Each of the pair of programs can be less complex than one
calculator with a choice of notations would be. The two components can be debugged and mentally
modeled independently of each other.

In Chapter 8 we will reexamine these programs from a slightly different example, as examples of
domain-specific minilanguages.

Anti-Case Study: Why Isn’'t fetchmail a Pipeline?

In Unix terms,fetchmailis an uncomfortably large program that bristles with options. Thinking
about the way mail transport works, one might think it would be possible to decompose it into a
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pipeline. Suppose for a moment it were broken up into several programs: a couple of fetch programs
to get mail from POP3 and IMAP sites, and a local SMTP injector. The pipeline could pass Unix
mailbox format. The present elabord&tchmailconfiguration could be replaced by a shellscript
containing command lines. One could even insert filters in the pipeline to block spam.

#!/bin/sh

imap jrandom@imap.ccil.org | spamblocker | smtp jrandom
imap jrandom@imap.netaxs.com | smtp jrandom

# pop ed@pop.tems.com | smtp jrandom

This would be very elegant and Unixy. Unfortunately, it can’t work. We touched on the reason
earlier; pipelines are unidirectional.

One of the things the fetcher prograimép or pop) would have to do is decide whether to send a
delete request for each message it fetchedetbhmails present organization, it can delay sending
that request to the POP or IMAP server until it knows that the local SMTP listener has accepted
responsibility for the message. The pipelined, small-component version would lose that property.

Consider, for example, what would happen if $mtpinjector fails because the SMTP listener
reports a disk-full condition. If the fetcher has already deleted the mail, we lose. This means the
fetcher cannot delete mail until it is notified to do so by #mtpinjector. This in turn raises a

host of questions. How would they communicate? What message, exactly, would the injector pass
back? The global complexity of the resulting system, and its vulnerability to subtle bugs, would
almost certainly be higher than that of a monolithic program.

Pipelines are a marvelous tool, but not a universal one.

Wrappers

The opposite of a shellout isverapper. A wrapper creates a new interface for a called program, or
specializesit. Often, wrappers are used to hide the details of elaborate shell pipelines. We'll discuss
interface wrappers in Chapter 11. Most specialization wrappers are quite simple, but nevertheless
very useful.

As with shellouts, there is no associated protocol because the programs do not communicate during
the execution of the callee; but the wrapper usually exists to specify arguments that modify the
callee’s behavior.
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Case Study: Backup Scripts

Specialization wrappers are a classic use of the Unix shell and other scripting languages. One kind
of specialization wrapper that is both common and representative is a backup script. It may be a
one-liner as simple as this:

tar -czvf /dev/st0 "$@"

This is a wrapper for the tar(1) tape archiver utility which simply supplies one fixed argument (the
tape devicédev/st0 ) and passes to tar all the other arguments supplied by the &e@}.

Security Wrappers and Bernstein Chaining

One common use of wrapper scripts issasurity wrappers A security script may call a gatekeeper
program to check some sort of credential, then conditionally execute another based on the status
value returned by the gatekeeper.

Bernstein chaining is a specialized security-wrapper technique first invented by Daniel J. Bernstein,
who has employed it in a number of his packages. (A similar pattern appears in commands like
nohup(1) and su(l1), but the conditionality is absent.) Conceptually, a Bernstein chain is like a
pipeline, but each successive stage replaces the previous one rather than running concurrently with
it.

The usual application is to confine security-privileged applications to some sort of gatekeeper
program, which can then hand state to a less privileged one. The technique pastes several programs
together using execs, or possibly a combination of forks and execs. The programs are all named on
one command line. Each program performs some function and (if successful) runs exec(2) on the
rest of its command line.

Bernstein'srbismtpdpackage is a prototypical example. It serves to look up a host in the antispam
DNS zone of the Mail Abuse Prevention System. It does this by doing a DNS query on the IP address
passed into it in th& CPREMOTEIRNvironment variable. If the query is successful, thaamtpd

runs its own SMTP that discards the mail. Otherwise the remaining command-line arguments are
presumed to constitute a mail transport agent that knows the SMTP protocol, and are handed to
exec(2) to be run.

LA common error is to usg* rather than $@. This does bad things when handed a filename with embedded spaces.
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Another example can be found in Bernsteigimail package. It contains a program calleoin-
dredirect The first parameter is an email address, and the remainder a gatekeeper program and
argumentscondredirectforks and execs the gatekeeper with its arguments. If the gatekeeper exits
successfullycondredirectforwards the email pending on stdin to the specified email address. In
this case, opposite to that dilsmtpd the security decision is made by the child; this case is a bit
more like a classical shellout.

A more elaborate example is tlggnail POP3 server. It consists of three prograasail-popup
checkpasswordandgmail-pop3d Checkpasswordomes from a separate package cleverly called
checkpasswordand unsurprisingly it checks the password. The POP3 protocol has an authentication
phase and mailbox phase; once you enter the mailbox phase you cannot go back to the authentication
phase. This is a perfect application for Bernstein chaining.

The first parameter afmail-popupis the hostname to use in the POP3 prompts. The rest of its
parameters are forked and passed to exec(2), after the POP3 username and password have been
fetched. If the program returns failure, the password must be wrongmsid-popupreports that

and waits for a different password. Otherwise, the program is presumed to have finished the POP3
conversation, sgmail-popupexits.

The program named ogmail-popugs command line is expected to read three null-terminated
strings from file descriptor £ These are the username, password, and response to a cryptographic
challenge, if any. This time it'sheckpassworavhich accepts as parameters the namgroéil-
pop3dand its parameters. Theheckpassworgrogram exits with failure if the password does not
match; otherwise it changes to the user’s uid, gid, and home directory, and executes the rest of its
command line on behalf of that user.

Bernstein chaining is useful for situations in which the application needs setuid or setgid privileges to
initialize a connection, or to acquire some credential, and then drop those privileges so that following
code does not have to be trusted. Following the exec, the child program cannot set its real user ID
back to root. It's also more flexible than a single process, because you can modify the behavior of
the system by inserting another program into the chain.

For example,rblsmtpd (mentioned above) can be inserted into a Bernstein chain, in between
tcpserver (from theicspi-tcppackage) and the real SMTP server, typicajtgail-smtpd However,
it works with inetd(8) andgendmail -bsas well.

"2gmail-popups standard input and standard output are the socket, and standard error (which will be file descriptor 2) goes
to a log file. File descriptor 3 is guaranteed to be the next to be allocated. As an infamous kernel comment once observed:
“You are not expected to understand this”.
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Slave Processes

Occasionally, child programs both accept data from and return data to their callers through pipes con-
nected to standard input and output, interactively. Unlike simple shellouts and what we have called
‘bolt-ons’ above, both master and slave processes need to have internal state machines to handle a
protocol between them without deadlocking or racing. This is a drastically more complex and more
difficult-to-debug organization than a simple shellout.

Unix’s popen(3) call can set up either an input pipe or an output pipe for a shellout, but not both for
a slave process — this seems intended to encourage simpler programming. And, in fact, interactive
master-slave communication is tricky enough that it is normally only used when either (a) the
implied protocol is utterly trivial, or (b) the slave process has been designed to speak an application
protocol along the lines we discussed in Chapter 5. We'll return to this issue, and ways to cope with
it, in Chapter 8.

When writing a master/slave pair, it is good practice for the master to support a command-line switch
or environment variable that allows callers to set their own slave command. Among other things,
this is useful for debugging; you will often find it handy during development to invoke the real slave
process from within a harness that monitors and logs transactions between slave and master.

If you find that master/slave interactions in your program are becoming nontrivial, it may be time
to think about going the rest of the way to a more peer-to-peer organization, using techniques like
sockets or shared memory.

Case Study: scp and ssh

One common case in which the implied protocol really is trivial is progress meters. The scp(1)
secure-copy command calls ssh(1) as a slave process, intercepting enough information from ssh's
standard output to reformat the reports as an ASCII animation of a progre'Ss bar.

Peer-to-Peer Inter-Process Communication

All the communication methods we've discussed so far have a sort of implicit hierarchy about them,
with one program effectively controlling or driving another and zero or limited feedback passing

in the opposite direction. In communications and networking we frequently need channels that
are peer-to-peer usually (but not necessarily) with data flowing freely in both directions. We’'ll

The friend who suggested this case study comments: “Yes, you can get away with this technique...if there are just a few
easily-recognizable nuggets of information coming back from the slave process, and you have tongs and a radiation suit”.
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survey peer-to-peer communications methods under Unix here, and develop some case studies in
later chapters.

Tempfiles

The use of tempfiles as communications drops between cooperating programs is the oldest IPC
technique there is. Despite drawbacks, it's still useful in shellscripts, and in one-off programs
where a more elaborate and coordinated method of communication would be overkill.

The most obvious problem with using tempfiles as an IPC technique is that it tends to leave garbage
lying around if processing is interrupted before the tempfile can be deleted. A less obvious risk is
that of collisions between multiple instances of a program using the same name for a tempfile. This
is why it is conventional for shellscripts that make tempfiles to include $$ in their names; this shell
variable expands to the process-ID of the enclosing shell and effectively guarantees that the filename
will be unique (the same trick is supported in Perl).

Finally, if an attacker knows the location to which a tempfile will be written, it can overwrite on
that name and possibly either read the producer’s data or spoof the consumer process by inserting
modified or spurious data into the fil&This is a security risk. If the processes involved have root
privileges, this is a very serious risk. It can be mitigated by setting the permissions on the tempfile
directory carefully, but such arrangements are notoriously likely to spring leaks.

All these problems aside, tempfiles still have a niche because they're easy to set up, they're flexible,
and they're less vulnerable to deadlocks or race conditions than more elaborate methods. And
sometimes, nothing else will do. The calling conventions of your child process may require that
it be handed a file to operate on. Our first example of a shellout to an editor demonstrates this
perfectly.

Signals

The simplest and crudest way for two processes on the same machine to communicate with each
other is for one to send the othesignal Unix signals are a form of soft interrupt; each one has a
default effect on the receiving process (usually to kill it). A process can dectagaal handlethat
overrides the default action for the signal; the handler is a function that is executed asynchronously
when the signal is received.

7 A particularly nasty variant of this attack is to drop in a named Unix-domain socket where the producer and consumer
programs are expecting the tempfile to be.
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Signals were originally designed into Unix as a way for the operating system to notify programs of
certain errors and critical events, not as an IPC facility. Sl@HUPsignal, for example, is sent to

every program started from a given terminal session when that session is terminateIGINTe

signal is sent to whatever process is currently attached to the keyboard when the user enters the
currently-defined interrupt character (often control-C). Nevertheless, signals can be useful for some
IPC situations (and the POSIX-standard signal set includes two siggi@ldSR1 and SIGUSR2,
intended for this use). They are often employed as a control chanrddéonongprograms that run
constantly, invisibly, in background), a way for an operator or another program to tell a daemon that

it needs to either reinitialize itself, wake up to do work, or write internal-state/debugging information

to a known location.

| insisted SIGUSR1 and SIGUSR2 be invented for BSD. People were grabbing
system signals to mean what they needed them to mean for IPC, so that (for
example) some programs that segfaulted would not coredump beSERSEGY

had been hijacked.

This is a general principle — people will want to hijack any tools you build, so you
have to design them to either be un-hijackable or to be hijacked cleanly. Those
are your only choices. Except, of course, for being ignored—a highly reliable way
to remain unsullied, but less satisfying than might at first appear.

<author>KenArnold</author>

Atechnique often used with signal IPC is the so-cafitfile. Programs that will need to be signaled

will write a small file to a known location (often iwar/run  or the invoking user’s home directory)
containing their process ID or PID. Other programs can read that file to discover that PID. The pidfile
may also function as an implicibck filein cases where no more than one instance of the daemon
should be running simultaneously.

There are actually two different flavors of signals. In the older implementations (notably V7,
System lll, and early System V), the handler for a given signal is reset to the default for that signal
whenever the handler fires. The result of sending two of the same signal in quick succession is
therefore usually to kill the process, no matter what handler was set.

The BSD 4.x versions of Unix changed to “reliable” signals, which do not reset unless the user
explicitly requests it. They also introduced primitives to block or temporarily suspend processing
of a given set of signals. Modern Unixes support both styles. You should use the BSD-style
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nonresetting entry points for new code, but program defensively in case your code is ever ported to
an implementation that does not support them.

Receiving N signals does not necessarily invoke the signal handler N times. Under the older System
V signal model, two or more signals spaced very closely together (that is, within a single timeslice of
the target process) can result in various race condffiarsanomalies. Depending on what variant

of signals semantics the system supports, the second and later instances may be ignored, may cause
an unexpected process kill, or may have their delivery delayed until earlier instances have been
processed (on modern Unixes the last is most likely).

The modern signals API is portable across all recent Unix versions, but not to Windows or classic
(pre-OS X) MacOsS.

System Daemons and Conventional Signals

Many well-known system daemons acc&pGHUP (originally the signal sent to programs on a
serial-line drop, such as was produced by hanging up a modem connection) as a signal to reinitialize
(that is, reload their configuration files); examples include Apache and the Linux implementations of
bootpd(8), gated(8), inetd(8), mountd(8), named(8), nfsd(8), and ypbind(8). In a few SrxegP

is accepted in its original sense of a session-shutdown signal (notably in Linux pppd(8)), but that
role nowadays generally goes$tGTERM

SIGTERM(‘terminate’) is often accepted as a graceful-shutdown signal (this is as distinct from
SIGKILL , which does an immediate process kill and cannot be blocked or hand&dYERM
actions often involve cleaning up tempfiles, flushing final updates out to databases, and the like.

When writing daemons, follow the Rule of Least Surprise: use these conventions, and read the
manual pages to look for existing models.

Case Study: fetchmail's Use of Signals

The fetchmailutility is normally set up to run as a daemon in background, periodically collecting
mail from all remote sites defined in its run-control file and passing the mail to the local SMTP
listener on port 25 without user interventidetchmailsleeps for a user-defined interval (defaulting

to 15 minutes) between collection attempts, so as to avoid constantly loading the network.

SA ‘race condition’ is a class of problem in which correct behavior of the system relies on two independent events happening
in the right order, but there is no mechanism for ensuring that they actually will. Race conditions produce intermittent,
timing-dependent problems that can be devilishly difficult to debug.
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When you invokefetchmail with no arguments, it checks to see if you haviehmaildaemon
already running (it does this by looking for a pidfile). If no daemon is runniieighmailstarts up
normally using whatever control information has been specified in its run-control file. If a daemon is
running, on the other hand, the néstchmailinstance just signals the old one to wake up and collect
mail immediately; then the new instance terminates. In addifetohmail -q sends a termination
signal to any runningetchmaildaemon.

Thus, typingfetchmail means, in effect, “poll now and leave a daemon running to poll later; don’t
bother me with the detail of whether a daemon was already running or not”. Observe that the detail
of which particular signals are used for wakeup and termination is something the user doesn'’t have
to know.

Sockets

Sockets were developed in the BSD lineage of Unix as a way to encapsulate access to data networks.
Two programs communicating over a socket typically see a bidirectional byte stream (there are other

socket modes and transmission methods, but they are of only minor importance). The byte stream

is both sequenced (that is, even single bytes will be received in the same order sent) and reliable

(socket users are guaranteed that the underlying network will do error detection and retry to ensure

delivery). Socket descriptors, once obtained, behave essentially like file descriptors.

Sockets differ from read/write in one important case. If the bytes you send arrive,
but the receiving machine fails to ACK, the sending machine’s TCP/IP stack will
time out. So getting an error do@st necessarily mean that the bytes didn’t
arrive; the receiver may be using them. This problem has profound consequences
for the design of reliable protocols, because you have to be able to work properly
when you don’t know what was received in the past. Local I/O is ‘yes/no'.
Socket I/O is ‘yes/no/maybe’. And nothing can ensure delivery — the remote
machine might have been destroyed by a comet.

<author>KenArnold</author>

At the time a socket is created, you specifypetocol family which tells the network layer

how the name of the socket is interpreted. Sockets are usually thought of in connection with
the Internet, as a way of passing data between programs running on different hosts; this is
the AF_INET socket family, in which addresses are interpreted as host-address and service-
number pairs. However, the AF_UNIX (aka AF_LOCAL) protocol family supports the same
socket abstraction for communication between two processes on the same machine (names are
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interpreted as the locations of special files analogous to bidirectional named pipes). As an example,
client programs and servers using the X windowing system typically use AF_LOCAL sockets to
communicate.

All modern Unixes support BSD-style sockets, and as a matter of design they are usually the
right thing to use for bidirectional IPC no matter where your cooperating processes are located.
Performance pressure may push you to use shared memory or tempfiles or other techniques that
make stronger locality assumptions, but under modern conditions it is best to assume that your code
will need to be scaled up to distributed operation. More importantly, those locality assumptions
may mean that portions of your system get chummier with each others’ internals than ought to be
the case in a good design. The separation of address spaces that sockets enforce is a feature, not a
bug.

To use sockets gracefully, in the Unix tradition, start by designing@aplication protocolfor

use between them — a set of requests and responses which expresses the semantics of what your
programs will be communicating about in a succinct way. We've already discussed the some major
issues in the design of application protocols in Chapter 5.

Sockets are supported in all recent Unixes, under Windows, and under classic MacOS as well.

Case Study: PostgreSQL

PostgreSQL is an open-source database program. Had it been implemented as a monster monolith,
it would be a single program with an interactive interface that manipulates database files on disk
directly. Interface would be welded together with implementation, and two instances of the program
attempting to manipulate the same database at the same time would have serious contention and
locking issues.

Instead, the PostgreSQL suite includes a server calbstimasteand at least three client applica-

tions. Onepostmasteserver process per machine runs in background and has exclusive access to
the database files. It accepts requests in the SQL query minilanguage through TCP/IP sockets, and
returns answers in a textual format as well. 'When the user runs a PostgreSQL client, that client
opens a session wostmasteand does SQL transactions with it. The server can handle several
client sessions at once, and sequences requests so that they don't interfere with each other.

Because the front end and back end are separate, the server doesn’t need to know anything except
how to interpret SQL requests from a client and send SQL reports back to it. The clients, on
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the other hand, don't need to know anything about how the database is stored. Clients can be
specialized for different needs and have different user interfaces.

This organization is quite typical for Unix databases — so much so that it is often possible to mix and
match SQL clients and SQL servers. The interoperability issues are the SQL server's TCP/IP port
number, and whether client and server support the same dialect of SQL.

Case Study: Freeciv

In Chapter 6, we introduced Freeciv as an example of transparent data formats. But more critical
to the way it supports multiplayer gaming is the client/server partitioning of the code. This is a
representative example of a program in which the application needs to be distributed over a wide-
area network and handles communication through TCP/IP sockets.

The state of a running Freeciv game is maintained by a server process, the game engine. Players run
GUI clients which exchange information and commands with the server through a packet protocol.
All game logic is handled in the server. The details of GUI are handled in the client; different
clients support different interface styles.

