JONATHAN YATES

Python Programming

Practical Python Programming For
Beginners and Experts

Jonathan Yates

Text Copyright © Jonathan Yates
All rights reserved. No part of this guide may be reproduced in any form without
permission in writing from the publisher except in the case of brief quotations embodied
in critical articles or reviews.

Legal & Disclaimer

This document is geared towards providing exact and reliable information in regards to the
topic and issues covered. The publication is sold on the idea that the publisher is not
required to render an accounting, officially permitted, or otherwise, qualified services. If
advice is necessary, legal or professional, a practiced individual in the profession should

be ordered.

- From a Declaration of Principles which was accepted and approved equally by a
Committee of the American Bar Association and a Committee of Publishers and

Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document by
either electronic means or printed format. Recording of this publication is strictly
prohibited, and any storage of this document is not allowed unless with written permission

from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability,
regarding inattention or otherwise, by any usage or abuse of any policies, processes, or
directions contained within is the solitary and utter responsibility of the recipient reader.
Under no circumstances will any legal responsibility or blame be held against the
publisher for any reparation, damages, or monetary loss due to the information herein,

either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely and is universal as so.
The presentation of the information is without a contract or any type of guarantee

dassurance.

The trademarks that are used are without any consent, and the publication of the trademark
is without permission or backing by the trademark owner. All trademarks and brands
within this book are for clarifying purposes only and are the owned by the owners

themselves, not affiliated with this document.

Table of Contents

Introduction

Chapter 1: An Introduction to Python

Chapter 2: Installing Python and Setting up the Environment
Chapter 3: Common Python Syntax

Chapter 4: Types of Variables in Python

Chapter 5: Using Operators and Operands
Chapter 6: Using Sequential Loops

Chapter 7: Decision Making and Expressions
Chapter 8: Strings and Functions in Python
Chapter 9: Creating, Using, and Modifying Lists
Chapter 10: Tuples and Data Types

Chapter 11: Dictionary Operation and Functions
Chapter 12: Mastering Date and Time

Chapter 13: User Defined Functions

Chapter 14: Organizing Code with Modules
Chapter 15: I/0 Input Used in Python

Chapter 16: Exceptions and Assertions

Chapter 17: Object Oriented Programming
Chapter 18: Python Regular Expressions.
Chapter 19: Python Multithreaded Programming

Chapter 20: Conclusion

Chapter 1
An Introduction to Python

Are you aware that websites like YouTube and Dropbox make use of Python
Programming in their source code? Python is a commonly used language which one can
easily understand and apply. You can make nearly anything using Python. Most systems
today (Mac, Linux, UNIX, etc.) have Python installed as a default setting since it is an
open source and free language. Upon reading this book, you are going to become fluent in
this awesome code language and see it applied to a variety of examples. No type
declaration of methodology, parameters, functions, or variables (like in other languages)
are found in Python making its code concise and easy. As I said earlier, you can use the
language in everything if you want to build a website, make a game, or even create a
search engine. The big plus of using Python is, an explicit compiler is not necessary since

it’s an entirely interpreted language (Perl, Shell, etc.).

19

File extension which is used by Python source file is “.py” and it is a case-sensitive

language, so “P” and “p” would be considered as two different variables. Also, Python
figures out the variable type on its own, for example, if you put x=4 and y="Python’ then it
will consider x as an integer and y as a string. We are going to learn all these basics in
detail in further chapters. Before we move forward, a few important points to remember

dare:

€Ky K—_—_»

1. For assigning a value is used, and for comparison is used. Example,

x=4, y=8, x==y
2. “print” is used to print results.
3. All the mathematical operations like +, -, *, /, % are used with numbers

4. Variable is created when a value is assigned to it. Example, a=5 will create a
variable named “a” which has an integer value of 5. There is no need to define it
beforehand.

5. “+” can also be used to concatenate two string. Example, z= “Hi”, z= z +

“Python”

¥ <«

6. For logical operations “and”, “or”, “not” are used instead of symbols.

We use three general data types: integer (by default for numbers), floats (a=3.125) and
string. The string is shown by either “” (double quotes) or “’ (single quotes). We will look

at all the types of data with various examples in the upcoming chapters.

Let’s look at the step by step guide to install Python on a Windows operating system. As
mentioned earlier, if you are using another operating system like UNIX or Linux or Mac
then Python should be installed already and ready to use. You have to use “%python” to
get the details on Linux, press “CTRL + D” to exit. For running it on UNIX, “%python

filename.py” is used. Python prompts with three “greater than” symbol (>>>).

Chapter 2
Installing Python and Setting up the Environment

In this chapter, we are going to see a step by step guide to download and install the Python
language interpreter. After installation of the interpreter, we will integrate and set up

Python development environment with Eclipse IDE.

Python programming language is available for all of the three known platforms for
Windows, Linux/Unix, and Mac OS. Below are the links from where Python interpreters

can be downloaded for these environments.

Windows platform
Python interpreter can be downloaded for Windows platform using the link below.
https://www.python.org/downloads/windows/
Options available on Python website are as follows:
Python 3.4.4 - 2015-12-21
e Download Windows x86 MSI Installer
e Download Windows x86-64 MSI installer
e Download Windows help file
e Download Windows debug information files for 64-bit binaries

e Download Windows debug information files

In this tutorial, we are going to use Windows platform to install Python 3.4.4 along with

Eclipse IDE to set up a development environment.

LINUX/UNIX platform

If you are not able to find Python on your Linux or Unix OS, then Python interpreter can

https://www.python.org/downloads/windows/

be downloaded for LINUX or UNIX platform from the link below.

https://www.python.org/downloads/

A different Linux version uses different package managers for installation of new
packages. For example, on Ubuntu, Python can be installed using the below command
from the terminal.

$sudo apt-get install python3-minimal

It is installed from source using the below command.

Download Gzipped source tarball from Python’s download URL:
https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz

Extract the tarball

tar xvfz Python-3.5.1.tgz

Configure and Install:

cd Python-3.5.1

./configure —prefix=/opt/python3.5.1
make

sudo make install

Mac OS Platform

Python interpreter can be downloaded for Mac OS platform from the link below.

https://www.python.org/downloads/mac-osx/
Options available on Python website are as follows.

Python 3.4.4 - 2015-12-21

https://www.python.org/downloads/
https://www.python.org/downloads/mac-osx/

e Download Mac OS X 64-bit/32-bit installer

e Download Mac OS X 32-bit i386/PPC installer

Steps to install Python on Windows Platform

Please follow the below steps:

1. Check for Windows installer if it is 32-bit or 64-bit. Accordingly, download

Python version for Windows platform for the given link.

2. Once downloaded, click on the installer. The below screen will be visible which

will trigger Python installation on Windows.

% Python 3.4.4 (64-bit) Setup

Select whether to install Python 3.4.4
{64-bit) for all users of this computer.

(®) Install for all users
P) Install just for me (not avallable on Windows Vista)

python

windows

Back Cancel

3. Choose the first option as “Install for all users” and click on the next button to

proceed.

4. Next, the system will ask to select the destination directory. Choose the directory

as shown below and click on Next button.

ite Python 3.4.4 (64-bit) Setup

Select Destination Directory

Please select a directory for the Python 3.4.4
{&4-bit} files.

| = Python34 ~ |up || Mew |

python

(eT]

windows

|enpPythonaay,

= Back [cancal |

5. Next, the system will ask to customize Python 3.4.4. Keep the default setup and
click on the Next button as shown in the below screenshot.

1% Python 3.4.4 (64-bit) Setup

- Customize Python J3.%.3 (693-bit)
Select the way you want features to be installed.

Click on the icons in the tree below to change the
wray Features vwill be installed.

Registar Extansions
Tl Tk
Documantation
Utilicy Scripts

pip

Tast sukta

(oo i o . e e

Python Interpretar and Librarias

python

fiean This feature reguires 25MB on your hard drive. It

= has & of 7 subfeatures selected. The subfeatures
Wlf—ldf)WS require 44MBE on your hard drive.
| Disk Usage | | advanced | | =pack |[Next= | | cancel |

6. Installer will start the installation which will take several minutes and the below

screenshot will be visible during this point of time.

L Python 3.4.4 (64-bit) Setup

Install Pythaon 3449 (64 k)

Plaase wait while the Installer installs Python 3.4.4 (&4-bit)}. This may
take several minutes.

Status: Copying naew files
———

= Back Naxt = Canceal

7. Once Python interpreter installation is completed, click on the Finish button to

complete the installation on Windows platform.

115 Python 3.4.4 (Gd-bBit) Setup

Comiplote the Python 2.9.9% (G99 -bit)
Installar

Spacial Windows thanks to:
Mark Hammond, without whose yvears of freehs
sharad Windows expartise, Python for Windows

il seill ba Pythan for DOS,

puthaoan
E [F=T)
windows

Click tha Finish button to axit the Installar.

Back Finish Cancal

Steps to set up Python development environment on Eclipse IDE

Please follow the below steps:

1. Download the Eclipse from the link below. Choose the latest stable version of the
Eclipse and make sure that if your machine is 64-bit then chose 64-bit Eclipse. In

this tutorial, Eclipse MARS.1 version is used.

https://eclipse.org/downloads

2. Click on the elipse.exe to open the Eclipse which will ask to choose a local
directory as its workspace as shown in the below screenshot.

https://eclipse.org/downloads

3. Choose or create a directory on any available drive and click on the OK button to

start eclipse.

{t Workspace Launcher x

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

ﬂurk_f.pau:| APython_Waorkspace v|l Browse...

[] Use this as the default and do not ask again

4. On the Eclipse, navigate as Help -> Install New Software...

File Eclit Mawvigate Search Project R Wil o Help

=i = @. Welcomme @ o2
It Praj| 2 Help Contents
o Search
Dynamic Help
Key Assist,.. Ctri+Shift+L

Tips and Tricks...
Feport Bug or Enhancerment,,,
Cheat Sheests...

&

Perform Setup Tasks.,.
Check for Updates
Install Mew Softwars...
Installation Details

Eclipse Marketplace...