This is a very typical organization for a multiplayer online game. The packet protocol uses TCP/IP as
a transport, so one server can handle clients running on different Internet hosts. Other games
that are more like real-time simulations (notably first-person shooters) use raw Internet datagram
protocol (UDP) and trade lower latency for some uncertainty about whether any given packet will
be delivered. In such games, users tend to be issuing control actions continuously, so sporadic
dropouts are tolerable, but lag is fatal.

Shared Memory

Whereas two processes using sockets to communicate may live on different machines (and, in fact,
be separated by an Internet connection spanning half the globe), shared memory requires producers
and consumers to be co-resident on the same hardware. But, if your communicating processes can
get access to the same physical memory, shared memory will be the fastest way to pass information
between them.

Shared memory may be disguised under different APIs, but on modern Unixes the implementation
normally depends on the use of mmap(2) to map files into memory that can be shared between
processes. POSIX defines a shm_open(3) facility with an API that supports using files as shared
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memory; this is mostly a hint to the operating system that it need not flush the pseudofile data to
disk.

Because access to shared memory is not automatically serialized by a discipline resembling read

and write calls, programs doing the sharing must handle contention and deadlock issues themselves,
typically by using semaphore variables located in the shared segment. The issues here resemble
those in multithreading (see the end of this chapter for discussion) but are more manageable because
default isnotto share memory. Thus, problems are better contained.

On systems where it is available and reliable, the Apache web server's scoreboard facility uses

shared memory for communication between an Apache master process and the load-sharing pool
of Apache images that it manages. Modern X implementations also use shared memory, to pass
large images between client and server when they are resident on the same machine, to avoid the
overhead of socket communication. Both uses are performance hacks justified by experience and
testing, rather than being architectural choices.

The mmap(2) call is supported under all modern Unixes, including Linux and the open-source BSD
versions; this is described in the Single Unix Specification. It will not normally be available under
Windows, MacOS classic, and other operating systems.

Before purpose-built mmap(2) was available, a common way for two processes to communicate
was for them to open the same file, and then delete that file. The file wouldn’t go away until all
open filehandles were closed, but some old Unixes took the link count falling to zero as a hint that
they could stop updating the on-disk copy of the file. The downside was that your backing store
was the file system rather than a swap device, the file system the deleted file lived on couldn’t be
unmounted until the programs using it closed, and attaching new processes to an existing shared
memory segment faked up in this way was tricky at best.

After Version 7 and the split between the BSD and System V lineages, the evolution of Unix
interprocess communication took two different directions. The BSD direction led to sockets. The
AT&T lineage, on the other hand, developed named pipes (as previously discussed) and an IPC
facility, specifically designed for passing binary data and based on shared-memory bidirectional
message queues. This is called ‘System V IPC'—or, among old timers, ‘Indian Hill' IPC after the
AT&T facility where it was first written.

The upper, message-passing layer of System V IPC has largely fallen out of use.  The lower
layer, which consists of shared memory and semaphores, still has significant applications under
circumstances in which one needs to do mutual-exclusion locking and some global data sharing
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among processes running on the same machine. These System V shared memory facilities evolved
into the POSIX shared-memory API, supported under Linux, the BSDs, MacOS X and Windows,
but not classic MacOS.

By using these shared-memory and semaphore facilities (shmget(2), semget(2), and friends) one
can avoid the overhead of copying data through the network stack. Large commercial databases
(including Oracle, DB2, Sybase, and Informix) use this technique heavily.

Problems and Methods to Avoid

While BSD-style sockets over TCP/IP have become the dominant IPC method under Unix, there are
still live controversies over the right way to partition by multiprogramming. Some obsolete methods
have not yet completely died, and some techniques of questionable utility have been imported from
other operating systems (often in association with graphics or GUI programming). We'll be touring
some dangerous swamps here; beware the crocodiles.

Obsolescent Unix IPC Methods

Unix (born 1969) long predates TCP/IP (born 1980) and the ubiquitous networking of the 1990s and
later. Anonymous pipes, redirection, and shellout have been in Unix since very early days, but the
history of Unix is littered with the corpses of APIs tied to obsolescent IPC and networking models,
beginning with theanx() facility that appeared in Version 6 (1976) and was dropped before Version

7 (1979).

Eventually BSD sockets won out as IPC was unified with networking. But this didn’t happen until
after fifteen years of experimentation that left a number of relics behind. It's useful to know about
these because there are likely to be references to them in your Unix documentation that might give
the misleading impression that they're still in use. These obsolete methods are described in more
detail inUnix Network ProgrammingStevens90].

The real explanation for all the dead IPC facilities in old AT&T Unixes was
politics. The Unix Support Group was headed by a low-level manager, while
some projects that used Unix were headed by vice presidents. They had ways
to make irresistible requests, and would not brook the objection that most IPC
mechanisms are interchangeable.

<author>DougMcllroy</author>
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System V IPC

The System V IPC facilities are message-passing facilities based on the System V shared memory
facility we described earlier.

Programs that cooperate using System V IPC usually define shared protocols based on exchanging
short (up to 8K) binary messages. The relevant manual pages are msgctl(2) and friends. As this style
has been largely superseded by text protocols passed between sockets, we do not give an example
here.

The System V IPC facilities are present in Linux and other modern Unixes. However, as they are a
legacy feature, they are not exercised very often. The Linux version is still known to have bugs as
of mid-2003. Nobody seems to care enough to fix them.

Streams

Streams networking was invented for Unix Version 8 (1985) by Dennis Ritchie. A re-implementation
called STREAMS (yes, it is all-capitals in the documentation) first became available in the 3.0
release of System V Unix (1986). The STREAMS facility provided a full-duplex interface
(functionally not unlike a BSD socket, and like sockets, accessible through normal read(2) and
write(2) operations after initial setup) between a user process and a specified device driver in the
kernel. The device driver might be hardware such as a serial or network card, or it might be a
software-only pseudodevice set up to pass data between user processes.

An interesting feature of both streams and STREAMS that it is possible to push protocol-
translation modules into the kernel’'s processing path, so that the device the user process ‘sees’
through the full-duplex channel is actually filtered. This capability could be used, for example, to
implement a line-editing protocol for a terminal device. Or one could implement protocols such as
IP or TCP without wiring them directly into the kernel.

Streams originated as an attempt to clean up a messy feature of the kernel called ‘line disciplines’ —
alternative modes of processing character streams coming from serial terminals and early local-area
networks. But as serial terminals faded from view, Ethernet LANs became ubiquitous, and TCP/IP
drove out other protocol stacks and migrated into Unix kernels, the extra flexibility provided by
STREAMS had less and less utility. In 2003, System V Unix still supports STREAMS, as do some
System V/BSD hybrids such as Digital Unix and Sun Microsystems’ Solaris.

8STREAMS was much more complex. Dennis Ritchie is reputed to have said “Streams means something different when
shouted”.

209



Chapter 7. Multiprogramming

Linux and other open-source Unixes have effectively discarded STREAMS. Linux kernel modules
and libraries are available from the LiS [http://www.gcom.com/home/linux/lis/] project, but (as of
mid-2003) are not integrated into the stock Linux kernel. They will not be supported under non-
Unix operating systems.

Remote Procedure Calls

Despite occasional exceptions such as NFS (Network File System) and the GNOME project,
attempts to import CORBA, ASN.1, and other forms of remote-procedure-call interface have largely
failed — these technologies have not been naturalized into the Unix culture.

There seem to be several underlying reasons for this. One is that RPC interfaces are not readily
discoverable; that is, it is difficult to query these interfaces for their capabilities, and difficult

to monitor them in action without building single-use tools as complex as the programs being
monitored (we examined some of the reasons for this in Chapter 6). They have the same version
skew problems as libraries, but those problems are harder to track because they're distributed and
not generally obvious at link time.

As a related issue, interfaces that have richer type signatures also tend to be more complex, therefore
more brittle. Over time, they tend to succumb to ontology creep as the inventory of types that get
passed across interfaces grows steadily larger and the individual types more elaborate. Ontology
creep is a problem because structs are more likely to mismatch than strings; if the ontologies of the
programs on each side don’t exactly match, it can be very hard to teach them to communicate at all,
and fiendishly difficult to resolve bugs. The most successful RPC applications, such as the Network
File System, are those in which the application domain naturally has only a few simple data types.

The usual argument for RPC is that it permits “richer” interfaces than methods like text streams —
that is, interfaces with a more elaborate and application-specific ontology of data types. But the Rule
of Simplicity applies! We observed in Chapter 4 that one of the functions of interfaces is as choke
points that prevent the implementation details of modules from leaking into each other. Therefore,
the main argument in favor of RPC is also an argument that it increases global complexity rather
than minimizing it.

With classical RPC, it's too easy to do things in a complicated and obscure way instead of
keeping them simple. RPC seems to encourage the production of large, baroque, over-engineered
systems with obfuscated interfaces, high global complexity, and serious version-skew and reliability
problems — a perfect example of thick glue layers run amok.
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Windows COM and DCOM are perhaps the archetypal examples of how bad this can get, but there
are plenty of others. Apple abandoned OpenDoc, and both CORBA and the once wildly hyped Java
RMI have receded from view in the Unix world as people have gained field experience with them.
This may well be because these methods don't actually solve more problems than they cause.

Andrew S. Tanenbaum and Robbert van Renesse have given us a detailed analysis of the general
problem inA Critique of the Remote Procedure Call Paradifffanenbaum-VanRenesse], a paper
which should serve as a strong cautionary note to anyone considering an architecture based on RPC.

All these problems may predict long-term difficulties for the relatively few Unix projects that use
RPC. Of these projects, perhaps the best known is the GNOME desktop’éffiiese problems
also contribute to the notorious security vulnerabilities of exposing NFS servers.

Unix tradition, on the other hand, strongly favors transparent and discoverable interfaces. This is
one of the forces behind the Unix culture’s continuing attachment to IPC through textual protocols.

It is often argued that the parsing overhead of textual protocols is a performance problem relative
to binary RPCs — but RPC interfaces tend to have latency problems that are far worse, because (a)
you can't readily anticipate how much data marshaling and unmarshaling a given call will involve,
and (b) the RPC model tends to encourage programmers to treat network transactions as cost-free.
Adding even one additional round trip to a transaction interface tends to add enough network latency
to swamp any overhead from parsing or marshaling.

Even if text streams were less efficient than RPC, the performance loss would be marginal and
linear, the kind better addressed by upgrading your hardware than by expending development time
or adding architectural complexity. Anything you might lose in performance by using text streams,
you gain back in the ability to design systems that are simpler — easier to monitor, to model, and to
understand.

Today, RPC and the Unix attachment to text streams are converging in an interesting way, through
protocols like XML-RPC and SOAP. These, being textual and transparent, are more palatable to
Unix programmers than the ugly and heavyweight binary serialization formats they replace. While
they don't solve all the more general problems pointed out by Tanenbaum and van Renesse, they do
in some ways combine the advantages of both text-stream and RPC worlds.

Threads — Threat or Menace?

"GNOME's main competitor, KDE, started with CORBA but abandoned it in their 2.0 release. They have been on a quest
for lighter-weight IPC methods ever since.
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Though Unix developers have long been comfortable with computation by multiple cooperating
processes, they do not have a native tradition of using threads (processes that share their entire
address spaces). These are a recent import from elsewhere, and the fact that Unix programmers
generally dislike them is not merely accident or historical contingency.

From a complexity-control point of view, threads are a bad substitute for lightweight processes with
their own address spaces; the idea of threads is native to operating systems with expensive process-
spawning and weak IPC facilities.

By definition, though daughter threads of a process typically have separate local-variable stacks,
they share the same global memory. The task of managing contentions and critical regions in this
shared address space is quite difficult and a fertile source of global complexity and bugs. It can be
done, but as the complexity of one’s locking regime rises, the chance of races and deadlocks due to
unanticipated interactions rises correspondingly.

Threads are a fertile source of bugs because they can too easily know too much about each others’
internal states. There is no automatic encapsulation, as there would be between processes with
separate address spaces that must do explicit IPC to communicate. Thus, threaded programs suffer
from not just ordinary contention problems, but from entire new categories of timing-dependent
bugs that are excruciatingly difficult to even reproduce, let alone fix.

Thread developers have been waking up to this problem. Recent thread implementations and
standards show an increasing concern with providing thread-local storage, which is intended to limit
problems arising from the shared global address space. As threading APIs move in this direction,
thread programming starts to look more and more like a controlled use of shared memory.

Threads often prevent abstraction. In order to prevent deadlock, you often need to
know how and if the library you are using uses threads in order to avoid deadlock

problems. Similarly, the use of threads in a library could be affected by the use

of threads at the application layer.

<author>DavidKorn</author>

To add insult to injury, threading has performance costs that erode its advantages over conventional
process partitioning.  While threading can get rid of some of the overhead of rapidly switching
process contexts, locking shared data structures so threads won't step on each other can be just as
expensive.
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The X server, able to execute literally millions of ops/seconaoisthreaded; it
uses a poll/select loop. Various efforts to make a multithreaded implementation
have come to no good result. The costs of locking and unlocking get too high for
something as performance-sensitive as graphics servers.

<author>JimGettys</author>

This problem is fundamental, and has also been a continuing issue in the design of Unix kernels
for symmetric multiprocessing. As your resource-locking gets finer-grained, latency due to locking
overhead can increase fast enough to swamp the gains from locking less core memory.

One final difficulty with threads is that threading standards still tend to be weak and underspecified
as of mid-2003. Theoretically conforming libraries for Unix standards such as POSIX threads
(1003.1c) can nevertheless exhibit alarming differences in behavior across platforms, especially
with respect to signals, interactions with other IPC methods, and resource cleanup times. Windows
and classic MacOS have native threading models and interrupt facilities quite different from those of
Unix and will often require considerable porting effort even for simple threading cases. The upshot
is that you cannot count on threaded programs to be portable.

For more discussion and a lucid contrast with event-driven programmingVegeThreads Are a
Bad Idea[Osterhout96].

Process Partitioning at the Design Level
Now that we have all these methods, what should we do with them?

The first thing to notice is that tempfiles, the more interactive sort of master/slave process relation-
ship, sockets, RPC, and all other methods of bidirectional IPC are at some level equivalent—they're
all just ways for programs to exchange data during their lifetimes. Much of what we do in a so-
phisticated way using sockets or shared memory we could do in a primitive way using tempfiles as
mailboxes and signals for notification. The differences are at the edges, in how programs establish
communication, where and when one does the marshalling and unmarshalling of messages, in what
sorts of buffering problems you may have, and atomicity guarantees you get on the messages (that
is, to what extent you can know that the result of a single send action from one side will show up as
a single receive event on the other).

We've seen from the PostgreSQL study that one effective way to hold down complexity is to break
an application into a client/server pair. The PostgreSQL client and server communicate through an
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application protocol over sockets, but very little about the design pattern would change if they used
any other bidirectional IPC method.

This kind of partitioning is particularly effective in situations where multiple instances of the
application must manage access to resources that are shared among all. A single server process
may manage all resource contention, or cooperating peers may each take responsibility for some
critical resource.

Client-server partitioning can also help distribute cycle-hungry applications across multiple hosts.
Or it may make them suitable for distributed computing across the Internet (as with Freeciv). We'll
discuss the relate@L| serverpattern in Chapter 11.

Because all these peer-to-peer IPC techniques are alike at some level, we should evaluate them
mainly on the amount of program-complexity overhead they incur, and how much opacity they
introduce into our designs. This, ultimately, is why BSD sockets have won over other Unix IPC
methods, and why RPC has generally failed to get much traction.

Threads are fundamentally different.  Rather than supporting communication among different
programs, they support a sort of timesharing within an instance of a single program. Rather than
being a way to partition a big program into smaller ones with simpler behavior, threading is strictly

a performance hack. It has all the problems normally associated with performance hacks, and a few
special ones of its own.

Accordingly, while we should seek ways to break up large programs into simpler cooperating
processes, the use of threads within processes should be a last resort rather than a first. Often, you
may find you can avoid them. If you can use limited shared memory and semaphores, asynchronous
I/0O using SIGIO, or poll(2)/select(2) rather than threading, do it that way. Keep it simple; use
techniques earlier on this list and lower on the complexity scale in preference to later ones.

The combination of threads, remote-procedure-call interfaces, and heavyweight object-oriented
design is especially dangerous. Used sparingly and tastefully, any of these techniques can be
valuable — but if you are ever invited onto a project that is supposed to feature all three, fleeing in
terror might well be an appropriate reaction.

We have previously observed that programming in the real world is all about managing complexity.
Tools to manage complexity are good things. But when the effect of those tools is to proliferate
complexity rather than to control it, we would be better off throwing them away and starting from
zero. Animportant part of the Unix wisdom is to never forget this.
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Finding a Notation That Sings

A good notation has a subtlety and suggestiveness which at times makes it almost seem like a live
teacher.

<author>BertrandRussell</author>

The World of Mathematics (1956)

One of the most consistent results from large-scale studies of error patterns in software is that
programmer error rates in defects per hundreds of lines are largely independent of the language
in which the programmers are codiffgHigher-level languages, which allow you to get more done

in fewer lines, mean fewer bugs as well.

Unix has a long tradition of hosting little languages specialized for a particular application domain,
languages that can enable you to drastically reduce the line count of your programs. Domain-
specific language examples include the numerous Unix typesetting langade®(n tbl, pic,

grap), shell utilities @wk sed dc, bc), and software development toolmdgke yacg lex). There

is a fuzzy boundary between domain-specific languages and the more flexible sort of application
run-control file éendmail BIND, X); another with data-file formats; and another with scripting
languages (which we'll survey in Chapter 14).

Historically, domain-specific languages of this kind have been called ‘little languages’ or ‘minilan-
guages’ in the Unix world, because early examples were small and low in complexity relative to
general-purpose languages (all three terms for the category are in common use). But if the applica-
tion domain is complex (in that it has lots of different primitive operations or involves manipulation

of intricate data structures), an application language for it may have to be rather more complex than
some general-purpose languages. We'll keep the traditional term ‘minilanguage’ to emphasize that
the wise course is usually to keep these designs as small and simple as possible.

The domain-specific little language is an extremely powerful design idea. It allows you to define
your own higher-level language to specify the appropriate methods, rules, and algorithms for the
task at hand, reducing global complexity relative to a design that uses hardwired lower-level code

8Les Hatton reports by email on the analysis in his book in preparaioftware Failure “Provided you use executable line
counts for the density measure, the injected defect densities vary less between languages than they do between engineers by
about a factor of 10”.
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for the same ends. You can get to a minilanguage design in at least three ways, two of them good
and one of them dangerous.

One right way to get there is to realize up front that you can use a minilanguage design to push
a given specification of a programming problem up a level, into a notation that is more compact
and expressive than you could support in a general-purpose language. As with code generation
and data-driven programming, a minilanguage lets you take practical advantage of the fact that the
defect rate in your software will be largely independent of the level of the language you are using;
more expressive languages mean shorter programs and fewer bugs.

The second right way to get to a minilanguage design is to notice that one of your specification file
formats is looking more and more like a minilanguage — that is, it is developing complex structures
and implying actions in the application you are controlling. Is it trying to describe control flow as
well as data layouts? If so, it may be time to promote that control flow from being implicit to being
explicit in your specification language.

The wrong way to get to a minilanguage design is to extend your way to it, one patch and crufty
added feature at a time. On this path, your specification file keeps sprouting more implied control
flow and more tangled special-purpose structures until it has become an ad-hoc language without
your noticing it. Some legendary nightmares have been spawned this way; the example every Unix
guru will think of (and shudder over) is theendmail.cf  configuration file associated with the
sendmailmail transport.

Sadly, most people do their first minilanguage the wrong way, and only realize later what a mess it
is. Then the question is: how to clean it up? Sometimes the answer implies rethinking the entire
application design. Another notorious example of language-by-feature creep was th@ EAi@r

which grew first macros and then loops and conditionals as programmers wanted to use it to package
increasingly complex editing routines. The resulting ugliness was eventually fixed by a redesign of
the entire editor to be based on an intentional language; this is how Emacs Lisp (which we’ll survey
below) evolved.

All sufficiently complicated specification files aspire to the condition of minilanguages. Therefore,
it will often be the case that your only defense against designing a bad minilanguage is knowing
how to design a good one. This need not be a huge step or involve knowing a lot of formal language
theory; with modern tools, learning a few relatively simple techniques and bearing good examples
in mind as you design should be sufficient.
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In this chapter we’ll examine all the kinds of minilanguages normally supported under Unix, and
try to identify the kinds of situation in which each of them represents an effective design solution.
This chapter is not meant to be an exhaustive catalog of Unix languages, but rather to bring out the
design principles involved in structuring an application around a minilanguage. We’'ll have much
more to say about languages for general-purpose programming in Chapter 14.

We'll need to start by doing a little taxonomy, so we’ll know what we're talking about later on.

Understanding the Taxonomy of Languages

All the languages in Figure 8.1 are described in case studies, either in this chapter or elsewhere in
this book. For the general-purpose interpreters near the right-hand side, see Chapter 14.

Figure 8.1. Taxonomy of languages.
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In Chapter 5 we looked at Unix conventions for data files. There’s a spectrum of complexity in
these. At the low end are files that make simple associations between names and properties; the
letc/passwd  and.newsrc formats are good examples. Further up the scale we start to get
formats that marshal or serialize data structures; the PNG and SNG formats are (equivalent) good
examples of this.

A structured data-file format starts to border on being a minilanguage when it expresses not just
structure but actions performed on some interpretive context (that is, memory that is outside the
data file itself). XML markups tend to straddle this border; the example we’ll look at here is
Glade a code generator for building GUI interfaces. Formats that are both designed to be read and
written by humans (rather than just programs) and are used to generate code, are firmly in the realm
of minilanguages. yaccandlex are the classic examples. We'll discuglade yaccandlex in
Chapter 9.

The Unix macro processom4, is another very simple declarative minilanguage (that is, one in
which the program is expressed as a set of desired relationships or constraints rather than explicit
actions). It has often been used as a preprocessing stage for other minilanguages.

Unix makefiles, which are designed to automate build processes, express dependency relationships
between source and derived ffléand the commands required to make each derived file from its
sources. When you run make, it uses those declarations to walk the implied tree of dependencies,
doing the least work necessary to bring your build up to date. Y#deandlex specifications,
makefiles are a declarative minilanguage; they set up constraints that imply actions performed on an
interpretive context (in this case, the portion of the file system where the source and generated files
live). We’'ll return to makefiles in Chapter 15.

XSLT, the language used to describe transformations of XML, is at the high end of complexity for
declarative minilanguages. It's complex enough that it's not normally thought of as a minilanguage
at all, but it shares some important characteristic of such languages which we’ll examine when we
look at it in more detail below.

The spectrum of minilanguages ranges from declarative (with implicit actions) to imperative (with
explicit actions).  The run-control syntax of fetchmail(1) can be viewed as either a very weak
imperative language or a declarative language with implied control flow. The troff and PostScript

®For less technical readers: the compiled form of a C program is derived from its C source form by compilation and linkage.
The PostScript version of a troff document is derived from the troff source; the command to make the former from the latter
is atroff invocation. There are many other kinds of derivation; makefiles can express almost all of them.
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typesetting languages are imperative languages with a lot of special-purpose domain expertise baked
into them.

Some task-specific imperative minilanguages start to border on being general-purpose interpreters.
They reach this level when they are expliciliyring-complete-that is, they can do both condition-

als and loops (or recursidfiwith features that are designed to be used as control structures. Some
languages, by contrast, are only accidentally Turing-complete — they have features that can be used
to implement control structures as a sort of side effect of what they are actually designed to do.

The bc(1l) and dc(1) interpreters we looked at in Chapter 7 are good examples of specialized
imperative minilanguages that are explicitly Turing-complete.

We are over the border into general-purpose interpreters when we reach languages like Emacs
Lisp and JavaScript that are designed to be full programming languages run in specialized contexts.
We'll have more to say about these when we discuss embedded scripting languages later on.

The spectrum in interpreters is one of increasing generality; the flip side of this is that a more
general-purpose interpreter embodies fewer assumptions about the context in which it runs.  With
increasing generality there usually comes a richer ontology of data types. Shell and Tcl have
relatively simple ontologies; Perl, Python, and Java more complex ones. We'll return to these
general-purpose languages in Chapter 14.

Applying Minilanguages

Designing with minilanguages involves two distinct challenges. One is having existing minilan-
guages handy in your toolkit, and recognizing when they can be applied as-is. The other is knowing
when it is appropriate to design a custom minilanguage for an application. To help you develop both
aspects of your design sense, about half of this chapter will consist of case studies.

Case Study: sng

In Chapter 6 we looked at sng(1), which translates between PNG and an editable all-text represen-
tation of the same bits. The SNG data-file format is worth reexamining for contrast here because

80Any Turing-complete language could theoretically be used for general-purpose programming, and is theoretically exactly
as powerful as any other Turing-complete language. In practice, some Turing-complete languages would be far too painful
to use for anything outside a specified and narrow problem domain.
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it is not quite a domain-specific minilanguage. It describes a data layout, but doesn’'t associate any
implied sequence of actions with the data.

SNG does, however, share one important characteristic with domain-specific minilanguages that
binary structured data formats like PNG do not — transparency. Structured data files make it

possible for editing, conversion, and generation tools to cooperate without knowing about each

others’ design assumptions other than through the medium of the minilanguage. What SNG adds is
that, like a domain-specific minilanguage, it's designed to be easy to parse by eyeball and edit with
general-purpose tools.

Case Study: Regular Expressions

A kind of specification that turns up repeatedly in Unix tools and scripting languagesrigiiar
expressior(‘regexp’ for short). We consider it here as a declarative minilanguage for describing
text patterns; it is often embedded in other minilanguages. Regexps are so ubiquitous that the are
hardly thought of as a minilanguage, but they replace what would otherwise be huge volumes of
code implementing different (and incompatible) search capabilities.

This introduction skates over some details like POSIX extensions, back-references, and internation-
alization features; for a more complete treatment,Mastering Regular Expressiofisried]].

Regular expressions describe patterns that may either match or fail to match against strings. The
simplest regular-expression tool is grep(1), a filter that passes through to its output every line in its
input matching a specified regexp. Regexp notation is summarized in Table 8.1.
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Table 8.1. Regular-expression examples.

Regexp
"y

y"

"XZ?y"

nXZ*yu

"xz+y"

"s[xyz]t"

"a[x0-9]b"

Matches
x followed by
any character

followed byy.
x followed by a

literal period fol-

lowed byy.
x followed by

at most onez
followed by vy;
thus, "xy" or
"xzy" but not
"xz" or"xdy" .

x followed by
any number of
instances of z,
followed by
y; thus, "xy"
or "xzy" or
"xzzzy" but not
"xz" or"xdy" .

x followed by one
or more instances
of z, followed by
y; thus,"xzy" or
"xzzy"  but not
"xy" or "xz" or
"xdy" .

s followed by any
of the characters
x ory or z, fol-
lowed byt ; thus,
"sxt"  or "syt"
or "szt"  but not

'St or'sat’ .
a followed by ei-

ther x or charac-
ters in the range
0-9, followed by
b; thus,"axb" or

"s[~xyz]t"

"a0b” o "adb’ 222
but not "ab" or

"aab" .
s followed by any

character that is
Nnnt v Aar v or -
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There are a number of minor variants of regexp notation:

1.Glob expressionsThis is the limited set of wildcard conventions used by early Unix shells
for filename matching. There are only three wildcards:which matches any sequence of
characters (like* in the other variants)?, which matches any single character (liken the
other variants); anfl..] , which matches a character class just as in the other variants. Some
shells €sh bash zsh later added} for alternation. Thusk{a,b}c matchexac or xbc but
notxc. Some shells further extend globs in the direction of extended regular expressions.

2.Basic regular expressionsThis is the notation accepted by the original grep(1) utility for
extracting lines matching a given regexp from a file. The line editor ed(1), the stream editor
sed(1), also use these. OId Unix hands think of these as the basic or ‘vanilla’ flavor of regexp;
people first exposed to the more modern tools tend to assume the extended form described next.

3.Extended regular expressionsThis is the notation accepted by the extended grep utility
egrep(1) for extracting lines matching a given regexp from a file. Regular expressions in
Lex and theEmacseditor are very close to thegrepflavor.

4. Perl regular expressionsThis is the notation accepted by Perl and Python regexp functions.
These are quite a bit more powerful than gggepflavor.

Now that we've looked at some motivating examples, Table 8.2 is a summary of the standard regular-
expression wildcards. Note: we're not including the glob variant in this table, so a value of “All”
implies only all three of the basic, extended/Emacs, and Perl/Python vaiants.

81The POSIX standard for regular expressions introduces some symbolic ranggsolike:;;]] and [[:digit:]]
and some specific tools have extra wildcards not covered here, but these will suffice to interpret most regexps.
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Table 8.2. Introduction to regular-expression operations.
Wildcard Supported in  Matches

\ All Escape next char-
acter. Toggles
whether follow-
ing punctuation
is treated as a
wildcard or not.
Following letters
or digits are inter-
preted in various
different  ways
depending on the

program.
. All Any character.
n All Beginning of line
All End of line
[...] All Any of the char-

acters  between
the brackets

*.] All Any  characters
except those
between the
brackets.

* All Accept any num-

ber of instances of
the previous ele-
ment.

? egrep/Emacs, Accept zero or
Perl/Python one instances
of the previous
element.
+ egrep/Emacs, Accept one or

Perl/Python more instances
of the previous

element.

{n} egrep, Accept exactlyn
Perl/Python; repetitions of the
as \{n\} inprevious element.
Emacs Not  supported

by some _older
regexp en S.

{n} egrep, Acceptn or more
Perl/Python; repetitions of the
as \{n\} inprevious element.

Emacs Not  supported
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Design practice in new languages with regexp support has stabilized on the Perl/Python variant. It
is more transparent than the others, notably because backlash before a non-alphanumeric character
always means that character as a literal, so there is much less confusion about how to quote elements
of regexps.

Regular expressions are an extreme example of how concise a minilanguage can be.  Simple
regular expressions express recognition behavior that would otherwise have to be implenented with
hundreds of lines of fussy, bug-prone code.

Case Study: Glade

Gladeis an interface builder for the open-source GTK toolkit library fo?»Gladeallows you to
develop a GUI interface by interactively picking, placing, and modifying widgets on an interface
panel. The GUI editor produces an XML file describing the interface; this, in turn, can be fed
to one of several code generators that will actually grind out C, C++, Python or Perl code for the
interface. The generated code then calls functions you write to supply behavior to the interface.

Glades XML format for describing GUIs is a good example of a simple domain-specific minilan-
guage. See Example 8.1 for a “Hello, world!” GUI in Glade format.

Example 8.1. Glade “Hello, World".

<?xml version="1.0"?>
<GTK-Interface>

<widget>
<class>GtkWindow</class>
<name>HelloWindow</name>
<border_width>5</border_width>
<Signal>
<name>destroy</name>
<handler>gtk_main_quit</handler>
</Signal>

82For non-Unix programmers, an X toolkit is a graphics library that supplies GUI widgets (like labels, buttons, and pull-
down menus) to the programs that link to it. Under most other graphical operating systems, the OS supplies one toolkit that
everyone uses. Unix and X support multiple toolkits; this is part of the separation of policy from mechanism that we called
out as a design goal of X in Chapter 1. GTK and Qt are the two most popular open-source X toolkits.
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<title>Hello</title>
<type>GTK_WINDOW_TOPLEVEL</type>
<position>GTK_WIN_POS_NONE</position>
<allow_shrink>True</allow_shrink>
<allow_grow>True</allow_grow>
<auto_shrink>False</auto_shrink>

<widget>
<class>GtkButton</class>
<name>Hello World</name>
<can_focus>True</can_focus>
<Signal>
<name>clicked</name>
<handler>gtk_widget_destroy</handler>
<object>HelloWindow</object>
</Signal>
<label>Hello World</label>
</widget>
</widget>

</GTK-Interface>

A valid specification inGladeformat implies a repertoire of actions by the GUI in response to user
behavior. ThesladeGUI treats these specifications as structured data @ksjecode generators,

on the other hand, use them to write programs implementing a GUI. For some languages (including
Python), there are runtime libraries that allow you to skip the code-generation step and simply
instantiate the GUI directly at runtime from the XML specification (interpreting Glade markup,
rather than compiling it to the host language). Thus, you get the choice of trading space efficiency
for startup speed or vice versa.

Once you get past the verbosity of XMGJademarkup is a fairly simple language. It does just two
things: declare GUI-widget hierarchies and associate properties with widgets. You don't actually
have to know a lot about hoglade works to read the specification above. In fact, if you have
any experience programming in GUI toolkits, reading it will immediately give you a fairly good
visualization of whagladedoes with the specification. (Hands up everyone who predicted that this
particular specification will give you a single button widget in a window frame.)
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This kind of transparency and simplicity is the mark of a good minilanguage design. The mapping
between the notation and domain objects is very clear. The relationships between objects are
expressed directly, rather than through name references or some other sort of indirection that you
have to think to follow.

The ultimate functional test of a minilanguage like this one is simple: can | hack it without reading
the manual? For a significant range of cases,Ghade answer is yes. For example, if you
know the C-level constants that GTK uses to describe window-positioning hints, you'll recognize
GTK_WIN_POS_NON&s one and instantly be able to change the positioning hint associated with this
GUI.

The advantage of usingladeshould be clear. It specializes in code generation so you don't have
to. That's one less routine task you have to hand-code, and one fewer source of hand-coded bugs.

More information, including source code and documentation and links to sample applications, is
available at the Glade project page [http://glade.gnome.dBddldehas been ported to Windows.

Case Study: m4

The m4(1) macro processor interprets a declarative minilanguage for describing transformations of
text. Anm4program is a set of macros that specifies ways to expand text strings into other strings.
Applying those declarations to an input text witid performs macro expansion and yields an output
text. (The C preprocessor performs similar services for C compilers, though in a rather different
style.)

Example 8.2 shows am4macro that directsn4to expand each occurrence of the string "OS" in its
input into the string "operating system" on output. This is a trivial exampksupports macros

with arguments that can be used to do more than transform one fixed string into another. Typing
info m4 at your shell prompt will probably display on-line documentation for this language.

Example 8.2. A samplan4 macro.
define(‘OS’, ‘operating system’)

The m4 macro language supports conditionals and recursion. The combination can be used to
implement loops, and this was intende4is deliberately Turing-complete. But actually trying to
usem4as a general-purpose language would be deeply perverse.
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Them4macro processor is usually employed as a preprocessor for minilanguages that lack a built-in
notion of named procedures or a built-in file-inclusion feature. It's an easy way to extend the syntax
of the base language so the combination widhsupports both these features.

One well-known use om4 has been to clean up (or at least effectively hide) another minilanguage
design that was called out as a bad example earlier in this chapter. Most system administrators
now generate thesendmail.cf ~ configuration files using am4 macro package supplied with the
sendmaildistribution. The macros start from feature names (or name/value pairs) and generate the
corresponding (much uglier) strings in teendmailconfiguration language.

Usem4with caution, however. Unix experience has taught minilanguage designers to be wary of
macro expansioft for reasons we’ll discuss later in the chapter.

Case Study: XSLT

XSLT, like m4 macros, is a language for describing transformations of a text stream. But it does
much more than simple macro substitution; it describes transformations of XML data, including
query and report generation. It is the language used to write XML stylesheets. For practical
applications, see the description of XML document processing in Chapter 18. XSLT is described
by a World Wide Web Consortium standard and has several open-source implementations.

XSLT andm4 macros are both purely declarative and Turing-complete, but XSLT supports only
recursions and not loops. It is quite complex, certainly the most difficult language to master of any
in this chapter’s case studies — and probably the most difficult of any language mentioned in this
book?8

Despite its complexity, XSLT really is a minilanguage. It shares important (though not universal)
characteristics of the breed:

« A restricted ontology of types, with (in particular) no analog of record structures or arrays.

« Restricted interface to the rest of the world. XSLT processors are designed to filter standard
input to standard output, with a limited ability to read and write files. They can’'t open sockets
or run subcommands.

83\Whether or not “macro expansion” should be spelled “macroexpansion” is a matter for some dispute. The latter is found
mainly among Lisp programmers.
8t is not clear that XSLT could be any simpler and still do its job, however, so we cannot characterize it as a bad design.
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Example 8.3. A sample XSLT program.

<?xml version="1.0"?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml"/>
<xsl:element name="{name()}">
<xsl:for-each select="@*">
<xsl:element name="{name()}">
<xsl:value-of select="."/>
</xsl:element>
</xsl:for-each>
<xsl:apply-templates select="*|text()"/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

The program in Example 8.3 transforms an XML document so that each attribute of every element
is transformed into a new tag pair directly enclosed by that element, with the attribute value as the
tag pair's content.

We've included a glance at XSLT here partly to illustrate the point that ‘declarative’ does not imply
either ‘simple’ or ‘weak’, and mostly because if you have to work with XML documents, you will
someday have to face the challenge that is XSLT.

XSLT: Mastering XML Transformatiori$idwell] is a good introduction to the language. A brief
tutorial with examples is available on the W&b.