About Eclipse

E63Ee ¢

5. It will open a dialogue box in Eclipse as shown in the below screenshot. In the
textbox “work with:” enter the URL as http://pydev.org/updates and click on the
Add button. Next, select the checkbox as “PyDev” and click on the Next button.

http://pydev.org/updates

o |

Available Software
Check the terms that you wish to mstall.

%

Work with: | PyDev - Mtps//pydev.org/updates v
Find mone softwane by working with the “Auvsilsble Soltvare Sites” preferences,

type filter text

Name Version
v [0 PyDes
53 PyDev for Eclipse 45.5.201603221110
EA g+ PyDev for Eclipse Developer Rescurces 4.5.3.201603221110
w [] 000 PyDes Myken Integration [optional]
144 Pydew Mylyn Integration DED
Salect All Dasalect All 1 itemg selectad
Detads
[Shesw only the latest versions of available software [il items that are already installed
B Geoug items by categary What is alreadhy installed?

[J5hew only software applicable to target environment
ECvrmt.td all update sites rlurirbg install to find required softwarne

6. Next, the system will ask to read and accept or decline the license agreement.
Accept the license agreement in order to proceed the current software installation

and click on the Finish button as shown in the below screenshot.
= __wm =]

Flarriarm Licwnuan
Limmrses e T T S e e [T | T T T ———— e —— | ="
Licarsas: Licansa ta:
P pra— Liger Sy [T e T — = S — T —p— ~
Efopis Public Licanos - » 1.0 A @ 2004

Bubl i 3
Echpas Public Licanss - w 1.0 TR o p——

THE ECLIFEE FOUMSDATION RALKES SWAILARLE SOFTWANRE
DOCURERTATION, INFORMATION AtdD/OR

OTHER FAATERLALS FOR OPEM SOURCE PROJECTS (COLLECTIVELY
TR T

USE OF THE CONTENT 15 GOVERMED B THE TERRS ARD
COMIHTIONS OF THS

AGRERRARFT AR ER THE TERAIR ARD O80T sonm OF LICHHGE
AGREEREMTS OR

HMOTICES IMNONCATED COF REFEMERICED BELOWY. BY USIMG THE
CORTERNT, ¥l

AGHEE THAT WOUN USE OF THE CONTERMT 15 GOVERMID Y THIS
ACIREERARFT

ANDAOR THE TERRSS AND COMNDITIONS OF AlY APPLICABLE
LICEMSE SOREERSERTS

E3R FEITIC RS HSOICATEE R REFEREMCED BELEWA. IF WL B M
AGREE TO THE

TEMRAT AHD COMDETIONS OF THIT AOREERENT &M THE TERRAS
AN COrDITHEMNS

OF AR APPLICADLE LICEHSE AGRECMEMTS OR HOTICES
IMOICATED CF HEFERERCED

BELOAW, THEM YOU RARY ROT USE THE CORTERT. -

@ | proepk the term of the lcense sgreemants
R T P A PSS ————

D - Emck L I Fimigih Cancal

7. The step above will complete the installation of PyDev software on the Eclipse.
After installation, it will prompt to restart Eclipse. Upon Eclipse restart, the Python

development environment is ready to use on Eclipse.

First Python project on Eclipse

Please follow below steps.

1. Left-hand side of Eclipse has Project Explorer. Right click in that region or
navigate as New -> Project. Select PyDev from the Wizard as shown in the below

screenshot.

LF MNew = =

Select a wirard —

Wizards:
pyDev

w e PyDew
¥ PyDrew Bdbdodule
El PyvDev Django Project
£ PyDev Google SApp Engine Project
1 PyDev P8lackage
& pPyDew Project

=

] Back et = Finizh Cancel

2. Select PyDev Project option from Wizard and click on next button to proceed.

3. It will open a PyDev project dialog box asking for Project name, project type,

grammar version and interpreter configuration.

4. Give the project name as “MyFirstPythonProject”, project type as Python, and

grammar version as 3.0-3.5.

5. Click on the given link to configure the Python interpreter as shown below. Here

we just need to give the path of python.exe where we installed Python on C drive.

L
Py Dew FProject
3 Project interpreter not specified

Project narme: | MyFirstPythonProject

Praject cantents:
Use default

Diractor: | CoPythan_ Warkspac e’ by FirstPythonPraject

Praject type
Choose the project type

= Python O Jython O lronPython

Grammar Version
| 3.0 =3.5
Interpreter

Blsasssanliasisan i niseisten el ais nrassassined
o Add praject directony to the PYTHORPATH
() Create 'sre’ Tolder and add it ta the PYTHORPATH
) Create links to existing sources (select therm on the next page)
) Dan't canfigure PYTHORPATH (te be doene manually later an)
Working sets
[]a&add praject to working sets

() < Back Mext = Finksh

Brensine

Select...

Cancel

6. Click on the Interpreter link; it will ask for how to

configure the interpreter since

we know the Python installation path, therefore, select “Manual Config” option.

{¥ Configure interpreter

F_"\I How would you like to configure the interpreter?

i

| Manual Config Quick Auto-Config

Advanced Auto-Config |

7. Click on the “New” button present at the top right corner and in the opened

dialogue box, enter the interpreter name and the interpreter executable path. Since

we are using Python version as 3.4.4, therefore enter the name as “Python 3.4.4”

and executable path as C:\Python34\python.exe. Click OK button to complete this

step.

=

by filter bext Pyithon Interpraters = o
lawn P %
D oy Python interpreters (e.g. python.exe). Double-chck to rename.
lawnScript
Faven Marms Location Pl
Whdyn
Ouwmph Chubck Aute-Config

Plug-in Develapmaent

ddvanced Auto-Config

w PyDev]

o Erter the narme snd soecutable of your interprater
Interactne T ! Up

= Interpreters E
IronBythe Interpreter Marme: Python 3.4.4 |

Hthon 1N jnperpreter Executable: | C\Python 34, python, e] Varinhles
Pathanid =, WIS LS LAY S
Laogging
PyLint Muw: Folder
Pylinat
Run/Dekasg
Scripting Pyl
Task Tags |
Remote Systerms
Rur/Debiag
SErved
Tearn
Terminal
walidation
el
Welr Services
ERL

Deven

(=24 Cancel Mex Eon/ZSipin
Remove

- - Pestore Defaults Apply

@ @ Cancel

8. A new dialogue box will be opened as shown. This step will ask to select all
folders that are required to be added to the SYSTEM Python path. Select all and
click on the OK button to complete this step.

L} Selection needed

Select the folders to be added to the SYSTEM pythonpath!
IMPORTAMT: The folders for your PROJECTS shouwld NOT be added here, but in your project configuration.

Checkthttp://fpydev.org/manual_101_interpreter.htmil for more details.
= CHhPython3nDLLs
[=]) CWPython3dlib
= CAPython34
] & CaPython3ddibsite-packages

Select All not in Workspace | | Select All Deselect All

@

9. Next, click on the Apply button and then the OK button to complete the setup for
Python first project as shown in the below screenshot.

typee filter test | Python Interpreters i e
Java Persictence o Python interpreters (e.g.: python.ese). Double-click to rename,
» lawaScript
» Maven Mame Location Pl
Mytyn 2 Pythan 344 C\Python3d,python.ee
Comph Quick Auto-Config
% Plug-in Development anfig
Advanced Auto-C
= PyDev
Builders Remove
» Editor
- Intmractive Conuole Up

w Interpreters
IranPythan Intes

Jython Interprete WL Libranes Forced Builtins Predefined B8 Environment & String Subsbtution Vanables
Python Interpret

Logging N L L Fhnone W D A o
Pyling w E Systern Wb
Pylinat i ChPythonldDLLs .
Run/Debug m ChPythondd kb M Eggy Tig(s)
Scripting Pylhew m CAPython3d :
Task Tags & CAPython3dkb site-packages Remove
+ Rermote Syvterns
+ Run/Dabug
SErvE
» Team
» Terminal
walidation
» Wl
¥ Web Services
XML

. il | Resors Oetaons

Al | oK Cancel

Down

Fhew Folder

10. Lastly, click on the Finish button to complete first “PyDev Project” set
up in Eclipse as shown in the below screenshot.

PwlDew Froject #
Create a new PyDev Project.

Project name: | My-Flr-:-Ei'-":,-:thcrnF'rujec{- |

Praject cantents:
Use default

Directory | CPythen Wearkspac e\ MyFirstPythanPraject Browse
Project type

Choose the project type
) Python O ython O IrenPython

Grammar Version

|30-3.5 ~ |
Interpreter
| Default - |

Erllsk nars bn el e RS A0 RS IRIEERLAAE Makssl
3 Add project directony to the PYTEOMPATH
) Create 'sre’ Tolder and add it te the PYTHORMPATH
) Create links to existing sources (select them on the next page)
2 Don't configure PYTHOMPATH (to be done manually later on)
Working sets

[] &cd project to working sets

e ki sets: Salect.,.

@ <o || Neas | [Emm][cencw

11. By this step, Python first project directory structure and path setup are
ready as shown in the below screenshot.

File Edit Mavigate Search Project Pydev Run Window Help

Fj T ila Ys [3 E # - o = q =
[2 PyDev Package Explorer &1 | = —’:"v| % v = O -
v (5 MyFirstPythonProject

B src

» & Python 3.4.4 (C:\Python34\python.exe)
= RemoteSystemsTempFiles

12. At the source directory, right click and navigate as New -> PyDev
Module.

File Edit Mavigate Search Project Pydev Run Window Help

ahd L, = #~0-Q~- &4~ feFleta vy
[# PyDev Package Explorer 2 BE| % =5 0|

v | MyFirstPythonProject

sl e >

n

Project...
Go Into =
Folder
SO File
PyDev Package

T Paste
3 Delete
& Rer Move...
Rename...

| Gopy
"

Rermove from Context Crl= &+ Shift+ Down Ecample...

Other.. Cerl+M

a

Import...
Export...

' E

Refresh F3

=

Run As 3
Debug As 3
Profile As 3
Validate

Team)
Restore from Local History...

PyDev y
Compare With y e £

Source) lesto display at this time.