Case Study: The Documenter’s Workbench Tools

The troff(1) typesetting formatter was, as we noted in Chapter 2, Unix’s original killer application.
troff is the center of a suite of formatting tools (collectively called Documenter’s Workbench or

85X SL Concepts and Practical Use [http:/nwalsh.com/docs/tutorials/xsl/xsl/slides.html].
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DWB), all of which are domain-specific minilanguages of various kinds. Most are either prepro-
cessors or postprocessors for troff markup. Open-source Unixes host an enhanced implementation
of Documenter’s Workbench called groff(1), from the Free Software Foundation.

We’'ll examinetroff in more detail in Chapter 18; for now, it's sufficient to note that it is a good
example of an imperative minilanguage that borders on being a full-fledged interpreter (it has
conditionals and recursion but not loops; it is accidentally Turing-complete).

The postprocessors (‘drivers’ in DWB terminology) are normally not visiblérdéf users. The
original troff emitted codes for the particular typesetter the Unix development group had available
in 1970; later in the 1970s these were cleaned up into a device-independent minilanguage for placing
text and simple graphics on a page. The postprocessors translate this language (called “ditroff” for
“device-independent troff”) into something modern imaging printers can actually accept — the most
important of these (and the modern default) is PostScript.

The preprocessors are more interesting, because they actually add capabilities to the troff language.
There are three common ones: tbl(1) for making tables, eqn(1) for typesetting mathematical
equations, and pic(1) for drawing diagrams. Less used, but still live, are grn(1) for graphics, and
refer(1) and bib(1) for formatting bibliographies. Open-source equivalents of all of these ship with
groff. The grap(1) preprocessor provided a rather versatile plotting facility; there is an open-source
implementation separate frogmoff.

Some other preprocessors have no open-source implementation and are no longer in common use.
Best known of these was ideal(1), for graphics. A younger sibling of the family, chem(1), draws
chemical structural formulas; it is available as part of Bell Labs’s netlib &de.

Each of these preprocessors is a little program that accepts a minilanguage and compiles it into troff
requests. Each one recognizes the markup it is supposed to interpret by looking for a unique start
and end request, and passes through unaltered any markup outsidekihiosé$ for .TS/.TE pic

looks for .PS/.PE, etc.). Thus, most of the preprocessors can normally be run in any order without
stepping on each other. There are some exceptions: in partichkemandgrap both issuepic
commands, and so must come before it in the pipeline.

cat thesis.ms | chem | tbl | refer | grap | pic | egn \
| groff -Tps >thesis.ps

8http://www.netlib.org/
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The preceding is a full-Monty example of a Documenter’s Workbench processing pipeline, for a
hypothetical thesis incorporating chemical formulas, mathematical equations, tables, bibliographies,
plots, and diagrams. (The cat(1) command simply copies its input or a file argument to its output;
we use it here to emphasize the order of operations.) In practice modern troff implementations
tend to support command-line options that can invoke at least tbl(1), eqn(1) and pic(1), so it isn’t
necessary to write such an elaborate pipeline. Even if it were, these sorts of build recipes are
normally composed just once and stashed away in a makefile or shellscript wrapper for repeated
use.

The document markup of Documenter’s Workbench is in some ways obsolete, but the range of
problems these preprocessors address gives some indication of the power of the minilanguage model
— itwould be extremely difficult to embed equivalent knowledge into a WY SIWYG word processor.
There are some ways in which modern XML-based document markups and toolchains are still, in
2003, playing catch-up with capabilities that Documenter's Workbench had in 1979. We’'ll discuss
these issues in more detail in Chapter 18.

The design themes that gave Documenter’s Workbench so much power should by now be familiar
ones; all the tools share a common text-stream representation of documents, and the formatting
system is broken up into independent components that can be debugged and improved separately.
The pipeline architecture supports plugging in new, experimental preprocessors and postprocessors
without disturbing old ones. It is modular and extensible.

The architecture of Documenter’s Workbench as a whole teaches us some things about how to
fit multiple specialist minilanguages into a cooperating system. One preprocessor can build on
another. Indeed, the Documenter’s Workbench tools were an early exemplar of the power of pipes,
filtering, and minilanguages that influenced a lot of later Unix design by example. The design of
the individual preprocessors has more lessons to teach about what effective minilanguage designs
look like.

One of these lessons is negative. Sometimes users writing descriptions in the minilanguages do
unclean things with low-level troff markup inserted by hand. This can produce interactions and
bugs that are hard to diagnose, because the generated troff coming out of the pipeline is not visible
— and would not be readable if it were. This is analogous to the sorts of bugs that happen in code
that mixes C with snippets of in-line assembler. It might have been better to separate the language
layers more completely, if that were possible. Minilanguage designers should take note of this.
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All the preprocessor languages (though not troff markup itself) have relatively clean, shell-like
syntaxes that follow many of the conventions we described in Chapter 5 for the design of data-
file formats. There are a few embarrassing exceptions; notably, tbl(1) defaults to using a tab as a
field separator between table columns, replicating an infamous botch in the design of make(1) and
causing annoying bugs when editors or other tools invisibly change the composition of whitespace.

While troff itself is a specialized imperative language, one theme that runs through at least
three of the Documenter’s Workbench minilanguages is declarative semantics: doing layout from
constraints. This is an idea that shows up in modern GUI toolkits as well — that, instead of giving
pixel coordinates for graphical objects, what you really want to do is declare spatial relationships
among them (“widget A is above widget B, which is to the left of widget C”) and have your software
compute a best-fit layout for A, B, and C according to those constraints.

The pic(1) program uses this approach to lay out elements for diagrams. The language taxonomy
diagram at Figure 8.1 was produced with thie source code in Example $4run through
pic2graph one of our case studies in Chapter 7.

Example 8.4. Taxonomy of languages — thpic source.

# Minilanguage taxonomy

#

# Base ellipses

define smallellipse {ellipse width 3.0 height 1.5}
M: ellipse width 3.0 height 1.8 fill 0.2

line from M.n to M.s dashed

D: smallellipse() with .e at M.w + (0.8, 0)

line from D.n to D.s dashed

I: smallellipse() with .w at M.e - (0.8, 0)

#

# Captions

" "Data formats" at D.s

" "Minilanguages" at M.s

" "“Interpreters" at I.s

#

# Heads

arrow from D.w + (0.4, 0.8) to D.e + (-0.4, 0.8)
"flat to structured" " at last arrow.c

8t is also quite traditional for Unix books that describe pic(1) to include their own illustrations as coding examples.
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arrow from M.w + (0.4, 1.0) to M.e + (-0.4, 1.0)

"declarative to imperative" "™ at last arrow.c

arrow from lL.w + (0.4, 0.8) to l.e + (-0.4, 0.8)

"less to more general" " at last arrow.c

#

# The arrow of loopiness

arrow from D.w + (0, 1.2) to l.e + (0, 1.2)

"increasing loopiness" " at last arrow.c

#

# Flat data files

"letc/passwd" ".newsrc" at 0.5 between D.c and D.w

# Structured data files

"SNG" at 0.5 between D.c and M.w

# Datafile/minilanguage borderline cases

"regexps" "Glade" at 0.5 between M.w and D.e

# Declarative minilanguages

"m4" "Yacc" "Lex" "make" "XSLT" "pic" "thl" "egn" \
at 0.5 between M.c and D.e

# Imperative minilanguages

"fetchmail" "awk" "troff" "Postscript" at 0.5 between M.c and L.w

# Minilanguage/interpreter borderline cases

"dc" "bc" at 0.5 between l.w and M.e

# Interpreters

"Emacs Lisp" "JavaScript" at 0.25 between M.e and l.e

"sh" "tcl" at 0.55 between M.e and l.e

"Perl" "Python" "Java" at 0.8 between M.e and l.e

This is a very typical Unix minilanguage design, and as such has some points of interest even on the
purely syntactic level. Notice how much it looks like a shell program: # leads comments, and the
syntax is obviously token-oriented with the simplest possible convention for strings. The designer
of pic(1) knew that Unix programmers expect minilanguage syntaxes to look like this unless there
is a strong and specific reason they should not. The Rule of Least Surprise is in full operation here.

It probably doesn't take a lot of effort to discern that the first line of code is a macro definition; the
later references temallellipse() encapsulate a repeated design element of the diagram. Nor
will it take much scrutiny to deduce thabx invis  declares a box with invisible borders, actually
just a frame for text to be stacked inside. Tmmw command is equally obvious.
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With these as clues and one eye on the actual diagram, the meaning of the remaining pieces of
the syntax (position references likes and constructions likeast arrow  orat 0.25 between

M.e and l.e or the addition of vector offsets to a location) should become rapidly apparent. As
with Glade markup anth4, an example like this one can teach a good bit of the language without
any reference to a manual (a compactness property troff(1) markup, unfortunatelgotbage).

The example of pic(1) reflects a common design theme in minilanguages, which we also saw
reflected in Glade — the use of a minilanguage interpreter to encapsulate some form of constraint-
based reasoning and turn it into actions. We could actually choose to view pic(1) as an imperative
language rather than a declarative one; it has elements of both, and the dispute would quickly grow
theological.

The combination of macros with constraint-based layout gives pic(1) the ability to express the
structure of diagrams in a way that more modern vector-based markups like SVG cannot. It is
therefore fortunate that one effect of the Documenter's Workbench design is to make it relatively
easy to keep pic(1) useful outside the DWB context. pit2graphscript we used as a case study

in Chapter 7 was an ad-hoc way to accomplish this, using the retrofitted PostScript capability of
groff(1) as a half-way step to a modern bitmap format.

A cleaner solution is the pic2plot(1) utility distributed with the GNU plotutils package, which
exploited the internal modularity of the GNU pic(1) code. The code was split into a parsing
front end and a back end that generated troff markup, the two communicating through a layer of
drawing primitives. Because this design obeyed the Rule of Modulaiigplot(1)implementers

were able to split off the GNpic parsing stage and reimplement the drawing primitives using a
modern plotting library. Their solution has the disadvantage, however, that text in the output is
generated with fonts built intpic2plotthat won’t match those of troff.

Case Study: fetchmail Run-Control Syntax
See Example 8.5 for an example.

Example 8.5. Synthetic example of &tchmailrc

# Poll this site first each cycle.
poll pop.provider.net proto pop3
user "jsmith" with pass "secretl" is "smith" here
user jones with pass "secret2" is "jjones" here with options keep
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# Poll this site second, unless Lord Voldemort zaps us first.
poll billywig.hogwarts.com with proto imap:
user harry_potter with pass "floo" is harry_potter here

# Poll this site third in the cycle.
# Password will be fetched from ~/.netrc
poll mailhost.net with proto imap:

user esr is esr here

This run-control file can be viewed as an imperative minilanguage. There is an implied flow of
execution: cycle through the list of poll commands repeatedly (sleeping for a while at the end of
each cycle), and for each site entry collect mail for each associated user in sequence. ltis far from
being general-purpose; all it can do is sequence the program’s polling behavior.

As with pic(1), one could choose to view this minilanguage as either declarations or a very weak
imperative language, and argue endlessly over the distinction. On the one hand, it has neither
conditionals nor recursion nor loops; in fact, it has no explicit control structures at all. On the other
hand, it does describe actions rather than just relationships, which distinguishes it from a purely
declarative syntax like Glade GUI descriptions.

Run-control minilanguages for complex programs often straddle this border. We’re making a point
of this fact because not having explicit control structures in an imperative minilanguage can be a
tremendous simplification if the problem domain lets you get away with it.

One notable feature ofetchmailrc syntax is the use of optional noise keywords that are
supported simply in order to make the specifications read a bit more like English. The ‘with’
keywords and single occurrence of ‘options’ in the example aren't actually necessary, but they help
make the declarations easier to read at a glance.

The traditional term for this sort of thing &yntactic sugarthe maxim that goes with this is a famous
quip that “syntactic sugar causes cancer of the semicdforitdeed, syntactic sugar needs to be
used sparingly lest it obscure more than help.

In Chapter 9 we’ll see how data-driven programming helps provide an elegant solution to the
problem of editingetchmailrun-control files through a GUI.

8The line is owed to Alan Perlis, who did some of the pioneering work in software modularity around 1970. The semicolon
in question was the statement separator or terminator in various Algol-descended languages, including Pascal and C.
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Case Study: awk

The awk minilanguage is an old-school Unix tool, formerly much used in shellscripts. e

it's intended for writing small but expressive programs to transform textual input into textual output.
Versions ship with all Unixes, several in open source; the comnre#odyawk at your Unix shell
prompt is quite likely to take you to on-line documentation.

Programs inawk consist of pattern/action pairs. Each pattern igegular expressiona concept

we’ll describe in detail in Chapter 9. When awkprogram is run, it steps through each line of the
input file. Each line is checked against every pattern/action pair in order. If the pattern matches
the line, the associated action is performed.

Each action is coded in a language resembling a subset of C, with variables and conditionals and
loops and an ontology of types including integers, strings, and (unlike C) dictioffaries.

Theawkaction language is Turing-complete, and can read and write files. In some versions it can
open and use network sockets. Bmtkhas primarily seen use as a report generator, especially for
interpreting and reducing tabular data. Itis seldom used standalone, but rather embedded in scripts.
There is an examplawk program in the case study on HTML generation included in Chapter 9.

A case study oawkis included to point out that it inota model for emulation; in fact, since 1990

it has largely fallen out of use. It has been superseded by new-school scripting languages—notably
Perl, which was explicitly designed to be awkKkiller. The reasons are worthy of examination,
because they constitute a bit of a cautionary tale for minilanguage designers.

The awk language was originally designed to be a small, expressive special-purpose language for
report generation. Unfortunately, it turns out to have been designed at a bad spot on the complexity-
vs.-power curve. The action language is noncompact, but the pattern-driven framework it sits inside
keeps it from being generally applicable — that’s the worst of both worlds. And the new-school
scripting languages can do anythiagyk can; their equivalent programs are usually just as readable,

if not more so.

Awk has also fallen out of use because more modern shells have floating point
arithmetic, associative arrays, RE pattern matching, and substring capabilities, so

8For those who have never programmed in a modern scripting language, a dictionary is a lookup table of key-to-value
associations, often implemented through a hash table. C programmers spend a lot of their coding time implementing
dictionaries in various elaborate ways.

236



Chapter 8. Minilanguages

that equivalents of small awk scripts can be done without the overhead of process
creation.

<author>DavidKorn</author>

For a few years after the release of Perl in 198xk remained competitive simply because it had

a smaller, faster implementation. But as the cost of compute cycles and memory dropped, the
economic reasons for favoring a special-purpose language that was relatively thrifty with both lost
their force. Programmers increasingly chose to do awklike things with Perl or (later) Python, rather
than keep two different scripting languages in their héady the year 200@wkhad become little

more than a memory for most old-school Unix hackers, and not a particularly nostalgic one.

Falling costs have changed the tradeoffs in minilanguage design. Restricting your design’s capabil-
ities to buy compactness may still be a good idea, but doing so to economize on machine resources
is a bad one. Machine resources get cheaper over time, but space in programmers’ heads only gets
more expensive. Modern minilanguages can either be general but noncompact, or specialized but
very compact; specialized but noncompact simply won’'t compete.

Case Study: PostScript

PostScript is a minilanguage specialized for describing typeset text and graphics to imaging devices.
It is an import into Unix, based on design work done at the legendary Xerox Palo Alto Research
Center along with the earliest laser printers. For years after its first commercial release in 1984,
it was available only as a proprietary product from Adobe, Inc., and was primarily associated with
Apple computers. It was cloned under license terms very close to open-source in 1988, and has
since become the de-facto standard for printer control under Unix. A fully open-source version
is shipped with most most modern Unix&s A good technical introduction to PostScript is also
available¥

PostScript bears some functional resemblance to troff markup; both are intended to control printers
and other imaging devices, and both are normally generated by programs or macro packages rather
than being hand-written by humans. But where troff requests are a jumped-up set of format-control
codes with some language features tacked on as an afterthought, PostScript was designed from the
ground up as a language and is far more expressive and powerful. The main thing that makes

9] was at one time aawkwizard, but | had to be reminded by someone else that the language was applicable to the HTML-
generation problem where this book’s ok example occurs.

®IThere is a GhostScript Project site [http://www.cs.wisc.edu/~ghost/].

92A First Guide To PostScript [http://www.cs.indiana.edu/docproject/programming/postscript/postscript.html].
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Postscript useful is that algorithmic descriptions of images written in it are far smaller than the
bitmaps they render to, and so take up less storage and communication bandwidth.

PostScript is explicitly Turing-complete, supporting conditionals and loops and recursion and named
procedures. The ontology of types includes integers, reals, strings, and arrays (each element of an
array may be of any type) but no equivalent of structures. Technically, PostScript is a stack-based
language; arguments of PostScript’s primitive procedures (operators) are normally popped off a
push-down stack of arguments, and the result(s) are pushed back onto it.

There are about 40 basic operators out of a total of around 400. The one that does most of the work
is show, which draws a string onto the page. Others set the current font, change the gray level or
color, draw lines or arcs or Bezier curves, fill closed regions, set clipping regions, etc. A PostScript
interpreter is supposed to be able to interpret these commands into bitmaps to be thrown on a display
or print medium.

Other PostScript operators implement arithmetic, control structures, and procedures. These allow
repetitive or stereotyped images (such as text, which is composed of repeated letterforms) to be
expressed as programs that combine images. Part of the utility of PostScript comes from the fact
that PostScript programs to print text or simple vector graphics are much less bulky than the bitmaps
the text or vectors render to, are device-resolution independent, and travel more quickly over a
network cable or serial line.

Historically, PostScript’s stack-based interpretation resembles a language called FORTH, originally
designed to control telescope motors in real time, which was briefly popular in the 1980s. Stack-
based languages are famous for supporting extremely tight, economical coding and infamous for
being difficult to read. PostScript shares both traits.

PostScript is often implemented as firmware built into a printer. The open-source implementation
Ghostscript can translate PostScript to various graphics formats and (weaker) printer-control lan-
guages. Most other software treats PostScript as a final output format, meant to be handed to a
PostScript-capable imaging device but not edited or eyeballed.

PostScript (either in the original or the trivial variant EPSF, with a bounding box declared around

it so it can be embedded in other graphics) is a very well designed example of a special-purpose
control language and deserves careful study as a model. It is a component of other standards such
as PDF, the Portable Document Format.

Case Study: bc and dc
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We first examined bc(1) and dc(1) in Chapter 7 as a case study in shellouts. They are examples of
domain-specific minilanguages of the imperative type.

dcis the oldest language on Unix; it was written on the PDP-7 and ported to the
PDP-11 before Unix [itself] was ported.

<author>KenThompson</author>

The domain of these two languages is unlimited-precision arithmetic.  Other programs can use
them to do such calculations without having to worry about the special techniques needed to do
those calculations.

In fact, the original motivation for dc had nothing to do with providing a general-
purpose interactive calculator, which could have been done with a simple floating-
point program. The motivation was Bell Labs’ long interest in numerical analysis:
calculating constants for numerical algorithnagcuratelyis greatly aided by
being able to work to much higher precision than the algorithm itself will use.
Hence dc’s arbitrary-precision arithmetic.

<author>HenrySpencer</author>

Like SNG andGlade markup, one of the strengths of both of these languages is their simplicity.
Once you know that dc(1) is a reverse-Polish-notation calculator and bc(1) an algebraic-notation
calculator, very little about interactive use of either of these languages is going to be novel. We'll
return to the importance of the Rule of Least Surprise in interfaces in Chapter 11.

These minilanguages have both conditionals and loops; they are Turing-complete, but have a very
restricted ontology of types including only unlimited-precision integers and strings.  This puts
them in the borderland between interpreted minilanguages and full scripting languages.  The
programming features have been designed not to intrude on the common use as a calculator; indeed,
mostdcd/bc users are probably unaware of them.

Normally, dc/bc are used conversationally, but their capacity to support libraries of user-defined
procedures gives them an additional kind of utility — programmability. This is actually the
most important advantage of imperative minilanguages, one that we observed in the case study
of the Documenter’s Workbench tools to be very powerful whether or not a program’s normal
mode is conversational; you can use them to write high-level programs that embody task-specific
intelligence.
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Because the interface dt/bc is so simple (send a line containing an expression, get back a line
containing a value) other programs and scripts can easily get access to all these capabilities by
calling these programs as slave processes. Example 8.6 is one famous example, an implementation
of the Rivest-Shamir-Adelman public-key cipher in Perl that was widely published in signature
blocks and on T-shirts as a protest against U.S. export retrictions on cryptography, c. 1995; it shells
out todcto do the unlimited-precision arithmetic required.

Example 8.6. RSA implementation usinglc.

print pack"C*",splitAD+/,’echo "16ill*0\U@{$/=$z;[(pop,pop,unpack
"H*",<>)]NEsMsKsNO[IN*1IK[d2%Sa2/d0<X+d*IMLa *IN%0]dsXx++\
IMIN/dsM0<J]dsJxp"|dc'

Case Study: Emacs Lisp

Rather than merely being run as a slave process to accomplish specific tasks, a special-purpose
interpreted language can become the core of an entire architecture; we’ll consider the advantages
and disadvantages of this approach in Chapter 13. troff requests were an early example; today, the
Emacseditor is one of the best-known and most powerful modern ones. It's built around a dialect of
Lisp with primitives for both describing actions on editing buffers and controlling slave processes.

The fact that Emacs is built around a powerful language for describing editing actions or front ends
for other programs means that it can be used for many other things besides ordinary editing. We'll
examine the applications of Emacs’s task-specific intelligence for day-to-day program development
(compilation, debugging, version control) in Chapter 15. Emacs ‘modes’ are user-defined libraries
— programs written in Emacs Lisp that specialize the editor for a particular job — usually, but not
necessarily, one related to editing.

Thus there are specialized modes that know the syntax of a large number of programming languages,
and of markup languages like SGML, XML, and HTML. But many people also use Emacs modes to
send and receive email (these use Unix system mail utilities as slaves) or Usenet news. Emacs can
browse the web, or act as a front-end for various chat programs. There is also a calendaring package,
Emacs’s own calculator program, and even a fairly wide selection of games written as Emacs
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Lisp modes (including a descendant of the famous ELIZA program that simulates a Rogersian
psychiatristy

Case Study: JavaScript

JavaScript is an open-source language designed to be embedded in C programs. Though it is also
embedded in web servers, its original and best-known manifestation is client-side JavaScript, which
allows you to embed executable code in Web pages to be run by any JavaScript-capable browser.
That is the version we will survey here.

JavaScript is a fully Turing-complete interpreted language with integers, real numbers, booleans,
strings, and lightweight dictionary-based objects resembling those of Python. Values are typed,
but variables can hold any type; conversions between types are automatic in many contexts.
Syntactically JavaScript resembles Java with some influence from Perl, and features Perl-like regular
expressions.

Despite all these features, client-side JavaScript is not quite a general-purpose language. Its
capabilities are severely restricted to prevent attacks on the browser user through Web pages
containing JavaScript code. It can accept input from the user and generate or modify Web pages,
but it cannot directly alter the contents of disk files and cannot open its own network connections.

Over time, the JavaScript language has become more general and less bound to its client-side
environment.  This is something that can be expected to happen to any successful specialized
language as its possibilities unfold in the minds of developers and users. Client JavaScript now
interacts with its environment by reading and writing values in a single special object called the
browser DOM (Document Object Model). The language still has some legacy APIs to the browser
that don't go through the DOM, but these are deprecated, not present in the ECMA-262 standard for
JavaScript, and may not be supported in future versions.

The standard reference for JavaScriptié&vaScript: The Definitive Guidg-lanaganJavaScript].
Source code is downloadalfteJavaScript makes an interesting study for two reasons. First, it's
about as close to being a general-purpose language as one can get without actually being there.
Second, the binding between client-side JavaScript and its browser environment via a single DOM
object is well designed, and could serve as a model for other embedding situations.

90ne of the silliest things you can do with a modern Unix machine is run the Eliza mode of Emacs against random quotes
from Zippy the PinheadM-x psychoanalyze-pinheadtype control-G when you've had enough.
940Open-source JavaScript implementations in C and Java are available [http://www.mozilla.org/js/].
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Designing Minilanguages

When is designing a minilanguage appropriate? We've observed that minilanguages offer a way
to push problem specifications to a higher level, and seen how this operates in several case studies.
The flip side of this observation is that a minilanguage is likely to be a good approach whenever the
domain primitives in your application area are simple and stereotyped, but the ways in which users
are likely to want to apply them are fluid and varying.

For some related ideas, find a description of the Alternate Hard And Soft Layers
[http:/mww.c2.com/cgi/wiki?AlternateHardAndSoftLayers] and Scripted Components
[http://vww.doc.ic.ac.uk/~np2/patterns/scripting/scripting.html] design patterns.

An interesting survey of design styles and technigues in minilanguaddstsble Design Patterns
for Domain-Specific Languag¢Spinellis].

Choosing the Right Complexity Level

The first important thing to bear in mind when designing a minilanguage is, as usual, to keep it as
simple as possible. The taxonomy diagram we used to organize the case studies implies a hierarchy
of complexity; you want to keep your design as far toward the left-hand edge as possible. If you
can get away with designing a structured data file rather than a minilanguage that is going to modify
external data when it's interpreted, by all means do so.

One very pragmatic reason to stick with structured data rather than a minilanguage is that in a
networked world, embedded minilanguage facilities are subject to abuses that can be inconvenient
or even dangerous. JavaScript is a prime example in the ‘inconvenient’ category; its designers
didn't anticipate that it would be used for pop-up advertisements so obnoxious as to create a demand
for browser features that suppress JavaScript interpretation.

Microsoft Word macro viruses show how this sort of thing can become actively dangerous, a security
hole that costs billions of dollars in downtime and lost productivity annually. It is instructive to note
that despite the existence of at least twenty million Unix users worldWihere has never been any
Unix equivalent of Windows’s frequent macro-virus outbreaks. There are a number of reasons for
this, including the fundamentally better security design of Unix; but at least one is the fact that Unix
mail agents dmot default to executing live content in any document that the user Vigws.

9%20M is a conservative estimate based on mid-2003 figures from the Linux Counter and elsewhere.
9%Kmail, which we looked at in Chapter 6, won’t even chase off-site links in HTML for this reason.
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If there is any way that your application’s users might end up running programs from untrusted
sources, risky features of your application minilanguage might end up having to be suppressed.
Languages like Java and JavaScript are explicdgdboxed-that is, they have limited access to
their environment not merely to simplify their design but to try to prevent potentially destructive
operations by buggy or malicious code.

On the other hand, a lot of bad designs have been botched by designers who failed to face up to the
fact that they really needed a minilanguage rather than a data-file format. Too often, language-like
features get pasted on as an afterthought. The two most common symptoms of this problem are
weak, ad-hoc control structures and poor or nonexistent facilities for declaring procedures.

It's risky to design minilanguages that are only accidentally Turing-complete. If you do this the
odds are good that, sometime in the future, some clever fellow is going to think he needs to press
your language into doing loops and conditionals for him. Because these are only available in an
obfuscated way, he'll produce obfuscated code. The results may be serviceable in the short term,
but are likely to be a nightmare for those who come after him.

Minilanguage design is both powerful and esthetically rewarding, but it's also full of similar traps.
There are kinds of design in which it is appropriate to take the bottom-up approach of pasting
together a bunch of low-level services and worrying about their organization after you have explored
the problem domain for a while. One of the virtues of minilanguages is that they can help you get a
good design out of bottom-up programming by allowing you to defer some top-down decisions into
the control flow of programs in your minilanguage. But if you take a bottom-up approach to the
minilanguage desigitself, you are likely to end up with an ugly syntax reflecting a weak language
and a poorly-thought-out implementation.

There are many places in a minilanguage design where small choices make a large difference in the
useability and ease of the tool:

As a language designer, it is a good principle to consider the alternatives to giving
an error message. When there is true ambiguity in the intent of the programmer
an error message is appropriate, but in many cases the intent is clear, and making
the language silently do the right thing is a great boon. A good example is
C accommodating an extra comma at the end of an array initializer list, which
makes both editing and machine generation of array initializers much easier. Anti-
examples are the pickiness of various HTML readers, especially their habit of
silently discarding parts of your document because of trivial nesting errors.
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<author>SteveJohnson</author>

On this issue, as elsewhere, there is no substitute for good taste and engineering judgment.  If
you're going to design a minilanguage, don’t do it halfway. Declarative minilanguages should have

a clear, consistent language-like syntax designed to be readable by humans. Imperative ones should
add a full range of control structures adapted from language models you can expect your users to be
familiar with. Think about the languages a language; ask yourself esthetic questions like “Will

this be comfortable to program in?” and even “Will it be pleasant to look at?” Here, as elsewhere in
software design, David Gelernter's maxim is apt: beauty is the ultimate defense against complexity.

Extending and Embedding Languages

One fundamentally important question is whether you can implement your minilanguage by extend-
ing or embedding an existing scripting language. This is often the right way to go for an imperative
minilanguage, but much less appropriate for a declarative one.

Sometimes it's possible to write your imperative language simply by coding service functions in
an interpreted language, which we’'ll call the ‘*host’ language for purposes of this discussion. Your
minilanguage programs are then just scripts that load your service library and use the host language’s
control structures and other facilities as a framework. Every facility the host language supplies is
one you don’t have to write.

This is the easiest way to write a minilanguage. Old-school Lisp programmers (including me)
love this technique and use it heavily. It underlies the design oEthacseditor, and has been
rediscovered in the new-school scripting languages like Tcl, Python, and Perl. There are drawbacks
to it, however.

Your host language may be unable to interface to a code library that you need. Or, internally, its
ontology of data types may be inadequate for the kind of computation you need to do. Or, after
measuring the performance of a prototype, you discover that it's too slow. When any of these things
happen, your solution is usually going to involve coding in C (or C++) and integrating the results
into your minilanguage.

The option of extending a scripting language with C code, or of embedding a scripting language in
a C program, relies on the existence of scripting languages designed for it. You extend a scripting
language by telling it to dynamically load a C library or module in such a way that the C entry
points become visible as functions in the extended language. You embed a scripting language in a
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C program by sending commands to an instance of the interpreter and receiving the results back as
valuesin C.

Both techniques also rely on the ability to move data between the type ontology of C and the type
ontology of your scripting language. Some scripting languages are designed from the ground up to
support this. One such is Tcl, which we’ll cover in Chapter 14. Anoth&tuge, an open-source
dialect of the Lisp variant SchemeGuile is shipped as a library and specifically designed to be
embedded in C programs.

It is possible (though in 2003 still rather painful and difficult) to extend or embed Perl. It is very
easy to extend Python and only slightly more difficult to embed it; C extension is especially heavily
used in the Python world. Java has an interface to call ‘native methods’ in C, though the practice is
explicitly discouraged because it tends to break portability. Most versions of shell are not designed
for embeddability and extension, but the Korn shell (ksh93 and later versions) is a notable exception.

There are lots of bad reasons not to piggyback your imperative minilanguage on an existing scripting
language. One of the few good ones is that you actually want to implement your own custom
grammar for error checking. If that’s the case, then see the advice whoeandlex below.

Writing a Custom Grammar

For declarative minilanguages, one major question is whether or not you should use XML as a base
syntax and specify your grammar as an XML document type. This may well be the right thing for
elaborately structured declarative minilanguages, but the same caveats we noted in Chapter 5 about
the design of data-file formats apply — XML might be overkill. If you don't use XML, follow

the Rule of Least Surprise by supporting the Unix conventions we described for data files (simple
token-oriented syntax, supporting C backslash conventions, etc.).

If you do need a custom grammaaccandlex (or their local equivalent in the language you're
using) should probably be your best friends, unless the grammar of your language is so simple that
hand-coding a recursive-descent parser is trivial. Even ffamemay give you better error recovery,

and ayaccspecification will be easier to modify as the language syntax evolves. See Chapter 9 for
a look at theyacc andlex-derived tools available in different implementation languages.

Even if you decide you must implement your own syntax, consider what mileage you can get from
reusing existing tools. If you need a macro facility, consider whether preprocessing with m4(1)
might be the right answer — but consider the cautions in the next section first.
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Macros — Beware!

Macro expansion facilities were a favored tactic for language designers in early Unix; the C language
has one, of course, and we have seen them show up in some of the more complex special-purpose
minilanguages like pic(1). The4 preprocessor provides a generic tool for implementing macro-
expanding preprocessors.

Macro expansion is easy to specify and implement, and you can do a lot of cute tricks with it.
Those early designers appear to have been influenced by experience with assemblers, in which
macro facilities were often the only device available for structuring programs.

The strength of macro expansion is that it knows nothing about the underlying syntax of the base
language, and can be used to extend that syntax. Unfortunately, this power is very easily abused to
produce code that is opaque, surprising, and a fertile source of hard-to-characterize bugs.

In C, the classic example of this sort of problem is a macro such as this:

#define max(x, y) x>y ?x:y

There are at least two problems with this macro. One is that it can produce surprising results if
either of the arguments is an expression including an operator of lower precedenceahan.
Consider the expressiomax(a = b, ++c) . Ifthe programmer has forgotten thaaxis a macro,

he will be expecting the assignmeat= b and the preincrement operation orto be executed
before the resulting values are passed as argumentsxto

But that’s not what will happen. Instead, the preprocessor will expand this expression to >
++c ? a = b : ++c , whichthe C compiler's precedence rules make it interpret as(b >
++c ? a = b : ++c) . The effect will be to assign tal

This sort of bad interaction can be headed off by coding the macro definition more defensively.

#define max(x, y) ((X) > (y) ? X) : (y))

With this definition, the expansion would ¢ = b) > (++c) ? (a = b) : (++c))
This solves one problem — but notice tleatnay be incremented twice! There are subtler versions
of this trap, such as passing the macro a function-call with side effects.
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In general, interactions between macros and expressions with side effects can lead to unfortunate
results that are hard to diagnose. C's macro processor is a deliberately lightweight and simple one;
more powerful ones can actually get you in worse trouble.

The TeX formatting language (see Chapter 18) well illustrates the general problefeX s
intentionally Turing-complete (it has conditionals, loops, and recursion), but while it can be made to
do amazing thingsTeXcode tends to be unreadable and painful to debug. The sourdeaTieX

the the most widely usefieXmacro package, are an instructive example: they’re in very Je&d
style, but even so are extremely difficult to follow.

A minor problem, compared to this one, is that macro expansion tends to screw up error diagnostics.
The base language processor generates its error reports relative to the macro expanded text, not the
original the programmer is looking at. If the relationship between the two has been obfuscated by
macro expansion, the emitted diagnostic can be very difficult to associate with the actual location of
the error.

This is especially a problem with preprocessors and macros that can have multiline expansions,
conditionally include or exclude text, or otherwise change line numbers in the expanded text.

Macro expansion stages that are built into a language can do their own compensation, fiddling line
numbers to refer back to the preexpanded text. The macro facility in pic(1) does this, for example.
This problem is more difficult to solve when the macro expansion is done by a preprocessor.

The C preprocessor addresses this problem by emitting directives whenever it does an
inclusion or multiline expansion. The C compiler is expected to interpret these and adjust the line
numbers in its error reports accordingly. Unfortunateiy,has no such facility.

These are reasons to use macro expansion with extreme caution. One of the long-term lessons of
the Unix experience is that macros tend to create more problems than they solve. Modern language
and minilanguage designs have moved away from them.

Language or Application Protocol?

Another important question you need to ask is whether your minilanguage engine will be called

interactively by other programs, as a slave process. If so, your design should probably look less
like a conversational language for human interaction and more like the kind of application protocols

we looked at in Chapter 5.
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The main difference is how carefully marked the boundaries of transactions are. Human beings are
good at spotting where conversational output from a CLI ends, and where the prompt for the next
input is. They can use context to tell what's significant and what should be ignored. Computer
programs have much more trouble with this. Without either unambiguous end markers on output
or advance knowledge of the length of the output, they can't tell when to stop reading.

Even worse is when a program’s input is buffered (often inadvertently, as by stdio).
A program that stops overtly reading at the right place can nonetheless eat past it.

<author>DougMcllroy</author>

Programs in which master processes are trying to do interactive things with slaved minilanguages
that are not carefully designed around this problem are prone to deadlock as the master and slave
fall out of synchronization (a problem we first noted in Chapter 7).

There are workarounds for driving minilanguages that are not so carefully designed. The prototype
for most of them is the Tobxpectpackage. This package assists conversation with CLIs. It's
built around the following operation: read from slave until either a given regular-expression pattern

is matched or a specified timeout elapses. With this (and, of course, a send-to-slave operation) it's
often possible to construct master programs to do reliable dialogues with slave processes even when
the latter have not been tailored for the role.

Workalikes of theexpectpackage in other languages are available; a Web search for the name of
your favorite language with the added keywords “Tcl expect” is quite likely to turn up something
useful. As a minilanguage designer, however, you would be unwise to assume that all your users
will be expectgurus. Even if they are, this is an extra glue layer and a place for things to go wrong.

Be aware of this issue when designing your minilanguage. It may be a good idea to add an option
that changes its conversational behavior to make it respond more like an application protocol, with
unambiguous end-of-output delimiters and an analog of byte stuffing.
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Pushing the Specification Level Upwards

The programmer at wit’s end ... can often do best by disentangling himself from his code, rearing
back, and contemplating his data. Representation is the essence of programming.
<author>FredBrooks</author>

The Mythical Man-Month, Anniversary Edition (1975-1995), p. 103

In Chapter 1 we observed that human beings are better at visualizing data than they are at reasoning
about control flow. We recapitulate: To see this, compare the expressiveness and explanatory power
of a diagram of a fifty-node pointer tree with a flowchart of a fifty-line program. Or (better) of an
array initializer expressing a conversion table with an equivalent switch statement. The difference
in transparency and clarity is dramatfic.