13. This will open a dialogue box asking to enter package and PyDev
module name. Enter the name as “FirstPython” and click on the Finish button to
complete this step as shown in the below screenshot.

Craate n new Python modula #.
Source Folder | Ay FirstPythonProject/src | ! Browse... |
Package | | | i BFWI-O.-.-.-'
Marme | FirstPythen |
@ [Cancal |
14. The step above will open up another dialogue box, asking you to select

the template for the Python project. Choose here <Empty> and click on the OK

button.

| ————

= E ey

Aol CLI (srgEarsal

FAcduls: CLI (cptparse)

FACci e Clmas

Petrctnalem Folamin

Fotmmmlinnle L) rrabd e

PAciuler Lirittest sk st secd boarosee

Config available termplates..

b ——==__"1 Cancel
15. This will open the FirstPython.py file where we can edit and write the

Python program code as shown in the below screenshot. Python program files have

an extension as .py.

File Edit Sowrce Refactoring Mavigste Search Project Pydey Run Window Help

03 =l & =] L R v L = & Gl ¥ i
I PyDev Package Explorer =3 | E®|3 == 0O)| B FstPython I |
w L MyFirstPythonProject 1 B
~ [src 2 Banthor: Fython Tutorials
+ [F] FirstPython.py ¥ [=e i
w @@ Python 344 (CAPython3dhpython.eve) 1 princl"F=lcom= to Python First proiect@i|
. & /Pythonid
B External Libs

» B Forced builtins
B Predefined Completions
» B Systern Libs
= RemoteSysternsTempFiles

16. To run the Python program above, press Ctrl+F11 keys, it will open up

below dialogue box. Select “Python Run” option and click OK button to complete

this step.
| Run As - =R

Select a way to run 'FirstPython.py':

& [Python Run|

-:&-"-"J Python unit-test

Description

(] (=] Cancal

17. The final output will be displayed at the bottom of the Eclipse in the

console as shown in the below screenshot.

Console X Jﬁ "-j-.
<terminated> C:\Python_Workspace\ MyFirstPythonProjectisrc! FirstPython,py
Welcome to Python Firat project

This completes the installation, environment setup and execution for first Python program.
In the next chapter, we are going to learn about the various syntax used in Python

programming.

Chapter 3

Common Python Syntax

Python Identifiers

An identifier in any programming language is the name given to identify a variable,
function, class, module or another object. In Python language, an identifier begins with an
alphabetic letter A to Z or a to z or an underscore (_) followed by zero or more alphabetic

letters, underscores and digits (0 to 9).

Python programming language does not allow special characters such as @, $, /, and %
within identifiers. Python is a case sensitive programming language. Therefore, identifiers
such as ‘Python’ and ‘python’ are two different identifiers in Python programming

language.

Below are the naming conventions for identifiers in Python.

e (lass name in Python always begins with an uppercase letter and all other Python

identifiers starts with a lowercase letter.

e A Python identifier is private when such identifier begins with a single leading

underscore.

e A Python identifier is strongly private when such identifier begins with two leading

underscores.

e A Python identifier is a language-defined special name when such identifier ends

with two trailing underscores.

Python Reserve Words

Reserve words in any programming language are special commands that compiler or
interpreters understands, and these reserve words cannot be used as a constant or variable,

or any other identifier names in that programming language.

Python has the following reserve words, and all such keywords contain lowercase letters

only.

and def | exec if not | return
assert del |finally import| or try
break elif for in pass | while

class else | from is print | with

continue | except | global |lambda| raise | yield

Python Keywords

Lines and Indentations

Any block of code in Python are denoted by line indentation, which is rigidly enforced.
Python has no braces to denote blocks of code for class definitions and function
definitions or flow control. The number of spaces used in an indentation can be variable
but for all statements in a particular block, the number of spaces should always be same.

For example, below, the block is correctly indented and therefore, there is no error.

[F] Demo 2
1 :if False:
2 print ("A11l 1s good")
else:
4 print ("all is bad")
&

In the next example, since the last statement in the block is not properly indented,

consequently, the block has an error.

[F] Demo 2
1 iF False:
2 print ("A1l1l 1s good")
print {"Python the b=st")
4 ‘glge:
5 print ("211 15 bad")
0 s rint ("Incorrsct Indentations™)

Therefore, the conclusion is that in Python programming language, all the continuous lines

indented with the same number of spaces would form a block.

Representing a Statement as Multi-Line

Statements in the Python language ends with a new line. If the statement is required to be
continued into the next line, then the line continuation character (\) is used in Python
language. This line continuation character (\) denotes that the statement line should
continue as shown in the below screenshot. In the below example, we have three variables
resultl, result2 and result3 and the final output is copied to the variable named result.
Instead of writing the equation statement in a single line (result=result1+result2+result3),

here, we have used line continuation character (\) so that, it could be written in three lines

but represents a single statement in Python language.

[F] Demo 52

1 hesultl
2 result?z
result3

result =

(R O 3 TR R

B
a0

resultl

i+
-

result?z
result3

i print {"ResplE 15: ")
10 print (result)

&l Console &

<terminated> C\Python_Workspace\MyFirstPythonProjectsrc\Demo.py
Result is:
106

Also, a Python statement which is defined within braces (), {} and [] does not require the
line continuation character (\) when written as a multi-line statement. This kind of Python

statements are still interpreted as a single statement without the use of the line

continuation character (\).

|F] Demo F] MultiLine I
1 day= = {"Monday", "Tussday”®,
"Wz esday”, i
'._ h) 5 ¥
princ (days)
2 Console 2
<terminated> C:\Python_Workspace\MyFirstPythonProject\src\MultiLine.py
{'Thuraday', 'Tuesday', ‘'Saturday', "Wedne=day', "Monday"',

'Sunday’,

‘*Friday"}

Quotation in Python

33333

The Python language permits the use of single (“), double (“) and triple (”’ or ”””") codes to
represent a string literal, making sure that the same type of quote begins and ends that
string. In the below example, single, double and triple codes are used to represent a string
in a word, sentence or paragraph. When we print this variable, they print the string
irrespective of single, double and triple codes used for representing string literal in Python

language.

[F] Demo Pl MultiLine B] Literals 33

word = 'Single guetes. This 15 a wvord. '

santence = "Douhle Cuotes. This 1s a senktancs.”

i paragraph = """Iriple Quotes. T

5 print (word)

print (paragraph)

B Console &3

<terminated> C:\Python_Workspace\MyFirstPythonProject\src'\ Literals. py
Single quotes. This is a word.

Double Quotes. This is a sentence.

Triple Quoces. This is

a Faragraph

Comments in Python

Any comment in the Python language is represented by a hash sign (#) provided it is not
used inside a string literal between codes (single, double or triple). All characters after the
hash sign (#) and up to the end of the physical line are the part of comment and Python
interpreter ignores this statement while interpreting the whole program. In the below
example, the interpreter will just print the string present inside the print command and will

ignore the parts mentioned after a sign before and after as comments.

|F] Dema {P1 MultiLine P] Literals [Pl Comment £2

&) Console 2
<terminated> C\Python_Workspace\MyFirstPythonProject\src\Comment.py

Comments in Fython

Using Blank Lines

A blank line in the Python language is either a line with white spaces or a line with
comments (i.e. statement starting with a hash sign (#)). The Python interpreter while
interpreting a blank line, ignores it and no machine readable code will be generated. A

multiline statement in Python is terminated after entering an empty physical line.

Waiting for the User

Using the Python programming language, we can set up the prompt which can accept a
user’s input. The following line of the program will display a prompt, which says “Press

any key to exit”, and waits for the user input or action.

#! /usr/bin/python

raw_input (“\n\nPress any key to

exit.”)

Also, in the above statement, we have used “\n\n”. This is used to create two new lines
before displaying the actual line. Once the key is pressed by the user, the program will
end. By doing this, we can keep a window console open until the user has finished his

work with an application.

Multiple Statements on a Single Line

The Python language allows to write multiple statements on a single line if they are

separated by a semicolon (;) as demonstrated in the example below.

F| Example £
1 import Sys; sacrg = 'Hello Norld'; sys.scdout.writce(stcrg + "in")
& Consale i3 X
<terminated> C:\Python_Workspace\MyFirstPythonProject\src Example.py
Hello World

Multiple Statement Groups as Suites and Header Line

In the Python language, a group of individual statements making a single code block are
called suites. Whereas the compound or complex statements, such as if, def, while, and

class require a suite and a header line.

Header line is the one that begins a statement (with the keyword like if, elif, else, etc.) and
ends with a colon (:) and is followed by one or more lines which makes up the suite as
demonstrated in the below example. Here, if strg=="Hello World’: is a header line which

is followed by a suite (suite = ‘Found’).

¥l Example
AMpPOET IYVa: STTg =
if strg =——"
auice ='F
elif scrg ="
suite = L=r
elas :
suitce ="'

ays.stdout.write (Suite + "iao')

Bl Consale &2 =
<terminated> C\Python_Workspace\ MyFirstPythonProject\src Bxample.py

Found

Command Line Arguments

On UNIX OS, which has Python interpreter installed, we can take help and see all the lists
of the functions. These are the basic ones. The below screenshot demonstrates the help

command on the UNIX system and all the functions or short codes used.

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd: program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E :ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

Chapter 4
Types of Variables in Python

Variables in any programming language are the names of the reference to the reserved
memory locations which are used to store values. Similarly, when we are creating a

variable in Python then we are reserving some space in the memory.

These variables have their own data type. Based on the type, the interpreter allocates
memory and decides what kind of data can be stored in these reserved memory locations.
Characters, integers, decimals, etc. are the different data types which can be assigned to

such variables.

Assigning Values to Variables

In the Python language, equal sign (=) is used to assign values to the variables. Such
variables do not need explicit declaration. When we assign a value to a variable, the

declaration or creation happens automatically.

The operand to the left of the equal sign (=) is the name of the variable and the operand to
the right of the equal sign (=) is the value stored in the variable. This is demonstrated in

the below example.

F] Variables 2

number = 10

decimal = 10000.0
3 name = FMartin™
5 print (number)
print (decimall)
7 print [name)
El console & X

<terminated> C\Python_Workspace\MyFirstPythonProject\src\Vanables.py

1uWlou.u

Marcin

In the above example, the variable name ‘number’ has an integer value therefore, it
behaves as an integer without any data type declaration. Similarly, the variable name
‘decimal’ has a floating value and variable name ‘name’ has a string value. Python is a

THvery flexible language since it automatically determines the data type once the value is

assigned to the variable.

Multiple Assignment

The Python language allows the assignment of a single value to more than one variables
and multiple values to multiple variables which are separated by commas in a single line

as demonstrated in the below example.

B Multifssignment 2
a=b=c=d= 1000

B Console &2 b
<terminated> C:\Python_Workspace\MyFirstPythonProjectisrc MultiAssignment. py

Patrick

1000

In the first case (many-t0-one), the single value 1000 is assigned to many variables a, b, ¢
and d.

In the second case (many-to-many), multiple values (“Jose”, “Patrick”, “Peter”) are
assigned to multiple variables k, | and m. However, here is one to one mapping between a
variable and a value, e.g. variable k will contain value as “Jose”, variable 1 will contain

value as “Patrick” and variable m will contain value as “Peter”.

Standard Data Types in Python

In Python, the data is stored in memory which can be of many types. For example, a
person’s birth year is stored as a numeric value and his or her qualifications are stored as
alphanumeric characters. Depending on the type of value, the Python has different

standard data types that are used to define the type of value a variable can contain.

Python language has five standard data types. We are going to discuss them in detail.

These are:
Numbers
Strings

Lists

Tuples

Dictionary

Python Numbers

In Python language, the number data type are used to store numeric values. Numeric
variable are created automatically in Python when we assign a numeric value to it as

shown in the below example.

B Number &3
1 wariablel = 198
variable2 = 12.87

1 print({variablel}
5 print(variableZ)

Bl Console i X
<terminated> C\Python_Waorkspace\MyFirstPythonProjectisrc\Number. py

198

12.87

Python supports below four different numerical types.
int (signed integers)
long (long integers, they can also be represented in hexadecimal and octal)
float (floating point real values)
complex (complex numbers)

Below are the examples of number objects in Python language.

Int Long float Complex
40 7965391L 0.0 8.14j
900 -0x29546L 17.90 675.]
-589 0455L -31.9 23.8922e-
36j

050 OxABDDAECCBEABCBFEACI | 62.3+e68 | .6776]
-0630 563213626792L -560. -.6844+0J
-0x1290 | -032318432823L -82.53e200 | 4e+86J
0x37 -5627995245529L 40.2-E52 7.59e-7]

Below are few things to note about Python number objects.

denoted by (real + imgj), where real and img are the real numbers and j is the

A complex number consists of an ordered pair of real floating-point numbers

imaginary number unit.

however it is recommended to use only an uppercase L in order to avoid confusion

Python language allows to use a lowercase L with long data type number,

with the number 1.

In Python, we can delete the reference to a number object (variable) by using the ‘del’

statement. Given below is the syntax of the ‘del’ statement.

del

variablel[,variable2[,variable3]....,variableN]]]]

Using the above statement, we can delete a single variable or multiple variables by using

the ‘del’ statement as shown in the below example.

Python displays long integers (data type number) with an uppercase L.

¥] Number 23

variablel

[

2 wvariahle2

wvariable3 32.8

]
¥

i wvariable4

del variablel
del wvariablel,variable3

3 print(variablel)
print (variables)
B Conscle 3 X %
<terminated> C\Python_Workspace\MyFirstPythonProject\src Mumber.py
t::::t::k (most recent call last):

Eython Workspace\MyFirsctBythonProjecthsrc\Mumber.py", line 9, in <module?

In the above example, since we have deleted variable2 using the ‘del’ command, this

variable do not exist anymore when we tried to print it.

Strings in Python

In Python language, Strings are identified as a contiguous set of characters which are
represented within the quotation marks. Python language permits the use of single (),
double (“) and triple (”” or ”””) codes to represent a string literal, making sure that the

same type of quote begins and ends that string.
Strings in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with indexes
starting at O in the beginning of the string and working their way from -1 at the

end, subsets of strings can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more strings.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we
want to print string 3 times, then simply we can give command as print (string *
3).

All of above operators are demonstrated in the below example.

F] String &2

strg = "Hell

print (acrg)

4 print (acrg[3]}
rint (strg[l:8])
& princ (acrgl3:])
yrint (actrg * 3)
rint (strg + oncatena Demo ')
2 Console 22 X R

<terminated> C:\Python_Workspace\MyFirstPythonProject'src\String.py
Hello Pychon!

1

ella Fy

lo Pychon!

Hello Python!Hello Python!Hello Python!

Hello Python!Concatenate Demo

Lists in Python

In Python language, a List is the most versatile compound data types. A list contains items
which are separated by commas and enclosed within square brackets ([]). Lists are similar
to arrays in C or C++ in some extents. The difference between arrays in C /C++ and lists
in Python is that the former cannot have different datatype for elements while latter can

have different datatype for elements.

| Lists 2
liscademn = ["x '« 043 , 9.43, 'peter', 670.2
=malllises = ([543, "'patrick’)
print (listsdemo)
print (lisctademo[1l])

print (liscademo[l:2])
princ {(lisctademo[3:])

print (smallliscs * 2)
print (listsdemo + smalllista)
B Conzole 7 =< 5&

<terminated> C\Python_Workspaceh\MyFirstPythonProjecthsrcLists.py
{"xy=z", 543, 5.43, 'peter', S70.2)

243

(543,)

{"pecer”, &70.2)

(543, "pacricsk', 543, "pacrick")

{"xyx", 543, 9.43, 'peter', 670.2, 543, '"pacrick")

Lists in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with element
position starting at 0 in the beginning of the list and working their way from -1 at

the end, subsets of the list can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more lists.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we

want to print a list 2 times, then simply we can give command as print (listsdemo *

2).

Tuples in Python

In Python language, a tuple is a sequence data type which is almost similar to the list. A

tuple consists of a number of values which are comma separated. Unlike lists, tuples are

enclosed within parentheses.

The main differences between tuples and lists are as follows.

Tuples are enclosed in parentheses (()) whereas Lists are enclosed in brackets ([

D.

Tuples are read-only lists as their elements and size cannot be changed, while

Lists can be updated. We can change lists elements and size.

] Tuples &2
toplesdemo = ["xyz?, 543 . 9.43, ‘peter’, &70.2)
smallcuples = (543, 'patrick’)
print (tuplesdemo)
print (tuplesademo[l])
rint (tuplesdemo[2:4])
print (tuplesdemo[l:])
rint (tuplesdemo * 2)
print (tuplesdemo + smalltuples)
B Console &1
<terminated> C:\Python_ Workspace\MyFirstPythonProjectisrc' Tuples.py
("xyz"', 543, 9.43, 'pecer', 670.2)
543
(9.43, 'peter')
(543, 9.43, 'peter', 670.2)
["xyz', 543, 9.43, 'peter', &67T0.2;, "xyz', 543, 9.43;, '"peter', &70.2)
("zyz", 543, 9.33, "perer', &70.2, 543, 'patrick’)

Tuples in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with element
position starting at 0 in the beginning of the tuple and working their way from -1 at

the end, subsets of the tuple can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more tuples.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we
want to print a tuple 2 times, then simply we can give command as print

(tuplesdemo * 2).

Dictionary in Python

A dictionary in Python represents hash table. A hash table (or hash map) is a data structure
which is used to implement an associative array, a structure that can map keys to values.
To compute an index of an array of buckets or slots, a hash table uses a hash function to
procure the desired value. This concept in Python work like associative arrays or hashes
found in Perl and consist of key-value pairs. Keys in Python dictionary can be of any data
type, however mostly they are either numbers or strings. On the other hand, values in
Python dictionary are Python objects.

In Python, syntax wise there are two ways dictionaries can be created which are
mentioned below:

1. Dictionary name is given with curly braces ({ }) first (E.g. veggie = {}). Next we
can define the key value pairs one by one as (E.g. veggie [“tomatoes”] = 20). Here,
key is tomatoes and the value is 20.

2. Dictionary can also be defined with all key value pairs in one go within the curly
braces ({}). (E.g. fruits = {‘apple’: ‘Good’,’banana’:‘Better’, ‘orange’: ‘Best’}).
Here, dictionary name is ‘fruits’, ‘apple’ is one of the key of such dictionary and

‘Good’ is the associated value with this key.

These syntaxes are demonstrated in the below example.

) dictionary 1

veggie = {}

veggis["or 5]

print (veggie.ger |
princ (fruits)
Bl Console

20
None
no tuna found

veggie["tomatoes"

& fruits = {'apple=';:

princ (veggie["toma

11 print (veggie.get ["carrot™

"carret™, "no cpna found™))

<terminated> C:\Python_Workspace\MyFirstPythonProject\src\dictionary.py

{'apple': 'Good'", '"banana': 'Better', 'orange': "Best'}

Data Type Conversion

While writing programming code, we may need to perform data type conversions. To
support such operations, Python language has several built-in functions which are used to
perform conversion from one data type to another. After conversion, these functions

return a new object representing the converted value. Below is the list of Python built-in

functions along with their operational description.

Function

Description

int(value [,Base])

This function converts value into an
integer. “Base” specifies the base if

value is a string.

long(value [,Base])

This function converts value into a long
integer. “Base” specifies the base if

value is a string.

chr(value)

This function converts an integer into a

character.

This function is used to create a

complex(real [,imag])

complex number.

This function is used to create a

dict(Value) dictionary. “Value” must be a sequence
of (key, value) tuples.
This function is used to evaluate a string
eval(strg) _)
which returns an object.
This function converts value into a
float(value)) _
floating-point number.
This function converts value into a
frozenset(value)
frozen set.
This function converts an integer value
hex(value)) _]
into a hexadecimal string.
list(value) This function converts value to a list.
This function is used to convert an
repr(value) _ _]
object value to an expression string.
This function is used to converts an
oct(value)))
integer value to an octal string.
This function is used to converts a single
ord(value) o
character to its integer value.
This function is used to convert value
set(value))
into a set.
This function is used to convert an
str(value) _ _ _]
object value into a string representation.
This function is used to convert value
tuple(value)

into a tuple.