Data is more tractable than program logic. That's true whether the data is an ordinary table, a
declarative markup language, a templating system, or a set of macros that will expand to program
logic. It's good practice to move as much of the complexity in your design as possible away from
procedural code and into data, and good practice to pick data representations that are convenient
for humans to maintain and manipulate.  Translating those representations into forms that are
convenient for machines to process is another job for machines, not for humans.

Another important advantage of higher-level, more declarative notations is that
they lend themselves better to compile-time checking. Procedural notations
inherently have complex runtime behavior which is difficult to analyze at compile

time. Declarative notations give the implementation much more leverage
for finding mistakes, by permitting much more thorough understanding of the

intended behavior.

<author>HenrySpencer</author>

These insights ground in theory a set of practices that have always been an important part of the Unix
programmer’s toolkit — very high-level languages, data-driven programming, code generators, and
domain-specific minilanguages. What unifies these is that they are all ways of lifting the generation

of code up some levels, so that specifications can be smaller. We've previously noted that defect

"For further development of this point see [Bentley].
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densities tend to be nearly constant across programming languages; all these practices mean that
whatever malign forces generate our bugs will get fewer lines to wreak their havoc on.

In Chapter 8 we discussed the uses of domain-specific minilanguages. In Chapter 14 we’ll make
the argument for very-high-level languages. In this chapter we’'ll look at some design studies in
data-driven programming and a few examples of ad-hoc code generation; we'll look at some code-
generation tools in Chapter 15. As with minilanguages, these methods can enable you to drastically
cut the line count of your programs, and correspondingly lower debugging time and maintenance
costs.

Data-Driven Programming

When doingdata-driven programmingone clearly distinguishes code from the data structures on
which it acts, and designs both so that one can make changes to the logic of the program by editing
not the code but the data structure.

Data-driven programming is sometimes confused with object orientation, another style in which
data organization is supposed to be central. There are at least two differences. One is that in data-
driven programming, the data is not merely the state of some object, but actually defines the control
flow of the program. Where the primary concern in OO is encapsulation, the primary concern in
data-driven programming is writing as little fixed code as possible. Unix has a stronger tradition of
data-driven programming than of OO.

Programming data-driven style is also sometimes confused with writing state machines. Itisin
fact possible to express the logic of a state machine as a table or data structure, but hand-coded state
machines are usually rigid blocks of code that are far harder to modify than a table.

An important rule when doing any kind of code generation or data-driven programming is this:
always push problems upstream. Don't hack the generated code or any intermediate representations
by hand — instead, think of a way to improve or replace your translation tool. Otherwise you're
likely to find that hand-patching bits which should have been generated correctly by machine will
have turned into an infinite time sink.

At the upper end of its complexity scale, data-driven programming merges into writing interpreters
for p-code or simple minilanguages of the kind we surveyed in Chapter 8. At other edges, it
merges into code generation and state-machine programming. The distinctions are not actually that
important; the important part is moving program logic away from hardwired control structures and
into data.
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Case Study: ascii

I maintain a program calledscii, a very simple little utility that tries to interpret its command-line
arguments as names of ASCII (American Standard Code for Information Interchange) characters
and report all the equivalent names. Code and documentation for the tool are available from the
project page [http://www.catb.org/~esr/ascii]. Here is an illustrative screenshot:

esr@snark:~/WWW)/writings/taoup$ ascii 10
ASCII 1/0 is decimal 016, hex 10, octal 020, bits 00010000: called ~P, DLE
Official name: Data Link Escape

ASCII 0/10 is decimal 010, hex 0Oa, octal 012, bits 00001010: called ~J, LF,
NL

Official name: Line Feed

C escape: '\n’

Other names: Newline

ASCII 0/8 is decimal 008, hex 08, octal 010, bits 00001000: called "H, BS
Official name: Backspace

C escape: '\b’

Other names:

ASCII 0/2 is decimal 002, hex 02, octal 002, bits 00000010: called "B, STX
Official name: Start of Text

One indication that this program was a good idea is the fact that it has an unexpected use — as a
quick CLI aid to converting between decimal, hex, octal, and binary representations of bytes.

The main logic of this program could have been coded as a 128-branch case statement. This would,
however, have made the code bulky and difficult to maintain. It would also have tangled parts that
change relatively rapidly (like the list of slang names for characters) with parts that change slowly
or not at all (like the official names), putting them both in the same legend string and making errors
during editing much more likely to touch data that ought to be stable.

Instead, we apply data-driven programming. All the character name strings live in a table structure
that is quite a bit larger than any of the functions in the code (indeed, counted in lines it is larger
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than anythreeof the functions in the program). The code merely navigates the table and does low-
level tasks like radix conversions. The initializer actually lives in therfidmetable.h , which is
generated in a way we'll describe later in this chapter.

This organization makes it easy to add new character names, change existing ones, or delete old
names by simply editing the table, without disturbing the code.

(The way the program is built is good Unix style, but the output format is questionable. It's hard to
see how the output could usefully become the input of any other program, so it does not play well
with others.)

Case Study: Statistical Spam Filtering

One interesting case of data-driven programming is statistical learning algorithms for detecting
spam (unsolicited bulk email). A whole class of malil filter programs (those easily findable by Web
search includ@opfile spambayesandbogofilte) use a database of word correlations to replace the
elaborate pattern-matching conditional logic of pattern-matching spam filters.

Programs like these became common on the Internet very rapidly following Paul Graham’s landmark
paperA Plan for SpaniGraham] in 2002. While the explosion was triggered by the increasing cost

of the pattern-matching arms race, the statistical-filtering idea was adopted first and fastest by Unix
shops. In part, this was certainly because almost all the Internet service providers (who are most
burdened by spam, and thus had most incentive to adopt effective new techniques) are Unix shops
— but undoubtedly the harmony with some traditional themes in Unix software design helped as
well.

Conventional spam filters require that a system administrator, or some other responsible party,
maintain information on patterns of text found in spam — names of sites that emit nothing but
spam, come-on phrases often used by pornography sites or Internet scam artists, and the like. In
his paper, Graham noted accurately that computer programmers like the idea of pattern-matching
filters, and sometimes have difficulty seeing past that approach, because it offers them so many
opportunities to be clever.

Statistical spam filters, on the other hand, work by collecting feedback about what the user judges
to be spam versus nonspam. That feedback is processed into databases of statistical correlation
coefficients oweightsconnecting words or phrases to the user’'s spam/nonspam classification. The
most popular algorithms use minor variants of Bayes’s Theorem on conditional probabilities, but
other techniques (including various sorts of polynomial hashing) are also employed.
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In all these programs, the correlation check is a relatively trivial mathematical formula. The weights
fed into the formula along with the message being checked serve as implicit control structure for the
filtering algorithm.

The problem with conventional pattern-matching spam filters is that they are brittle. Spammers
are constantly gaming against the filter-rule databases, forcing the filter maintainers to constantly
reprogram their filters to stay ahead in the arms race. Statistical spam filters generate their own
filter rules from the user feedback.

In fact, experience with statistical filters seems to show that the particular learning algorithm used
is far less important than the quality of the spam and nonspam data sets from which the learning
algorithm computes its weights. So the results of statistical filters really are driven more by the

shape of the data than by the algorithm.

A Plan for Spamwas something of a bombshell because its author argued convincingly that a
simple, even crude, statistical approach gave a lower rate of nonspam being erroneously classified
as spam than either elaborate pattern-matching techniques or the human eyeball could manage. For
Unix programmers, seeing past the lure of clever pattern-matching was far easier than in other
programming cultures without as strong an attachment to “Keep It Simple, Stupid!”

Case Study: Metaclass Hacking in  fetchmailconf

The fetchmailconf(1) dotfile configurator shipped with fetchmail(1) contains an instructive example
of advanced data-driven programming in a very high-level, object-oriented language.

In October 1997 a series of questions on the fetchmail-friends mailing list made it clear that end-
users were having increasing troubles generating configuration filéstétymail The file uses a
simple, classically-Unixy free-format syntax, but can become forbiddingly complicated when a user
has POP3 and IMAP accounts at multiple sites. See Example 9.1 for a somewhat simplified version
of thefetchmailauthor’s configuration file.

Example 9.1. Example of fetchmailrc syntax.

set postmaster "esr"
set daemon 300

poll imap.ccil.org with proto IMAP and options no dns
aka snark.thyrsus.com locke.ccil.org ccil.org
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user esr there is esr here
options fetchall dropstatus warnings 3600

poll imap.netaxs.com with proto IMAP
user "esr" there is esr here options dropstatus warnings 3600

The design objective ofetchmailconfwas to completely hide the control file syntax behind a
fashionable, ergonomically-correct GUI replete with selection buttons, slider bars and fill-out forms.
But the beta design had a problem: it could easily generate configuration files from the user's GUI
actions, but could not read and edit existing ones.

The parser fofetchmails configuration file syntax is rather elaborate. It's actually writteganc
andlex, the two classic Unix tools for generating language-parsing code in Getabrmailconto

be able to edit existing configuration files, it at first appeared that it would be necessary to replicate
that elaborate parser in fetchmailconf’s implementation language — Python.

This tactic seemed doomed. Even leaving aside the amount of duplicative work implied, it is
notoriously hard to be certain that two parsers in two different languages accept the same grammar.
Keeping them synchronized as the configuration language evolved bid fair to be a maintenance
nightmare. It would have violated the SPOT rule we discussed in Chapter 4 wholesale.

This problem stumped me for a while. The insight that cracked it wadetatmailcontould use
fetchmails own parser as a filter! | added-&onfigdump  option tofetchmailthat would parse
fetchmailrc and dump the result to standard output in the format of a Python initializer. For
the file above, the result would look roughly like Example 9.2 (to save space, some data not relevant
to the example is omitted).

Example 9.2. Python structure dump of afetchmail configuration.

fetchmailrc = {
"poll_interval:300,
"logfile":None,
"postmaster":"esr",
'bouncemail’:TRUE,
"properties":None,
'invisible”:FALSE,
'syslog’:FALSE,
# List of server entries begins here
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'servers’”; [
# Entry for site ‘imap.ccil.org’ begins:
{
"pollname":"imap.ccil.org",
‘active’: TRUE,
"via":None,
"protocol":"IMAP",
‘port’:0,
‘timeout”:300,
'dns’:FALSE,
"aka":["snark.thyrsus.com","locke.ccil.org","ccil.org"],
‘users”: [
{
"remote":"esr",
"password":"masked_one",
'localnames’:["esr"],
'fetchall: TRUE,
'keep’:FALSE,
'flush”:FALSE,
"mda":None,
limit’:0,
'warnings’:3600,
}
: ]

}
# Entry for site ‘imap.netaxs.com’ begins:
{

"pollname":"imap.netaxs.com",

"active”: TRUE,

"via":None,

"protocol":"IMAP",

‘port’:0,

'timeout’:300,

'dns":TRUE,

"aka":None,

‘users’: [

{

"remote":"esr",
"password":"masked_two",
'localnames’:["esr"],
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‘fetchall’:FALSE,
'keep’:FALSE,
flush”:FALSE,
"mda":None,
"limit”:0,
‘'warnings’:3600,

: ]

The major hurdle had been leapt. The Python interpreter could then evaluatetchmail
--configdump  output and read the configuration availablefétchmailconfas the value of the
variable ‘fetchmail’.

But this wasn't quite the last obstacle in the race. What was really needed wasn't just for
fetchmailconfo have the existing configuration, but to turn it into a linked tree of live objects. There
would be three kinds of objects in this tre@onfiguration (the top-level object representing the

entire configuration)Site (representing one of the servers to be polled), @ser (representing

user data attached to a site). The example file describes three site objects, each with one user object
attached to it.

The three object classes already existefetohmailconf Each had a method that caused it to pop
up a GUI edit panel to modify its instance data. The last remaining problem was to somehow
transform the static data in this Python initializer into live objects.

| considered writing a glue layer that would explicitly know about the structure of all three classes
and use that knowledge to grovel through the initializer creating matching objects, but rejected that
idea because new class members were likely to be added over time as the configuration language
grew new features. If the object-creation code were written in the obvious way, it would once again
be fragile and tend to fall out of synchronization when either the class definitions or the initializer
structure dumped by theconfigdump  report generator changed. Again, a recipe for endless
bugs.
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The better way would be data-driven programming — code that would analyze the shape and
members of the initializer, query the class definitions themselves about their members, and then
impedance-match the two sets.

Lisp and Java programmers call thigrospection in some other object-oriented languages it's
calledmetaclass hackingnd is generally considered fearsomely esoteric, deep black magic. Most
object-oriented languages don'’t support it at all; in those that do (Perl and Java among them), it tends
to be a complicated and fragile undertaking. But Python'’s facilities for introspection and metaclass
hacking are unusually accessible.

See Example 9.3 for the solution code, from near line 1895 of the 1.43 version.

Example 9.3.copy_instance  metaclass code.

def copy_instance(toclass, fromdict):
# Make a class object of given type from a conformant dictionary.
class_sig = toclass.__dict__.keys(); class_sig.sort()
dict_keys = fromdict.keys(); dict_keys.sort()
common = set_intersection(class_sig, dict_keys)
if 'typemap’ in class_sig:
class_sig.remove('typemap’)
if tuple(class_sig) != tuple(dict_keys):
print "Conformability error"
# print "Class signature: " + ‘class_sig’
# print "Dictionary keys: " + ‘dict_keys
print "Not matched in class signature: "+ \
‘set_diff(class_sig, common)*
print "Not matched in dictionary keys: "+ \
‘set_diff(dict_keys, common)'
sys.exit(1)
else:
for x in dict_keys:
setattr(toclass, x, fromdict[x])

Most of this code is error-checking against the possibility that the class members and
--configdump  report generation have drifted out of synchronization. It ensures that if the
code breaks, the breakage will be detected early — an implementation of the Rule of Repair. The
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heart of this function is the last two lines, which set attributes in the class from corresponding
members in the dictionary. They're equivalent to this:

def copy_instance(toclass, fromdict):
for x in fromdict.keys():
setattr(toclass, x, fromdict[x])

When your code is this simple, it is far more likely to be right. See Example 9.4 for the code that
calls it.

Example 9.4. Calling context forcopy_instance

# The tricky part - initializing objects from the ‘configuration’
# global. ‘Configuration’ is the top level of the object tree
# we're going to mung
Configuration = Controls()
copy_instance(Configuration, configuration)
Configuration.servers = [];
for server in configuration['servers’]:
Newsite = Server()
copy_instance(Newsite, server)
Configuration.servers.append(Newsite)
Newsite.users = [];
for user in server['users’:
Newuser = User()
copy_instance(Newuser, user)
Newsite.users.append(Newuser)

The key point to extract from this code is that it traverses the three levels of the initializer
(configuration/server/user), instantiating the correct objects at each level into lists contained in the
next object up. Becausepy_instance is data-driven and completely generic, it can be used on

all three levels for three different object types.

This is a new-school sort of example; Python was not even invented until 1990. But it reflects
themes that go back to 1969 in the Unix tradition. If meditating on Unix programming as practiced
by his predecessors had not taught me constructive laziness — insisting on reuse, and refusing to
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write duplicative glue code in accordance with the SPOT rule—I might have rushed into coding
a parser in Python. The first key insight tHatchmailitself could be made intéetchmailcoris
configuration parser might never have happened.

The second insight (thabpy_instance  could be generic) proceeded from the Unix tradition of
looking assiduously for ways to avoid hand-hacking. But more specifically, Unix programmers are
very used to writing parser specifications to generate parsers for processing language-like markups;
from there it was a short step to believing that the rest of the job could be done by some kind of
generic tree-walk of the configuration structure. Two separate stages of data-driven programming,
one building on the other, were needed to solve the design problem cleanly.

Insights like this can be extraordinarily powerful. The code we have been looking at was written
in about ninety minutes, worked the first time it was run, and has been stable in the years since (the
only time it has ever broken is when it threw an exception in the presence of genuine version skew).
It's less than forty lines and beautifully simple. There is no way that the naive approach of building
an entire second parser could possibly have produced this kind of maintainability, reliability or
compactness. Reuse, simplification, generalization, orthogonality: this is the Zen of Unix in action.

In Chapter 10, we'll examine the run-control syntaxfefchmailas an example of the standard
shell-like metaformat for run-control files. In Chapter 14 we’ll dstehmailconfis an example of
Python’s strength in rapidly building GUIs.

Ad-hoc Code Generation

Unix comes equipped with some powerful special-purpose code generators for purposes like
building lexical analyzers (tokenizers) and parsers; we’'ll survey these in Chapter 15. But there
are much simpler, lighter-weight sorts of code generation we can use to make life easier without
having to know any compiler theory or write (error-prone) procedural logic.

Here are a couple of simple case studies to illustrate this point:

Case Study: Generating Code for the ascii Displays

Called without argumentsscii generates a usage screen that looks like Example 9.5.
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Example 9.5.asciiusage screen.

Usage: ascii [-dxohv] [-t] [char-alias...]
-t = one-line output -d = Decimal table -0 = octal table -x = hex table
-h = This help screen -v = version information
Prints all aliases of an ASCII character. Args may be chars, C \-escapes,
English names, *-escapes, ASCIl mnemonics, or humerics in
decimal/octal/hex.

«

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
000 NUL 16 10 DLE 3220 48300 6440 @ 8050P 9660°‘ 11270 p
101SOH 1711 DC1 3321! 49311 6541 A 8151Q 9761la 11371q
202 STX 1812 DC2 3422" 50322 6642B 8252R 9862b 11472
303 ETX 1913 DC3 3523 # 51333 6743C 8353S 9963c 11573 s
4 04 EOT 2014 DC4 3624$% 52344 6844 D 8454 T 100 64 d 116 74t
505 ENQ 21 15 NAK 3725% 53355 6945E 8555U 101 65e 117 75 u
6 06 ACK 22 16 SYN 3826 & 54366 7046 F 8656V 102 66 f 118 76 v
707 BEL 2317 ETB 3927’ 55377 7147 G 8757 W 103679 119 77 w
808 BS 2418 CAN 4028 ( 56388 7248 H 8858 X 104 68 h 120 78 x
909 HT 2519EM 4129) 57399 73491 8959Y 10569i 12179y
10 0ALF 26 1A SUB 42 2A* 58 3A: 74 4AJ 90 5A Z 106 6A | 122 7A z
11 0B VT 27 1BESC 432B + 593B; 754B K 91 5B [ 107 6B k 123 7B {
120CFF 281CFS 442C, 603C< 764CL 925C\ 108 6C | 124 7C |
130DCR 291D GS 452D - 613D= 774D M 935D ] 109 6D m 125 7D}
140ESO 301ERS 462E. 623E> 784E N 94 5E " 110 6E n 126 7E ~
1I50F SI 31 1FUS 472F/ 633F? 79 4F O 955F _ 111 6F o 127 7F DEL

This screen is carefully designed to fit in 23 rows and 79 columns, so that it will fit in a 24x80
terminal window.