This function is used to convert an

unichr(value) integer value into a Unicode character.

Chapter 5
Using Operators and Operands

Operators can be defined as the constructs which can manipulate the value of operands.

Consider the expression 9 - 4 = 5. Here, 9 and 4 are known as operands and - is known as

operator.

Types of Operator

In Python language, following are the operators that are supported.

Arithmetic Operators

Assignment Operators

Bitwise Operators

Comparison (Relational) Operators

Identity Operators

Logical Operators

Membership Operators

Let us have a look on all above Python operators one by one.

Arithmetic Operators in Python

Assume variable x holds 30 and variable y holds 30, then —

multiplies values on either

side of the operator.

Operator Description Example

(+) Addition It is a binary operator that|x +y =60
adds values on either side of
the operator.

(-) Subtraction It is a binary operator that | x—y=20
subtracts right hand operand
from left hand operand.

(*) Multiplication | It is a binary operator that| x * y =900

(/) Division It is a binary operator that|y/x=1
divides left hand operand by
right hand operand.

(%) Modulus It is a binary operator that |y % x=0
divides left hand operand by
right hand operand and returns

remainder.

(**) Exponent It is a binary operator that | x**y =30 to the
performs exponential (power) | power 30

calculation on operators.

(//) Floor It is a floor Division operator. | 7//2 = 3 and
Division The division of operands| 5.0/2.0 = 2.0,
where the result is the quotient | -11//3 = -4,

and the digits after the|-11.0//3 =-4.0
decimal point are removed.
But in the case of the
operands which are negative,
the result is floored and
rounded away from zero

(towards negative infinity).

Assignment Operators in Python

In the below example, let us assume variable x holds a value of 10 and variable y holds a

value of 20. Variable z is the result operand.

Operator Description Example

= It assigns values from right|z = x + y assigns

side operands to left side | value of x + y into

operand.

z which is equal
to 30.

+= Add AND It adds the value of right|z += x s
operand to the value of the | equivalent to z =
left operand and assign the | z+ x.
result to left operand.

-= Subtract AND | It subtracts the value of right|z -= x s
operand from the value of | equivalenttoz =z
left operand and assign the | — x.
result to left operand.

*= Multiply | It multiplies the value of |z *= x s

AND right operand with the value | equivalentto z = z
of left operand and assign the | * x.
result to left operand.

/= Divide AND | It divides the value of left|z /= x s

operand with the value of
right operand and assign the

result to left operand.

equivalenttoz = z

/ X.

%=Modulus
AND

It takes modulus on the
values using two operands
and assign the result to left

operand.

z %= x 1is
equivalenttoz = z

% X.

**=Exponent
AND

It performs exponential
(power) calculation on the
operators and assigns the

result to the left operand.

z *t= x is
equivalentto z = z

** %,

/= Floor

Division

It performs floor division on
the operators and assigns the

result to the left operand.

z /= x 1is
equivalent to z= z
/I X.

Bitwise Operators in Python

Bitwise operator are operators that work on the bits and performs bit by bit operation. For
example, if variable x = 60; and variable y = 13; then their equivalent binary format will

be as follows.

x = 0011 1100; y = 0000 1101. In the below example, binary AND, OR, XOR and Ones

complement operations are demonstrated using Python bitwise operators.

F| Bitwiseoperator 2

1 x = &0
i print (x&v)
5 print (®]|v¥)
print (x7Y)
rint (~x)
print (x<<2)
rint ([x>>2)
B Console &2 =

<terminated> C\Python_Workspace\MyFirstPythonProject\srch\Briwiseoperator. py
12

61

49

-61

240

15

Python language supports the following Bitwise operators.

Operator

Description

Example

& Binary AND

Binary AND operator copies
a bit to the result if it is

present in both operands.

(x & y) will give
the result as 12.
(0000 1100

binary).

in

| Binary OR

Binary OR operator copies a
bit if it is present in either

operand.

x | y) will give
the result as 61.
(0011 1101

binary).

in

A Binary XOR

Binary XOR operator copies
the bit if it is set in one

operand but not both.

(x N y) will give
the result as 49.
(0011 0001

binary).

in

~ Binary Ones

Complement

Binary Ones Complement
operator is an unary and has

the effect of ‘flipping’ bits.

(~x) will give the

result as -61.
(1100 0011 in
binary). 2’s

complement form
due to a signed

binary number.

<< Binary Left
Shift

In Binary Left Shift operator,

the left operands value is

x <<2 will give

the result as 240

Shift

operator, the left operands

moved left by the number of | (1111 0000 in
bits specified by the right | binary).
operand.

>> Binary Right|In Binary Right Shift|x >>2 will give

the result as 15

value is moved right by the
number of bits specified by
the right operand.

(0000 1111 in

binary).

Comparison (Relational) Operators in Python

Comparison operators in Python language compare the values on either sides of them and

decide whether the relation among them is true or false. They are also known as relational

operators.

In the below example, variable x holds 20 and variable y holds 30.

Operator

Description

Example

For this relational operator, if
the values of two operands
are equal, then the condition

becomes true.

(x ==Yy) is false as
both

different values.

have

For this relational operator, if
values of two operands are
not equal, then condition

becomes true.

(x !=y) is true as
both

different values

have

<>

For this relational operator, if
values of two operands are
not equal, then condition

becomes true.

(x <> y) is true.
This is similar to

(!=) operator.

For this relational operator, if
the value of left operand is
greater than the value of right
then

operand, condition

becomes true.

(x > y) is false as
the value of x is
less than the value

of y.

For this relational operator, if

(x <y) is true as

the value of left operand is
less than the value of right
then

operand, condition

becomes true.

the value of x is
less than the value

of y.

For this relational operator, if
the value of left operand is
greater than or equal to the
value of right operand, then

condition becomes true.

(x >=Yy) is false as
the value of x is
neither greater nor
equal to the value

of y.

For this relational operator, if
the value of left operand is
less than or equal to the value
then

of right operand,

condition becomes true.

(x <=y) is true as
the value of x is
less than the value
of y. Although
they are not equal
yet the result is
true as the first

condition is true.

Identity Operators in Python

Python language has two identity operators (is and is not). Identity operators are operators

that compare the memory locations of two objects. Both of the identity operators are

explained below.

Operator

Description

Example

Is

This

evaluates to

identity operator
the

variables on either side of the

true if

operator point to the same

object (memory location

reference). Otherwise it

evaluates to false.

X is y, in this
case the results is
1 if ref(x) equals

ref(y).

is not

This

evaluates

identity

to false

operator point to the same

object (memory

reference). Otherwise

evaluates to true.

operator
if the

variables on either side of the

location
it

x is not y, in this
case the result is 1
if ref(x)
equal to ref(y).

is not

Logical Operators in Python

Python supports three logical operators and, or and not. Following are their description

with example.

Operator Description Example
and (Logical | If both the operands are|If x and y are true
AND) true then condition | then the condition
becomes true. becomes true else
false.
or (Logical OR) | If any of the two operands | If x or y are true,
are non-zero then condition | then the condition
becomes true. becomes true else
false.
not (Logical | It is used to reverse the | If x is true, then Not
NOT) logical state of its operand. | (x) will be false and
vice-versa.

Membership Operators in Python

In Python language, the membership operators test for membership in a sequence, such as

lists, tuples, or strings. Both of the membership operators are explained below.

Operator Description Example

In This membership | x in y, in this case the
operator evaluates to|results is 1 if x is a
true if it finds that a | member of sequence y.

variable is the member
in the specified
sequence and otherwise

it evaluates to false.

not in This membership | x not in y, in this the
operator evaluates to | result is 1 if x is not a
true if it does not find a | member of sequence y.

variable is the member
in the specified
sequence and otherwise

it evaluates to false.

Operators Precedence in Python

Below table has a lists of all operators from highest precedence to lowest precedence in

Python language.
Operator Description
*k Exponentiation (raise to the power)
~ 4+ - Ones complement, unary plus and minus.
*1 % // Multiply, divide, modulo and floor division.
+ - Addition and subtraction.
>> << Right and left bitwise shift.
& Bitwise ‘AND’.

A Bitwise exclusive "OR’ and regular "'OR’.
<=<>>= Comparison operators.

<> === Equality operators.

=%=/=//=-= | Assignment operators.

4= k= kk—

is, is not Identity operators.

in, not in Membership operators.

not, or, and Logical operators.

Chapter 6
Using Sequential Loops

When any program is executed, it runs sequentially. The statement which appears first in
the sequence is executed first then the next statement and so on till the last statement of
the program. Many times there is a requirement to run same block of code in a program

multiple times then there arise a need of a control structure known as loops.

A loop makes a statement or group of statements in a block of code to execute multiple
times if the condition is true and exits the loop when the condition becomes false. Such

loop is illustrated in the below diagram.

\\/ If false

Types of Loop in Python

In Python programming language, following are the types of loops used to handle looping

requirements.
Loop Type Description

While loop type, repeats a statement or group of
statements while a given condition is true. It tests
the condition each time it executes the loop body

while loop and it exits the loop when condition becomes false.
For loop type executes a sequence of statements
multiple times and abbreviates the code that

for loop manages the loop variable.

It is a loop within a loop. In Python we can use a
while loop in another while or for loop or for loop

nested loops in another while or for loop.

Loop Control Statements in Python

Loop control statements in Python are used to change execution from its normal sequence.
When such execution leaves a scope, all automatic objects that were created in that scope
are destroyed or removed.

In Python language, the following control statements are supported.

Control Statement Description

The break statement in Python is used to
terminate the loop statement and transfers
execution to the statement immediately

break statement following after the end of loop.

The continue statement in Python is used to

cause the loop to skip the remainder of its body

and immediately retest its condition prior to

continue statement | reiterating the looping body.

The pass statement in Python is used when a
statement is required syntactically but we do
not want any command or code to execute on

pass statement that statement.

Loop and Control Statement Python Code Example

While Statement

The syntax of a while loop in Python programming language is as follows.

while expression:

statement(s)

Example code for while loop in Python.

] while 2
count = 0
while ([count < 3):
print ('The current pount 1s:', count)
count = count + 1
print ("While Loop Ended!"™)
Bl Console &2 i X
<terminated> C\Python Workspace\MyFirstPythonProject\src\while.py
The current count is: 0
The current count is: 1
The current count is: 2
While Loop Ended!

For Statement

The syntax of a “for’ loop in Python programming language is as follows.

for iterating_var in sequence:

statements ()

Example code for ‘for’ loop in Python.

¥ fordoop I3
veggies = ['poEate’, ‘tomatess', ‘'onion']
for index in range (len(veggies)):
print ['The Current Veggie :', veggies[index]])
print (["For loop ended!™)
B Console &3 b4

The Current Veggie : potate
The Current Veggie @ comatoes
The Current Veggie

For loop ended!

Nested Loop

As explained earlier, it is a loop within a loop. Below is the syntax for nested for loop in
Python.

for iterating_var in sequence:
for iterating_var in sequence:
statements(s)

statements(s)

Below is the syntax for nested while loop in Python.

while expression:
while expression:
statement(s)

statement(s)

Below is an example for ‘while nested loop in Python along with its output.

s

[F] whilenestedlocp &2

countl = 0

while [countl < 3):
count2 = 0
while ([count2 < 3):

Exiting

Hested

While Loop!

is
ia
ia
ia
isa
i3
ia
i3
ia

1]

(=T C AN =T L

K

5 print ("Current valoes for cot

g count2 = count2 + 1

T countl = countl + 1

print ("Exiting Nested While Loop!"™)

B Consale =2
<terminated> C\Python_Workspace\MyFirstPythenProject\src\whilenestedloop.py
Corrent valuoes for countl ia 0 and count2
Corrent values for countl ia 0 and count2
Corrent values for countl ia O and count2
Corrent valunes for countl ia 1 and count2
Corrent values for countl ia 1 and count2
Corrent valunes for countl ia 1 and count2
Corrent valunes for countl ia 2 and count2
Corrent valnes for countl ia 2 and count2
Corrent values for countl ia 2 and count2

"

, count?)

o X % O

Example on control statements in Python

[Fl controistatement I3 i

countl=counta=0|
princ{"First axamplie on break statement™)
while (countl < 4):
print ("for Ioop
5 1Af (countl=—=1) =
break
print ("Hr=ak
3 countl=countl + 1
S primt {(“Break happe
10 print {*“s=cond =xampl
11 while {count2 < 2):
print (“for loocp
if (countl==32j ;

W s e

[]

countl)

emern s *)

("
LU

", Scountl)

I
N W L

count2=count + 1
L SoOntinue
L& print nCon § pEned on ool ", Ssuncd)
7 alae:
& print | e noet heppenesd on countcd: ", ocounct)
counti=count? + 1
20 Pprinc ("Exit happened on copntf: ", Ccounc?)

B Console 22

<terminated=> Ci\Python_WorkspaceMyFirstPythonProject\src controlstatement. py
Firarc example on break scacement

for loop Processing Ccurrent countcl: o
for loop Processing Ccurrent Countl: i
|Break happened on countl: i

second example on CONTiINUE STaTCamant
for loop Frocessing current countz: 0O
Continue not happened on count2: 0
for loop Frocesaaing current countZ: 1
Continue not happened on count2: 1
Exit happened on counc2: 2

Chapter 7

Decision Making and Expressions

While writing a program, most of the time we face a situation where we have to make a
decision. Decision making is anticipation of conditions that could occur while execution

of a program and there is a need to specify some actions according to those conditions.

In a decision making structures, there is a condition which is either a single expression or
multiple expressions. This condition when evaluated produce either TRUE or FALSE as
outcome. Based on the outcome, we need to determine which action to take and which

statements to execute. Refer the figure below to understand it clearly.

/,

..\‘-'\ -\.'I&‘
, o’

FALSE

TRUE

Above is the general form of a decision making structure that is found in most of the
programming languages including Python.

In Python programming language, it should be noted that any non-zero and non-null

values are assumed as TRUE, however if it is either zero or null, in that case it is assumed
as FALSE value.

Following are the types of decision making statements in Python language.

Statement Description

An ‘if’ statement consists of a boolean expression
which generally follows either one or more

if statements statements.

An ‘if’ statement can be followed by an
optional else statement. When the boolean
expression is TRUE then the statements in ‘if’
block are executed and if it is FALSE then the

if...else statements in ‘else’ block are executed skipping the
statements statements present in ‘if’ block.

Nested if...

elif...else Nested ‘if’ statements are ‘if...elif...else’
statements statements within other ‘if’ statement.

Syntax for if and if...else statement.

Below is the syntax for if statement alone in Python language.

if expression:

statement(s)

Below is the syntax for if...else statement alone in Python language.

if expression:
statement (s)

else:

http://www.tutorialspoint.com/python/python_if_statement.htm
http://www.tutorialspoint.com/python/python_if_else.htm
http://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

statement (s)

Python code example on if...else statement

o ifelse 17
valus = 10
value2 = 34

3 if (value == yvalue2):

print | =] !
else:;
print | E alus m]
B Console 2 4
<terminated> C\Python_Workspace\MyFirstPythonProject\src\ifelse.py
Both valuesa do not match!

Python Code example to demonstrate Nested if-elif-else statement.

Below is the syntax of the nested if...elif...else construct may be:

if expressionl:
statement(s)
if expression2:
statement(s)
elif expression3:
statement(s)
else
statement(s)

elif expression4:
statement(s)

else:

statement(s)

¥] nestedifelse 3

value = 10

2 if walue < 20:
A 3 print ("Logical expression value 15 less than 207)
4 if walue == 15:
5 print ("Given value i1s 15"7)
& elif valus == 10:
7 print ("Given value is 107)
g elif wvalue == 5:

print ("Given value 15 E")
10 elif wvalus < 5:

11 print ("Logical Expression value i1s less than §")
12 else:

13 print ("Could not find true expression™)

14

15 print ("Demo for if...glif...e2lse ends!"™)

B Console 2 i

XK

<terminated> C:\Python_Workspace\MyFirstPythonProject\src\nestedifelse.py

Ich:Lcal expression value ia less than 20
Given value ias 10
Demo for if...elif...elses enda!

Chapter 8

Strings and Functions in Python

In the previous chapters, we have already discussed about how to declare string and
numbers in Python. In this chapter, we are going to discuss about various Python in-built
mathematical, random number, trigonometric functions and their use on numbers and in-

built string methods.

Mathematical functions

Function Returns (description)

abs(x) This function determines the absolute value of x,

which is the (positive) distance between x and zero.

ceil(x) This function determines the ceiling of x, which is

the smallest integer not less than x.

cmp(X, y) This function returns values as -1, 0 and 1. It

returns-1 if x <y, 0if x==y,or L if x >y.

exp(x) This function determines the exponential of x: ex.
fabs(x) This function determines the absolute value of x.
floor(x) This function determines the floor of x, which is the

largest integer not greater than x.

log(x) This function determines the natural logarithm of x,

for x> 0.

log10(x) This function determines the base-10 logarithm of x

for x> 0.

max (x1, x2,..)

This function determines the largest of its
arguments, which is the value closest to positive

infinity.

min (x1, x2,..)

This function determines the smallest of its
arguments, which is the value closest to negative

infinity

modf(x)

This function determines the fractional and integer
parts of X in a two-item tuple. Both parts have the
same sign as x. The integer part is returned as a

float by the function.

pow(x, y)

This function determines the value of x**y.

round(x [,n])

In this function, x rounded to n digits from the
decimal point. Python rounds away from zero as a
tie-breaker, round (0.5) is 1.0 and round (-0.5) is
-1.0.

sqrt(x)

This function determines the square root of x for x
> 0.

Random Number functions

Function

Description

choice(seq)

This function returns a random item from a list,

tuple, or string.

stop [,step])

randrange ([start,] | This function returns a randomly selected

element from range (start, stop, step).

random()

This function returns a random float r, such that 0

is less than or equal to r and r is less than 1.

seed([x]) This function sets the integer starting value used
in generating random numbers. Call this function
before calling any other random module function.
Returns None.

shuffle(lst) This function is used to randomize the items of a

list in place. It returns Nothing.

uniform(x, y)

This function returns a random float r, such that x

is less than or equal to r and r is less than y.

Trigonometric functions

Function Description

acos(x) This Python in-built trigonometric function returns
the arc cosine of x, in radians.

asin(x) This Python in-built trigonometric function returns
the arc sine of x, in radians.

atan(x) This Python in-built trigonometric function returns
the arc tangent of x, in radians.

atan2(y, x) This Python in-built trigonometric function returns
atan(y / x), in radians.

cos(x) This Python in-built trigonometric function returns

the cosine of x radians.

hypot(x, y)

This Python in-built trigonometric function returns

the Euclidean norm, sqrt(x*x + y*y).

sin(x) This Python in-built trigonometric function returns
the sine of x radians.

tan(x) This Python in-built trigonometric function returns
the tangent of x radians.

degrees(x) This Python in-built trigonometric function
converts angle x from radians to degrees.

radians(x) This Python in-built trigonometric function

converts angle x from degrees to radians.

Mathematical Constants

Constants

Description

Pi

The mathematical constant pi.

The mathematical constant e.