This table could be generated at runtime, on the fly. Grinding out the decimal and hex columns
would be easy enough. But between wrapping the table at the right places and knowing when to
print mnemonics like NUL rather than characters, there would have been enough odd corner cases
to make the code distinctly unpleasant. Furthermore, the columns had to be unevenly spaced to
make the table fitin 79 columns. But any Unix programmer would reflexively express it as a block
of data before finding out these things.

The most naive way to generate the usage screen would have been to put each line into a C initializer
in theascii.c  source code, and then have all lines be written out by code that steps through the
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initializer. The problem with this method is that the extra data in the C initializer format (trailing
newline, string quotes, comma) would make the lines longer than 79 characters, causing them to
wrap and making it rather difficult to map the appearance of the code to the appearance of the
output. This, in turn, would make the display difficult to edit, which was annoying when | was
tinkering it to fit in 24x80 screen cells.

A more sophisticated method using the string-pasting behavior of the ANSI C preprocessor collided
with a variant of the same problem. Essentially, any way of inlining the usage screen explicitly
would involve punctuation at start and end of line that there’s no rooiff fénd copying the table

to the screen from a file at runtime seemed like a fragile expedient; after all, the file could get lost.

Here’s the solution. The source distribution contains a file that just contains the usage screen,
exactly as listed above and nammthshscreen . The C source contains the following function:

void
showHelp(FILE *out, char *progname)

{
fprintf(out,"Usage: %s [-dxohv] [-t] [char-alias...]\n", progname);
#include "splashscreen.h"

exit(0);
}

And splashscreen.h is generated by a makefile production:

splashscreen.h: splashscreen
sed <splashscreen >splashscreen.h \
-e 'sA\V\Wg' -e 's/"\\'/" -e 's/.*/puts("&");/’

So when the program is built, treplashscreen  file is automatically massaged into a series of
output function calls, which are then included by the C preprocessor in the right function.

By generating the code from data, we get to keep the editable version of the usage screen identical
to its display appearance. This promotes transparency. Furthermore, we could modify the usage

%Scripting languages tend to solve this problem more elegantly than C does. Investigate thénsrellecumentand
Python'’s triple-quote construct to find out how.
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screen at will without touching the C code at all, and the right thing would automatically happen on
the next build.

For similar reasons, the initializer that holds the name synonym strings is also generatetdia a
script in the makefile, from a file callesametable in the ascii source distribution.  Most of
nametable is simply copied into the C initializer. But the generation process would make it easy
to adapt this tool for other 8-bit character sets such as the ISO-8859 series (Latin-1 and friends).

This is an almost trivial example, but it nevertheless illustrates the advantages of even simple and ad-

hoc code generation. Similar technigues could be applied to larger programs with correspondingly
greater benefits.

Case Study: Generating HTML Code for a Tabular List

Let's suppose that we want to put a page of tabular data on a Web page. We want the first few lines
to look like Example 9.6.

Example 9.6. Desired output format for the star table.

Aalat David Weber The Armageddon Inheritance
Aelmos Alan Dean Foster The Man who Used the Universe
Aedryr Steve Miller/Sharon Lee Scout's Progress

Aergistal Gerard Klein The Overlords of War

Afdiar L. Neil Smith Tom Paine Maru

Agandar Donald Kingsbury Psychohistorical Crisis
Aghirnamirr  Jo Clayton Shadowkill

The thick-as-a-plank way to handle this would be to hand-write HTML table code for the desired
appearance. Then, each time we want to add a name, we’d have to hand-write another set of <tr>
and <td> tags for the entry. This would get very tedious very quickly. But what's worse, changing
the format of the list would require hand-hacking every entry.

The superficially clever way to handle this would be to make this data a three-column relation in a
database, then use some fancy E&ichnique or a database-capable templating engine like PHP to
generate the page on the fly. But suppose we know that the list will not change very often, don't

9%Here, CGl refers not to Computer Graphic Inagery but to the Common Gateway Interface used for live Web content.
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want to run a database server just to be able to display this list, and don’t want to load the server
with unnecessary CGl traffic?

There’s a better solution. We put the data in a tabular flat-file format like Example 9.7.

Example 9.7. Master form of the star table.

Aalat :David Weber :The Armageddon Inheritance
Aelmos :Alan Dean Foster :The Man who Used the Universe
Aedryr :Steve Miller/Sharon Lee :Scout’s Progress

Aergistal :Gerard Klein :The Overlords of War

Afdiar :L. Neil Smith :Tom Paine Maru

Agandar :Donald Kingsbury :Psychohistorical Crisis
Aghirnamirr  :Jo Clayton :Shadowkill

We could in a pinch have done without the explicit colon field delimiters, using the pattern consisting
of two or more spaces as a delimiter, but the explicit delimiter protects us in case we press spacebar
twice while editing a field value and fail to notice it.

We then write a script in shell, Perl, Python, or Tcl that massages this file into an HTML table, and
run that each time we add an entry. The old-school Unix way would revolve around the following
nigh-unreadable sed(1) invocation

sed -e ‘s <tr><td> -e ’s,$,</td></tr>, -e s, </td><td>,g’

or this perhaps slightly more scrutable awk(1) program:

awk -F: '{printf("<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n", \
$1, $2, $3)}
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(If either of these examples interests but mystifies, read the documentation for sed(1) or awk(1). We
explained in Chapter 8 that the latter has largely fallen out of use. The former is still an important
Unix tool that we haven't examined in detail because (a) Unix programmers already know it, and
(b) it's easy for non-Unix programmers to pick up from the manual page once they grasp the basic
ideas about pipelines and redirection.)

A new-school solution might center on this Python code, or on equivalent Perl:

for row in map(lambda x:x.rstrip().split(":"),sys.stdin.readlines()):
print "<tr><td>" + "</td><td>".join(row) + "</td></tr>"

These scripts took about five minutes each to write and debug, certainly less time than would
have been required to either hand-hack the initial HTML or create and verify the database. The
combination of the table and this code will be much simpler to maintain than either the under-
engineered hand-hacked HTML or the over-engineered database.

A further advantage of this way of solving the problem is that the master file stays easy to search
and modify with an ordinary text editor. Another is that we can experiment with different table-
to-HTML transformations by tweaking the generator script, or easily make a subset of the report by
putting a grep(1) filter before it.

| actually use this technique to maintain the Web page thatfligthmailtest sites; the example
above is science-fictional only because publishing the real data would reveal account usernames and
passwords.

This was a somewhat less trivial example than the previous one. What we've actually designed here
is a separation between content and formatting, with the generator script acting as a stylesheet. (This
is yet another mechanism-vs.-policy separation.)

The lesson in all these cases is the same. Do as little work as possible. Let the data shape the
code. Lean on your tools. Separate mechanism from policy. Expert Unix programmers learn to
see possibilities like these quickly and automatically. Constructive laziness is one of the cardinal
virtues of the master programmer.
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Starting on the Right Foot

Let us watch well our beginnings, and results will manage themselves.

<author>AlexanderClark</author>

Under Unix, programs can communicate with their environment in a rich variety of ways. It's
convenient to divide these into (a) startup-environment queries and (b) interactive channels. In
this chapter, we’ll focus primarily on startup-environment queries. The next chapter will discuss
interactive channels.

What Should Be Configurable?

Before plunging into the details of different kinds of program configuration, we should ask a high-
level question: What things should be configurable?

The gut-level Unix answer is “everything”. The Rule of Separation that we discussed in Chapter 1
encourages Unix programmers to build mechanism and defer policy decisions outward toward the
user wherever possible. While this tends to produce programs that are powerful and rewarding
for expert users, it also tends to produce interfaces that overwhelm novices and casual users with a
surfeit of choices, and with configuration files sprouting like weeds.

Unix programmers aren’t going to be cured of their tendency to design for their peers and the most
sophisticated users any time soon (we'll grapple a bit with the question of whether such a change
would actually be desirable in Chapter 20). So it's perhaps more useful to invert the question and
ask “What things shouldot be configurable?” Unix practice does offer some guidelines on this.

First, don't provide configuration switches for what you can reliably detect automaticalys is

a surprisingly common mistake. Instead, look for ways to eliminate configuration switches by
autodetection, or by trying alternative methods at runtime until one succeeds. If this strikes you as
inelegant or too expensive, ask yourself if you haven't fallen into premature optimization.

One of the nicest examples of autodetection | experienced was when Dennis
Ritchie and | were porting Unix to the Interdata 8/32. This was a big-endian
machine, and we had to generate data for that machine on a PDP-11, write a
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magnetic tape, and then load the magnetic tape on the Interdata. A common error
was to forget to twiddle the byte order; a checksum error showed you that you
had to unmount, remount again on the PDP-11, regenerate the tape, unmount, and
remount. Then one day Dennis hacked the Interdata tape reader program so that
if it got a checksum error it rewound the tape, toggled ‘byte flip’ switch and reread

it. A second checksum error would kill the load, but 99% of the time it just read
the tape and did the right thing. Our productivity shot up, and we pretty much
ignored tape byte order from that point on.

<author>SteveJohnson</author>

A good rule of thumb is this: Be adaptive unless doing so costs you 0.7 seconds or more of latency.
0.7 seconds is a magic number because, as Jef Raskin discovered while designing the Canon Cat,
humans are almost incapable of noticing startup latency shorter than that; it gets lost in the mental
overhead of changing the focus of attention.

Secondysers should not see optimization switchés a designer, it'sourjob to make the program
run economically, not the user’s. The marginal gains in performance that a user might collect from
optimization switches are usually not worth the interface-complexity cost.

File-format nonsense (record length, blocking factor, etc) was blessedly eschewed
by Unix, but the same kind of thing has roared back in excess configuration goo.
KISS became MICAHI: make it complicated and hide it.

<author>DougMcllroy</author>

Finally, don’t do with a configuration switch what can be done with a script wrapper or a trivial
pipeline Don't put complexity inside your program when you can easily enlist other programs to
help get the work done. (Recall our discussion in Chapter 7 of why Is(1) does not have a built-in
pager, or an option to invoke it).

Here are some more general questions to consider whenever you find yourself thinking about adding
a configuration option:

« Can | leave this feature out? Why am | fattening the manual and burdening the user?
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« Could the program’s normal behavior be changed in an innocuous way that would make the
option unnecessary?

« |s this option merely cosmetic? Should | be thinking less about how to make the user interface
configurable and more about how to make it right?

« Should the behavior enabled by this option be a separate program instead?

Proliferating unnecessary options has many bad effects. One of the subtlest but most serious is
what it will do to your test coverage.

Unless it is done very carefully, the addition of an on/off configuration option can
lead to a need to double the amount of testing. Since in practice one never does
double the amount of testing, the practical effect is to reduce the amount of testing
that any given configuration receives. Ten options leads to 1024 times as much
testing, and pretty soon you are talking real reliability problems.

<author>SteveJohnson</author>

Where Configurations Live

Classically, a Unix program can look for control information in five places in its startup-time
environment:

* Run-control files undefetc  (or at fixed location elsewhere in systemland).
» System-set environment variables.

* Run-control files (or ‘dotfiles’) in the user’s home directory. (See Chapter 3 for a discussion of
this important concept, if it is unfamiliar.)

* User-set environment variables.

 Switches and arguments passed to the program on the command line that invoked it.
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These queries are usually done in the order listed above. That way, later (more local) settings
override earlier (more global) ones. Settings found earlier can help the program compute locations
for later retrievals of configuration data.

When thinking about which mechanism to use to pass configuration data to a program, bear in mind
that good Unix practice demands using whichever one most closely matches the expected lifetime
of the preference. Thus: for preferences which are very likely to change between invocations, use
command-line switches. For preferences which change seldom, but that should be under individual
user control, use a run-control file in the user’s home directory. For preference information that
needs to be set site-wide by a system administratomahdhanged by users, use a run-control file

in system space.

We'll discuss each of these places in more detail, then examine some case studies.

Run-Control Files

A run-control file is a file of declarations or commands associated with a program that it interprets
on startup. If a program has site-specific configuration shared by all users at a site, it will often have
a run-control file under théetc directory. (Some Unixes have dstc/conf  subdirectory that
collects such data.)

User-specific configuration information is often carried in a hidden run-control file in the user’s
home directory. Such files are often called ‘dotfiles’ because they exploit the Unix convention that a
filename beginning with a dot is normally invisible to directory-listing td§fs.

Programs can also have run-control or dot directories. These group together several configuration
files that are related to the program, but that are most conveniently treated separately (perhaps
because they relate to different subsystems of the program, or have differing syntaxes).

Whether file or directory, convention now dictates that the location of the run-control information has
the same basename as the executable that reads it. An older convention still common among system
programs uses the executable’s name with the suffix ‘rc’ for ‘run conttbiThus, if you write a
program called ‘seekstuff’ that has both site-wide and user-specific configuration, an experienced
Unix user would expect to find the former/atc/seekstuff and the latter aseekstuff  inthe

1%0To make dotfiles visible, use the option of Is(1).
101The ‘r¢’ suffix goes back to Unix's grandparent, CTSS. It had a command-script feature called "runcom”. Early Unixes
used ‘rc’ for the name of the operating system’s boot script, as a tribute to CTSS runcom.
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user’s home directory; but it would be unsurprising if the locations visteseekstuffrc and
.seekstuffrc , especially if seekstuff were a system utility of some sort.

In Chapter 5 we described a somewhat different set of design rules for textual data-file formats, and
discussed how to optimize for different weightings of interoperability, transparency and transaction

economy. Run-control files are typically only read once at program startup and not written; economy
is therefore usually not a major concern. Interoperability and transparency both push us toward
textual formats designed to be read by human beings and modified with an ordinary text editor.

While the semantics of run-control files are of course completely program dependent, there are some
design rules about run-control syntax that are widely observed. We'll describe those next; but first
we’ll describe an important exception.

If the program is an interpreter for a language, then it is expected to be simply a file of commands
in the syntax of that language, to be executed at startup. This is an important rule, because Unix
tradition strongly encourages the design of all kinds of programs as special-purpose languages and
minilanguages. Well-known examples with dotfiles of this kind include the various Unix command
shells and th&macsprogrammable editor.

(One reason for this design rule is the belief that special cases are bad news — thus, that any switch
that changes the behavior of a language should be settable from within the language. If as a language
designer you find that yocannotexpress all the startup settings of a language in the the language
itself, a Unix programmer would say you have a design problem — which is what you should be
fixing, rather than devising a special-case run-control syntax.)

This exception aside, here are the normal style rules for run-control syntaxes. Historically, they are
patterned on the syntax of Unix shells:

1. Support explanatory comments, and lead them witfihe syntax should also ignore whites-
pace beforet, so that comments on the same line as configuration directives are supported.

2.Don’'t make insidious whitespace distinctionBhat is, treat runs of spaces and tabs, syntac-
tically the same as a single space. If your directive format is line-oriented, it is good form
to ignore trailing spaces and tabs on lines. The metarule is that the interpretation of the file
should not depend on distinctions a human eye can't see.
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3. Treat multiple blank lines and comment lines as a single blank lifehe input format uses
blank lines as separators between records, you probably want to ensure that a comment line
does not end a record.

4. Lexically treat the file as a simple sequence of whitespace-separated tokens, or lines of tokens.
Complicated lexical rules are hard to learn, hard to remember, and hard for humans to parse.

Avoid them.

5.But, support a string syntax for tokens with embedded whitespiseesingle quote or double
guote as balanced delimiters. If you support both, beware of giving them different semantics as
they have in shell; this is a well-known source of confusion.

6. Support a backslash syntax for embedding unprintable and special characters in .sthgs
standard pattern for this is the backslash-escape syntax supported by C compilers. Thus, for
example, it would be quite surprising if the stritetb”  were not interpreted as a character
‘a’, followed by a tab, followed by the character ‘b’.

Some aspects of shell syntax, on the other hand, shailble emulated in run-control syntaxes —
at least not without a good and specific reason. The shell's baroque quoting and bracketing rules,
and its special metacharacters for wildcards and variable substitution, both fall into this category.

It bears repeating that the point of these conventions is to reduce the amount of novelty that users
have to cope with when they read and edit the run-control file for a program they have never seen
before. Therefore, if you have to break the conventions, try to do so in a way that makes it visually
obvious that you have done so, document your syntax with particular care, and (most importantly)
design it so it's easy to pick up by example.

These standard style rules only describe conventions about tokenizing and comments. The names of
run-control files, their higher-level syntax, and the semantic interpretation of the syntax are usually
application-specific. There are a very few exceptions to this rule, however; one is dotfiles which
have become ‘well-known’ in the sense that they routinely carry information used by a whole class
of applications. Sharing run-control file formats in this way reduces the amount of novelty users
have to cope with.

Of these, probably the best established is.tlieec  file. Internet client programs that must track
host/password pairs for a user can usually get them frommthwe  file, if it exists.

Case Study: The .netrc File
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The.netrc  file is a good example of the standard rules in action. An example, with the passwords
changed to protect the innocent, is in Example 10.1.

Example 10.1. A.netrc  example.

# FTP access to my Web host
machine unixl.netaxs.com
login esr
password joesatriani

# My main mailserver at Netaxs
machine imap.netaxs.com

login esr

password jeffbeck

# Auxiliary IMAP maildrop at CCIL
machine imap.ccil.org

login esr

password marchonilla

# Auxiliary POP maildrop at CCIL
machine pop3.ccil.org

login esr

password ericjohnson

# Shell account at CCIL
machine locke.ccil.org
login esr
password stevemorse

Observe that this format is easy to parse by eyeball even if you've never seen it before; it's a set
of machine/login/password triples, each of which describes an account on a remote host. This kind
of transparency is important — much more important, actually, than the time economy of faster

interpretation or the space economy of a more compact and cryptic file format. It economizes the
far more valuable resource thatismantime, by making it likely that a human being will be able to

read and modify the format without having to read a manual or use a tool less familiar than a plain

old text editor.
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Observe also that this format is used to supply information for multiple services — an advantage,
because it means sensitive password information need only be stored in one placaetithe

format was designed for the original Unix FTP client program. It's used by all FTP clients, and
also understood by some telnet clients, and by the smbclient(1) command-line tool, and by the
fetchmailprogram. If you are writing an Internet client that must do password authentication through
remote logins, the Rule of Least Surprise demands that it use the contemisof as defaults.

Portability to Other Operating Systems

Systemwide run-control files are a design tactic that can be used on almost any operating system,
but dotfiles are rather more difficult to map to a hon-Unix environment. The critical thing missing
from most non-Unix operating systems is true multiuser capability and the notion of a per-user home
directory. DOS and Windows versions up to ME (including 95 and 98), for example, completely
lack any such notion; all configuration information has to be stored either in systemwide run-control
files at a fixed location, the Windows registry, or configuration files in the same directory a program
is run from. Windows NT has some notion of per-user home directories (which made its way into
Windows 2000 and XP), but it is only poorly supported by the system tools.