Python in-built String Methods

Methods

Description

capitalize()

This Python in-built function is for String
which makes first letter of the string in

uppercase

center(width, fillchar)

This Python in-built function for String
returns a space-padded string with the
original string centered to a total of width

columns.

count(str, beg=
0,end=len(string))

This Python in-built function for String
counts how many times str occurs in string
or in a substring of string if starting index

beg and ending index end are given.

decode(encoding=‘UTF-

8’,errors="strict’)

This Python in-built function for String
decodes the string wusing the codec
registered for encoding. Encoding defaults

to the default string encoding.

encode(encoding=‘UTF-

8’,errors="strict’)

This Python in-built function for String
returns encoded string version of string; on
error, default is to raise a ValueError
unless errors is given with ‘ignore’ or

‘replace’.

endswith(suffix, beg=0,
end=len(string))

This Python in-built function for String
determines if string or a substring of string
(if starting index beg and ending index end
are given) ends with suffix; returns true if

so and false otherwise.

expandtabs(tabsize=8)

This Python in-built function for String
expands tabs in string to multiple spaces;
defaults to 8 spaces per tab if tabsize not

provided.

find(str, beg=0
end=len(string))

This Python in-built function for String
determine if str occurs in string or in a
substring of string if starting index beg and
ending index end are given returns index if

found and -1 otherwise.

index(str, beg=0,
end=len(string))

This Python in-built function for String is
same as find(), but raises an exception if

str not found.

isalnum()

This Python in-built function for String
returns true if string has at least 1 character
and all characters are alphanumeric and

false otherwise.

isalpha()

This Python in-built function for String
returns true if string has at least 1 character
and all characters are alphabetic and false

otherwise.

isdigit()

This Python in-built function for String
returns true if string contains only digits

and false otherwise.

islower()

This Python in-built function for String
returns true if string has at least 1 cased
character and all cased characters are in

lowercase and false otherwise.

isnumeric()

This Python in-built function for String
returns true if a Unicode string contains

only numeric characters and false

otherwise.

isspace()

This Python in-built function for String
returns true if string contains only

whitespace characters and false otherwise.

istitle()

This Python in-built function for String
returns true if string is properly

“titlecased” and false otherwise.

isupper()

This Python in-built function for String
returns true if string has at least one cased
character and all cased characters are in

uppercase and false otherwise.

join(seq)

This Python in-built function for String
merges (concatenates) the string
representations of elements in sequence

seq into a string, with separator string.

len(string)

This Python in-built function for String
returns the length of the string

ljust(width[, fillchar])

This Python in-built function for String
returns a space-padded string with the
original string left-justified to a total of

width columns.

lower() This Python in-built function for String
converts all uppercase letters in string to
lowercase.

Istrip() This Python in-built function for String
removes all leading whitespace in string.

maketrans() This Python in-built function for String

returns a translation table to be used in

translate function.

max(str) This Python in-built function for String
returns the max alphabetical character
from the string str.

min(str) This Python in-built function for String

returns the min alphabetical character from

the string str.

replace(old, new [,

This Python in-built function for String

max]) replaces all occurrences of old in string
with new or at most max occurrences if
max given.

rfind(str, This Python in-built function for String is

beg=0,end=len(string))

same as find (), but search backwards in

string.

rindex(str, beg=0,
end=len(string))

This Python in-built function for String is
same as index (), but search backwards in

string.

rjust(width,[, fillchar])

This Python in-built function for String
returns a space-padded string with the
original string right-justified to a total of

width columns.

rstrip()

This Python in-built function for String

removes all trailing whitespace of string.

split(str="",

num=string.count(str))

This Python in-built function for String
splits string according to delimiter str
(space if not provided) and returns list of
into at most num

substrings; split

substrings if given.

splitlines(

num=string.count(‘\n’))

This Python in-built function for String
splits string at all (or num) NEWLINEs
and returns a list of each line with
NEWLINESs removed.

startswith(str,
beg=0,end=len(string))

This Python in-built function for String
determines if string or a substring of string
(if starting index beg and ending index end
are given) starts with substring str; returns

true if so and false otherwise.

strip([chars])

This Python in-built function for String
performs both Istrip() and rstrip() on string

swapcase()

This Python in-built function for String

inverts case for all letters in string.

title()

This Python in-built function for String
returns “titlecased” version of string, that
is, all words begin with uppercase and the

rest are lowercase.

translate(table,

deletechars="")

This Python in-built function for String
translates string according to translation

table str(256 chars), removing those in the

del string.

upper() This Python in-built function for String
converts lowercase letters in string to
uppercase.

zfill (width) This Python in-built function for String

returns original string leftpadded with
zeros to a total of width characters;
intended for numbers, zfill () retains any

sign given (less one zero).

isdecimal() This Python in-built function for String
returns true if a Unicode string contains
only decimal characters and false

otherwise.

String Formatting Operator

Python language has the string format operator % which is unique to strings and makes up
for the functions present for C language printf (). Following is the list of such operators in
Python.

Format Symbol Conversion

%cC It converts to character

%s string conversion via str() prior to formatting

%i It converts to signed decimal integer

%d It converts to signed decimal integer

%u It converts to unsigned decimal integer

%0 It converts to octal integer

%X It converts to hexadecimal integer (lowercase
letters)

%X It converts to hexadecimal integer (upper case
letters)

Y%oe It converts to exponential notation (with

lowercase ‘e’)

%E It converts to exponential notation (with upper
case ‘E’)

%f It converts to floating point real number

%g It converts to the shorter of %f and %e

%G

It converts to the shorter of %f and %E

Python code example for String Formatter

¥ StringFormatting 5

varl = 'bast
2 wvarl2 = "language
3 wari =1

4 print ["EPybh 15 Che #F programm j #5. Ic's No. #d " % (warl, wvari, wvar3d))

El Console 2 x &

<terminated> C\Python_Workspace\MyFirstPythonProject\src\ StringFormatting. py
Fython is the bear programming language. It's NHo. 1

In the above example %s string formatter is used to format a string and %d is used to

format an integer into a string.

Escape Characters

Python language has the following list of escape or non-printable characters that are

represented with backslash notation.

An escape character gets interpreted by Python in a single quoted as well as double quoted

strings.
Backslash A Hexadecimal Description
Notation Character
\a 0x07 It is used for Bell or alert.
\b 0x08 It is used for Backspace.
\cx It is used for Control-x.
\C-x It is used for Control-x.
\e Ox1b It is used for Escape.
\f 0x0c It is used for Formfeed.
\M-\C-x It is used for Meta-Control-x.

\n 0x0a It is used for Newline.

\nnn It is used for Octal notation, where n
is in the range 0.7.

\r 0x0d It is used for carriage return.

\s 0x20 It is used for space.

\t 0x09 It is used for tab.

\v 0x0b It is used for vertical tab.

\x It is used for character x.

\xnn It is used for hexadecimal notation,

where n is in the range 0.9, a.f, or A.F

Chapter 9
Creating, Using, and Modifying Lists

In chapter 4, we have already discussed about Lists as Python data type. In this chapter we
are going to discuss basic lists operations and Python in-built methods and functions for
Lists.

Creating a list

A list in Python can be declared by putting different comma-separated values between

square brackets.

e.g. days = [‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’,
‘Saturday’]; number = [1, 2, 3, 4, 5,6,7,8,9,0]; chars = [“a”, “b”, “c”, “d”, “e”];

Accessing elements from list

Elements from the list can be accessed by using the square brackets for slicing along with

the index to procure value available at that index of the list.

E.g. days [1]; number [1:6];

Updating and Adding elements in lists

We can update a single element or multiple elements of a list by giving the slice on the

left-hand side of the assignment operator.
E.g. days [2] = ‘January’;

We can add elements in the list by using the append () method

Deleting an element from list

In Python, we can remove a list element by using the del statement if index is known of

the element to be deleted.
E.g. del days [3];
Alternatively, we can use the remove () method to remove an element from a list.

All of these list operations are demonstrated in the below example. First, we created the

list. Next, we accessed the elements from the list. Then, we updated 3 element in the list
using the assignment operator. Lastly, we used the del statement to delete an element in
the list, doing so days [2] has printed Wednesday as element which was present at days [2]

index was deleted.

¥ ListOperations &2
days = ['Sunday', '"Monday', ‘Tuesday 'Fadne F
3 mumber = [1, 2, 3, 4, 5,6,7,8,9,0]
4 chars = ["a%, “b",
print| days [1] number [1:6]}
princi(™ v, days [2]1)
days [-
print & days [2]
del days [2
print | ', days [2])
™ n
B consale & X %O N
<terminated= C\Python_Workspace\MyFirstPythonProjectisrc\ListOperations.py
days [1] Monday number [1:6] (2, 3, 4, 5, 6]
days [2] Tuesday
days [2] January
days [2] Wednesday

Basic lists operations

Like Python strings, we can use + and * operators on lists for operations like

concatenation and repetition respectively. Below are the list operations on Python lists.

Results

Python Expression

Description

len([1, 2, 3, 4, 5])

Length operation.

[1,2,3,4,5]+I6,
7,8,9,0]

[1,2,3,4,5,6,7,8,
9, 0]

Concatenation operation.

[‘Hello’] * 3 [‘Hello’, ‘Hello’, Repetition operation.

‘Hello’]
4in[1, 2,3, 4, 5] TRUE Membership operation.
forain[1, 2, 3, 4, 12345 [teration operation.

5]: print a,

Indexing, Slicing, and Matrixes in Lists

Python lists are nothing both sequences, therefore indexing and slicing work the same way

for lists as they do for strings. Therefore, below operations are possible.

¥] ListSlicing X

BEAD 2 T : i rd olem , days[Z])
rine ["Negative: count Ffrom = right s day=[-—-211%

princ| "Slicing fetches section 'y days[iz])

l;! Console =2

<terminated> C:hPython_Workspace\WyFirstPythonProjectsrchListSlicing.py
COLfaeTs STArT AT ZEIo, Printing 3rd slement Tuesday
Haegative: count fram the right Mondasy

Slicing fecches asctiona ["Monday®, "Tuesday']

In the above example, if index is negative then counting will start from the right side and
if it starts with O then counting will be from left side. Like Python String, Python lists

supports slicing and will print the sections of the lists as per their indexes.

Built-in Lists Methods & Functions

Below are Python built-in functions for List operations.

Function Description

cmp(listl, list2) | This Python built-in function for lists compares

elements of both lists.

len(list) This Python built-in function for lists gives the total
length of the list.

max(list) This Python built-in function for lists returns item

from the list with max value.

min(list) This Python built-in function for lists returns item
from the list with min value.
list(seq) This Python built-in function for lists converts a

tuple into list.