Environment Variables

When a Unix program starts up, the environment accessible to it includes a set of name to value
associations (names and values are both strings). Some of these are set manually by the user;
others are set by the system at login time, or by your shell or terminal emulator (if you're running
one). Under Unix, environment variables tend to carry information about file search paths, system
defaults, the current user ID and process number, and other key bits of information about the runtime
einvironment of programs. At a shell prompt, typisetfollowed by a newline will list all currently

defined shell variables.

In C and C++ these values can be queried with the library function getenv(3). Perl and Python ini-
tialize environment-dictionary objects at startup. Other languages generally follow one of these two
models.

System Environment Variables

There are a number of well-known environment variables you can expect to find defined on startup
of a program from the Unix shell. These (especiatyMEwill often need to be evaluatduefore
you read a local dotfile.
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USER Login name of the account under which this session is logged in (BSD convention).

LOGNAME Login name of the account under which this session is logged in (System V
convention).

HOME Home directory of the user running this session.

COLUMNS The number of character-cell columns on the controlling terminal or terminal-

emulator window.

LINES The number of character-cell rows on the controlling terminal or terminal-emulator
window.

SHELL The name of the user's command shell (often used by shellout commands).

PATH The list of directories that the shell searches when looking for executable com-

mands to match a name.

TERM Name of the terminal type of the session console or terminal emulator window (see
the terminfo case study in Chapter 6 for background). TERM is special in that
programs to create remote sessions over the network (suefnasandssh are
expected to pass it through and set it in the remote session.

(This list is representative, but not exhaustive.)

The HOMEariable is especially important, because many programs use it to find the calling user’s
dotfiles (others call some functions in the C runtime library to get the calling user’s home directory).

Note that some or all of these system environment variableswoide set when a program is started
by some other method than a shell spawn. In particular, daemon listeners on a TCP/IP socket often
don’t have these variables set — and if they do, the values are unlikely to be useful.

Finally, note that there is a tradition (exemplified by th&TH variable) of using a colon as a
separator when an environment variable must contain multiple fields, especially when the fields can
be interpreted as a search path of some sort. Note that some shells (masihéndksh always
interpret colon-separated fields in an environment variable as filenames, which means in particular
that they expand in these fields to the user’s home directory.

User Environment Variables
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Although applications are free to interpret environment variables outside the system-defined set, it
is nowadays fairly unusual to actually do so. Environment values are not really suitable for passing
structured information into a program (though it can in principle be done via parsing of the values).
Instead, modern Unix applications tend to use run-control files and dotfiles.

There are, however, some design patterns in which user-defined environment variables can be useful:

Application-independent preferences that need to be shared by a large number of different programs.
This set of ‘standard’ preferences changes only slowly, because lots of different programs need to
recognize each one before it becomes uséfitiere are the standard ones:

EDITOR The name of the user’s preferred editor (often used by shellout comm&hds).

MAILER The name of the user’s preferred mail user agent (often used by shellout com-
mands).

PAGER The name of the user’s preferred program for browsing plaintext.

BROWSER The name of the user’s preferred program for browsing Web URLs. This one, as

of 2003, is still very new and not yet widely implemented.

When to Use Environment Variables

What both user and system environment variables have in common is that it would be annoying to
have to replicate the information they contain in a large number of application run-control files, and
extremely annoying to have to change that information everywhere when your preference changes.
Typically, the user sets these variables in his or her shell session startup file.

A value varies across several contexts that share dotfiles, or a parent needs to pass information to
multiple child processesSome pieces of start-up information are expected to vary across several

contexts in which the calling user would share common run-control files and dotfiles. For a system-
level example, consider several shell sessions open through terminal emulator windows on an X

192Nobody knows a really graceful way to represent this sort of distributed preference data; environment variables probably
are not it, but all the known alternatives have equally nasty problems.

103Actually, most Unix programs first cheaKSUAL, and only if that's not set will they consuDITOR That's a relic from

the days when people had different preferences for line-oriented editors and visual editors.
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desktop. They will all see the same dotfiles, but might have different value®OIMNILINES,
andTERM (Old-school shell programming used this method extensively; makefiles still do.)

A value varies too often for dotfiles, but doesn’t change on every staktuper-defined environment
variable may (for example) be used to pass a file system or Internet location that is the root of a tree
of files that the program should play with. The CVS version-control system interprets the variable
CVSROOThis way, for example. Several newsreader clients that fetch news from servers using the
NNTP protocol interpret the variabMNTPSERVERS the location of the server to query.

A process-unique override needs to be expressed in a way that doesn't require the command-line
invocation to be changedA user-defined environment variable can be useful for situations in
which, for whatever reason, it would be inconvenient to have to change an application dotfile or
supply command-line options (perhaps it is expected that the application will normally be used
inside a shell wrapper or within a makefile). A particularly important context for this sort of use

is debugging. Under Linux, for example, manipulating the variableLIBRARY_PATHassociated

with the Id(1) linking loader enables you to change where libraries are loaded from — perhaps to
pick up versions that do buffer-overflow checking or profiling.

In general, a user-defined environment variable can be an effective design choice when the value
changes often enough to make editing a dotfile each time inconvenient, but not necessarily every
time (so always setting the location with a command-line option would also be inconvenient). Such
variables should typically be evaluatefter a local dotfile and be permitted to override settings in

it.

There is one traditional Unix design pattern that we do not recommend for new programs. Some-
times, user-set environment variables are used as a lightweight substitute for expressing a program
preference in a run-control file.  The venerable nethack(1l) dungeon-crawling game, for exam-
ple, reads &lETHACKOPTION®&nvironment variable for user preferences. This is an old-school
technique; modern practice would lean toward parsing them fronethack or .nethackrc

run-control file.

The problem with the older style is that it makes tracking where your preference information lives
more difficult than it would be if you knew the program had a run-control file under your home
directory. Environment variables can be set anywhere in several different shell run-control files —
under Linux these are likely to includgrofile ~ , .bash_profile , and.bashrc atleast. These

files are cluttered and fragile things, so as the code overhead of having an option-parser has come to
seem less significant preference information has tended to migrate out of environment variables into
dotfiles.
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Portability to Other Operating Systems

Environment variables have only very limited portability off Unix. Microsoft operating systems have
an environment-variable feature modeled on that of Unix, and esg Evariable as Unix does to set

the binary search path, but most of other variables that Unix shell programmers take for granted (such
as process ID or current working directory) are not supported. Other operating systems (including
classic MacOS) generally do not have any local equivalent of environment variables.

Command-Line Options

Unix tradition encourages the use of command-line switches to control programs, so that options
can be specified from scripts. This is especially important for programs that function as pipes or
filters. Three conventions for how to distinguish command-line options from ordinary arguments

exist; the original Unix style, the GNU style, and the X toolkit style.

In the original Unix tradition, command-line options are single letters preceded by a single hyphen.
Mode-flag options that do not take following arguments can be ganged together; thusant

-b are mode optionsab or -ba is also correct and enables both. The argument to an option, if
any, follows it (optionally separated by whitespace). In this style, lowercase options are preferred
to uppercase. When you use uppercase options, it's good form for them to be special variants of the
lowercase option.

The original Unix style evolved on slow ASR-33 teletypes that made terseness a virtue; thus the
single-letter options. Holding down the shift key required actual effort; thus the preference for
lower case, and the use of “-" (rather than the perhaps more logical “+") to enable options.

The GNU style uses option keywords (rather than keyword letters) preceded by two hyphens. It
evolved years later when some of the rather elaborate GNU utilities began to run out of single-letter
option keys (this constituted a patch for the symptom, not a cure for the underlying disease). It
remains popular because GNU options are easier to read than the alphabet soup of older styles.
GNU-style options cannot be ganged together without separating whitespace. An option argument
(if any) can be separated by either whitespace or a single “=" (equal sign) character.

The GNU double-hyphen option leader was chosen so that traditional single-letter options and GNU-
style keyword options could be unambiguously mixed on the same command line. Thus, if your
initial design has few and simple options, you can use the Unix style without worrying about causing
an incompatible ‘flag day’ if you need to switch to GNU style later on. On the other hand, if you
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are using the GNU style, it is good practice to support single-letter equivalents for at least the most
common options.

The X toolkit style, confusingly, uses a single hyphen and keyword options. It is interpreted by
X toolkits that filter out and process certain options (suchgasmetry and-display ) before
handing the filtered command line to the application logic for interpretation. The X toolkit style is
not properly compatible with either the classic Unix or GNU styles, and should not be used in new
programs unless the value of being compatible with older X conventions seems very high.

Many tools accept a bare hyphen, not associated with any option letter, as a pseudo-filename
directing the application to read from standard input. It is also conventional to recognize a double
hyphen as a signal to stop option interpretation and treat all following arguments literally.

Most Unix programming languages offer libraries that will parse a command line for you in either
classic-Unix or GNU style (interpreting the double-hyphen convention as well).

The -a to -z of Command-Line Options

Over time, frequently-used options in well-known Unix programs have established a loose sort of
semantic standard for what various flags might be expected to mean. The following is a list of
options and meanings that should prove usefully unsurprising to an experienced Unix user:

-a All (without argument). If there is a GNU-styleall  option, for
-a to be anything but a synonym for it would be quite surprising.
Examples: fuser(1), fetchmail(1).

Append, as in tar(1). This is often paired with for delete.

-b Buffer or block size (with argument). Set a critical buffer size, or (in a
program having to do with archiving or managing storage media) set
a block size. Examples: du(1), df(1), tar(1).

Batch. If the program is naturally interactivey may be used to
suppress prompts or set other options appropriate to accepting input
from a file rather than a human operator. Example: flex(1).
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Command (with argument). If the program is an interpreter that
normally takes commands from standard input, it is expected that
the option of a-c argument will be passed to it as a single line
of input. This convention is particularly strong for shells and shell-
like interpreters. Examples: sh(1), ash(1), bsh(1), ksh(1), python(1).
Comparee below.

Check (without argument). Check the correctness of the file argu-
ment(s) to the command, but don’t actually perform normal process-
ing. Frequently used as a syntax-check option by programs that do
interpretation of command files. Examples: getty(1), perl(1).

Debug (with or without argument). Set the level of debugging mes-
sages. This one is very common.

Occasionallyd has the sense of ‘delete’ or ‘directory’.

Define (with argument). Set the value of some symbol in an in-
terpreter, compiler, or (especially) macro-processor-like application.
The model is the use eb by the C compiler's macro preprocessor.
This is a strong association for most Unix programmers; don't try to
fight it.

Execute (with argument). Programs that are wrappers, or that can be
used as wrappers, often allow to set the program they hand off
control to. Examples: xterm(1), perl(1).

Edit. A program that can open a resource in either a read-only or
editable mode may allove to specify opening in the editable mode.
Examples: crontab(1), and the get(1) utility of the SCCS version-
control system.

Occasionallye has the sense of ‘exclude’ or ‘expression’.
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File (with argument). Very often used with an argument to specify
an input (or, less frequently, output) file for programs that need to
randomly access their input or output (so that redirection via < or >
won't suffice). The classic example is tar(1); others abound. Itis also
used to indicate that arguments normally taken from the command
line should be taken from a file instead; see awk(1l) and egrep(1)
for classic examples. Compate below; often,-f is the input-side
analog of-o .

Force (typically without argument). Force some operation (such as a
file lock or unlock) that is normally performed conditionally. This is
less common.

Daemons often usé in a way that combines these two meanings,
to force processing of a configuration file from a nondefault location.
Examples: ssh(1), httpd(1), and many other daemons.

Headers (typically without argument). Enable, suppress, or modify
headers on a tabular report generated by the program. Examples:
pr(1), ps(1).

Help. This is actually less common than one might expect offhand —
for much of Unix’s early history developers tended to think of on-line
help as memory-footprint overhead they couldn't afford. Instead they
wrote manual pages (this shaped the man-page style in ways we'll
discuss in Chapter 18).

Initialize (usually without argument). Set some critical resource or
database associated with the program to an initial or empty state.
Example: ci(1) in RCS.

Interactive (usually without argument). Force a program that does
not normally query for confirmation to do so. There are classical
examples (rm(1), mv(1)) but this use is not common.
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Include (with argument). Add a file or directory name to those

searched for resources by the application. All Unix compilers with

any equivalent of source-file inclusion in their languages -isén

this sense. It would be extremely surprising to see this option letter
used in any other way.

Keep (without argument). Suppress the normal deletion of some
file, message, or resource. Examples: passwd(1), bzip(1), and fetch-
mail(1).

Occasionallyk has the sense of ‘kill’.

List (without argument). If the program is an archiver or inter-
preter/player for some kind of directory or archive format, it would
be quite surprising for to do anything but request an item listing.
Examples: arc(l), binhex(1), unzip(1). (However, tar(1) and cpio(1)
are exceptions.)

In programs that are already report generatérsalmost invariably
means “long” and triggers some kind of long-format display revealing
more detail than the default mode. Examples: Is(1), ps(1).

Load (with argument). If the program is a linker or a language
interpreter,-l invariably loads a library, in some appropriate sense.
Examples: gcc(1), f77(1), emacs(1).

DlLogin. In programs such as rlogin(1) and ssh(1) that need to
specify a network identity] is how you do it.

Occasionallyl has the sense of ‘length’ or ‘lock’.

Message (with argument). Used with an argument, passes it
in as a message string for some logging or announcement purpose.
Examples: ci(1), cvs(1).

Occasionally-m has the sense of ‘mail’, ‘mode’, or ‘modification-
time’.
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-r (also-R)

Number (with argument). Used, for example, for page number ranges
in programs such as head(1), tail(1), nroff(1), and troff(1). Some
networking tools that normally display DNS names acceptas

an option that causes them to display the raw IP addresses instead;
ifconfig(1) and tcpdump(1) are the archetypal examples.

Not (without argument). Used to suppress normal actions in programs
such as make(1).

Output (with argument). When a program needs to specify an output
file or device by name on the command line, theoption does it.
Examples: as(1), cc(1), sort(1). On anything with a compiler-like
interface, it would be extremely surprising to see this option used in
any other way. Programs that suppartoften (like gcc) have logic
that allows it to be recognized after ordinary arguments as well as
before.

Port (with argument). Especially used for options that specify
TCP/IP port numbers. Examples: cvs(1), the PostgreSQL tools, the
smbclient(1), snmpd(1), ssh(1).

Protocol (with argument). Examples: fetchmail(1), snmpnetstat(1).

Quiet (usually without argument). Suppress normal result or diagnos-
tic output. This is very common. Examples: ci(1), co(1), make(1).
See also the ‘silent’ sense &f .

Recurse (without argument). If the program operates on a directory,
then this option might tell it to recurse on all subdirectories. Any other

use in a utility that operated on directories would be quite surprising.
The classic example is, of course, cp(1).

Reverse (without argument). Examples: Is(1), sort(1). A filter might
use this to reverse its normal translation action (comghje
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-wW

Silent (without argument). Suppress normal diagnostic or result
output (similar to-q ; when both are supported, g means ‘quiet’ but
-s means ‘utterly silent’). Examples: csplit(1), ex(1), fetchmail(1).

Subject (with argument).Alwaysused with this meaning on com-
mands that send or manipulate mail or news messages. It is ex-
tremely important to support this, as programs that send mail expect
it. Examples: mail(1), elm(1), mutt(1).

Occasionallys has the sense of ‘size’.

Tag (with argument). Name a location or give a string for a program
to use as a retrieval key. Especially used with text editors and viewers.
Examples: cvs(1), ex(1), less(1), vi(1).

User (with argument). Specify a user, by name or numeric UID.
Examples: crontab(1), emacs(1), fetchmail(1), fuser(1), ps(1).

Verbose (with or without argument). Used to enable transaction-
monitoring, more voluminous listings, or debugging output. Exam-
ples: cat(1), cp(1), flex(1), tar(1), many others.

Version (without argument). Display program’s version on standard
output and exit. Examples: cvs(1), chattr(1), patch(1), uucp(1). More
usually this action is invoked by .

Version (without argument). Display program’s version on standard
output and exit (often also prints compiled-in configuration details as
well). Examples: gcc(1), flex(1), hostname(1), many others. It would
be quite surprising for this switch to be used in any other way.

Width (with argument). Especially used for specifying widths in
output formats. Examples: faces(1), grops(1), od(1), pr(1), shar(1).

Warning (without argument). Enable warning diagnostics, or suppress
them. Examples: fetchmail(1), flex(1), nsgmlis(1).
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-X Enable debugging (with or without argument). Like. Examples:
sh(1), uucp(2).

Extract (with argument). List files to be extracted from an archive or
working set. Examples: tar(1), zip(1).

-y Yes (without argument). Authorize potentially destructive actions for
which the program would normally require confirmation. Examples:
fsck(1), rz(1).

-z Enable compression (without argument). Archiving and backup pro-
grams often use this. Examples: bzip(1), GNU tar(1), zcat(1), zip(1),
cvs(l).

The preceding examples are taken from the Linux toolset, but should be good on most modern
Unixes.

When you're choosing command-line option letters for your program, look at the manual pages
for similar tools. Try to use the same option letters they use for the analogous functions of your
program. Note that some particular application areas that have particularly strong conventions about
command-line switches which you violate at your peril — compilers, mailers, text filters, network
utilities and X software are all notable for this. Anybody who wrote a mail agent that-ased
anything but a Subject switch, for example, would have scorn rightly heaped upon the choice.

The GNU project recommends conventional meanings for a few double-dash options in the GNU
coding standard®¥* It also lists long options which, though not standardized, are used in many GNU
programs. If you are using GNU-style options, and some option you need has a function similar to
one of those listed, by all means obey the Rule of Least Surprise and reuse the name.

Portability to Other Operating Systems

To have command-line options, you have to have a command line. The MS-DOS family does, of
course, though in Windows it's hidden by a GUI and its use is discouraged; the fact that the option
character is normally/“ rather than -’ is merely a detail. MacOS classic and other pure GUI
environments have no close equivalent of command-line options.

1045ee the Gnu Coding Standards [http://www.gnu.org/prep/standards.html].
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How to Choose among the Methods

We've looked in turn at system and user run-control files, at environment variables, and at command-
line arguments. Observe the progression from least easily changed to most easily changed. There is
a strong convention that well-behaved Unix programs that use more than one of these places should
look at them in the order given, allowing later settings to override earlier ones (there are specific
exceptions, such as command-line options that specify where a dotfile should be found).

In particular, environment settings usually override dotfile settings, but can be overridden by
command-line options. It is good practice to provide a command-line option like tbé make(1)

that can override environment settings or declarations in run-control files; that way the program
can be scripted with well-defined behavior regardless of the way the run-control files look or
environment variables are set.

Which of these places you choose to look at de