Chapter 10
Tuples and Data Types

In the chapter 4, we have already mentioned Tuples as Python data type and some details
about it. In this chapter, we are going to discuss about basic tuples operations and Python

in-built methods and functions for Tuples.

Creating a Tuple

A tuple is a sequence of immutable Python objects. A tuple in Python can be declared by

putting different comma-separated values between parentheses.

e.g. days = (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’,
‘Saturday’); number = (1, 2, 3, 4, 5,6,7,8,9,0); chars = (“a”, “b”, “c”, “d”, “e”);

Accessing elements from Tuples

Elements from the tuple can be accessed by using the square brackets for slicing along

with the index to procure value available at that index of the tuple.

E.g. days [1]; number [1:6];

Updating and Adding elements in Tuples

We cannot modify any element of a tuple as tuples are immutable which means we cannot

update or change the values or size of tuple elements.

Deleting an element from Tuples

It is not possible to remove an individual tuple element from a tuple as tuples are

immutable. However, we can remove an entire tuple by just using the ‘del’ statement.

All of these tuples operations are demonstrated in the below example. First, we created the

tuples. Next, we accessed the elements from the tuples. We cannot update the value of any
element in Tuple. Lastly, we used the ‘del’ statement to delete the entire tuple, when

attempted to print the deleted tuple it throws an error as it no longer exists in memory.

Basic Tuples operations

Like Python strings, we can use + and * operators on tuples for operations like
concatenation and repetition respectively. Below are the tuples operations on Python

tuples.
Python Expression Results Description
len((1, 2, 3, 4, 5)) 5 | Length operation.

(1,2,3,4,5)+(6,7,|(1,2,3,4,5,6, 7,8, | Concatenation operation.
8,9,0) 9, 0)

(‘Hello’) * 3 (‘Hello’, ‘Hello’, Repetition operation.
‘Hello”)

4in(1, 2, 3,4, 5) TRUE Membership operation.

forain (1, 2, 3, 4, 12345 [teration operation.

5): print a,

Indexing, Slicing, and Matrixes in Tuples

Python tuples are nothing but sequences, therefore indexing and slicing work the same

way for tuples as they do for strings. Therefore, below operations are possible.

[F] TupleSlicing &3

days = | 'Sunday’,

B Console 3

Offsets =start at zero,
Hegative:

2 princ|'Offsets stay

<terminated> C:\Python_Workspace\MyFirstPythonProject\src\ TupleSlicing.py

count from the right

Blicing fetches sections

» days[2])

printing 3rd element
Monday
'"Tuesday '}

Tuesday

[{"Monday',

In the above example, if index is negative then counting will start from right side. If it

starts with 0 then counting will be from left side. Like Python String, Python tuples

supports slicing and will print the sections of the tuples as per their indexes.

Built-in Tuples Methods & Functions

Below are Python built-in functions for Tuples operations.

Function Description

cmp(tuplel, This Python built-in function for tuples

tuple?) compares elements of both tuples.

len(tuple) This Python built-in function for tuples gives the
total length of the tuple.

max(tuple) This Python built-in function for tuples returns
item from the tuple with max value.

min(tuple) This Python built-in function for tuples returns
item from the tuple with min value.

tuple(seq) This Python built-in function for tuples converts
a list into tuple.

Chapter 11

Dictionary Operations and Functions

In the chapter 4, we saw basics of Dictionary as Python data type. In this chapter, we are
going to discuss about dictionary operations and Python in-built methods and functions for

dictionary.

Creating a Dictionary

A Python dictionary can be created by placing key value pairs separated by comma within

the curly braces as shown in the below example.

E.g. biodata = {‘Name’: ‘Julie’, ‘Age’: 25, ‘Height’: ‘180cm’, ‘Profession’: ‘Banker’};

Accessing elements from Dictionary

Element values from dictionary can be procured by using square brackets along with the

key in it as shown in the below example.

E.g. biodata [‘Profession’]; biodata [‘Age’];

Updating and Adding elements in Dictionary

In Python language, a new entry of key value pair can be done by adding a new key value

pair with the name of the dictionary as shown in the below example.
E.g. biodata [‘Company’] = “XYZ Ltd.”;

An existing value in dictionary can be updated by using the assignment operator and

assign a new value to the key element in the dictionary as shown in the below example.

E.g. biodata [‘Age’] = 22;

Deleting an element from Dictionary

In Python language, a complete key-value pair element can be deleted by using ‘del’
statement before square brackets along with the key in it which is to be deleted as shown

in the below example.
E.g. del biodata [‘Company’];

Also, if we want to delete the entire dictionary, it can be done by using the ‘del’ statement

before dictionary variable as shown in the below example.
E.g. del biodata;

In the below Python code example, firstly, we have created dictionaries (biodata and
month). Secondly, we are accessing element values from dictionary. Thirdly, we are
adding key value pair in dictionary and then updating the value of one of the key-value
pair in dictionary. Lastly, we have deleted an entire key value pair from dictionary based

on its key and the complete dictionary using ‘del’ statement.

¥ DictionaryOperation &2

bicdata = { B 25, "B F

manth = { 'F a3 T, 'om 'Fabr " 3 F

Print {“Acce 7 eme ™ = Y | ession"] “,bicdata ["Frofessicn']):
& princ|"Accessing =slsment LrPC tlonary blodatca TAge] ".bipodata [*Ag="])

bicdatal "Ag="]=22

print("Update Age in dicticonary is ",bicdatal"age’])
1 biodata["Company']='X¥E Led."'

princ{*Ner added element in dictionary bicdatal ‘Company’] *, bicdatal 'Company’])
4 prine({"Dictiopnary pafars delsbtisg alsgaats, V) :peine (bicdaca)

del biodata| o |
& princ{"Dictionary After deleting elsments."):printibiocdaca)

dal manth; priat (manth)

B Consale 2 " % ‘}. i =
<terminated=> CAPython Workspace'MyFirstPythonProjectsre\DictionaryOperation.py

!hc:-zs:'_nq element from dictiocnary bicdata ['Profession'] Banker

Accessing element from dicticnary bicdats [‘Age’] 25

Update Age in dictlionary ia 232

Hew added element in diccionary biodata['Campany'] XYZ Led.

Dicticnary before deleting elements.

{*"PFrofesaion': 'Banker', '"Company": "X¥YZ Ltd.', "Name': 'Jalie', 'Age': 22, "Height': °"180cm'}
Diccionary After delecing elemancs.
{"Profession': 'Banker"', 'Hams': "Julie', "Age': 22, "Heighe': "180cm'}
raceback [(most recent call last):
File "C: -"" Workspace 7::’."'.[,'?".'.'5".":"":7-."'."'. DictlicnaryOperacion.py” line E in <modale>

=
]

Properties of Dictionary Keys

Key cannot be duplicated. Therefore, only one entry per key is permitted in
Python dictionary. If python interpreter encounters duplicate keys during
assignment, the last assignment wins i.e. will be considered or overwrite the
previous one.

Keys in dictionary are immutable. It means we can use numbers, strings or

tuples as dictionary keys but anything like [‘key’] is not allowed in Python
dictionary data type.

Built-in Dictionary Functions & Methods

Below are Python built-in function for dictionary.

Function Description

cmp(dictl, dict2) | This Python built-in function for dictionary

compares elements of both dict.

len(dict) This Python built-in function for dictionary gives
the total length of the dictionary. This would be

equal to the number of items in the dictionary.

str(dict) This Python built-in function for dictionary
produces a printable string representation of a

dictionary

type(variable) This Python built-in function for dictionary
returns the type of the passed variable. If passed
variable is dictionary, then it would return a

dictionary type.

Below are Python built-in methods for dictionary.

default=None)

Methods Description

dict.clear() This Python built-in method for dictionary
removes all elements of dictionary dict

dict.copy() This Python built-in method for dictionary
returns a shallow copy of dictionary dict

dict.fromkeys() This Python built-in method for dictionary
create a new dictionary with keys from seq and
values set to value.

dict.get(key, For key ‘key’, returns value or default if key not

in dictionary

dict.has_key(key)

This Python built-in method for dictionary

returns true if key in

dictionary dict, false otherwise

dict.items()

This Python built-in method for dictionary

returns a list of dict’s (key, value) tuple pairs

default=None)

dict.keys() This Python built-in method for dictionary
returns list of dictionary dict’s keys
dict.setdefault(key, | This Python built-in method for dictionary is

similar to get(), but will set dict[key]=default

if key is not already in dict

dict.update(dict?)

This Python built-in method for dictionary adds

dictionary dict2’s key-values pairs to dict

dict.values()

This Python built-in method for dictionary

returns list of dictionary dict’s values

Chapter 12

Mastering Date and Time

In Python programming language, date and time can be handled in the following ways.

Tick

Tick in Python is the instance if time measured in seconds since January 1, 1970 12:00.
Python has time module which has functions to work with time. The function time.time ()
returns the current system time in ticks since 12:00am, January 1, 1970(epoch) as shown
in the below example.

P Tick 2
1EpOXT Time:

i ticks = time.time ()
§ princ ("NMummber of ticks happensd since Janupary 1, 1870 12:00 are "™, ticks)

El Console & b4

<terminated> C:\Python_Workspace\MyFirstPythonProject\srch Tick.py

Humber of ticks happened since January 1, 1970 12:00 are 1461723587.1477T74

TimeTuple

In Python language, many time functions handle time as a tuple of 9 numbers as indicated

in the below table. This tuple is equivalent to struct_time structure shown in the attribute

column.
Index Field Values Attributes
0 4-digit year 2008 tm_year
1 Month 1to 12 tm_mon
2 Day 1to 31 tm_mday
3 Hour 0to 23 tm_hour

4 Minute 0to 59 tm_min
5 Second 0 to 61 (60 or 61 are leap- | tm_sec
seconds)
6 Day of Week 0 to 6 (0 is Monday) tm_wday
7 Day of year 1 to 366 (Julian day) tm_yday
8 Daylight (-1, 0, 1, -1) means library | tm_isdst
savings determines DST

Python code example for TimeTuple

e Getting current local time: To get the current local time in TimeTuple format use
the function as time.localtime(time.time()), this function will translate the tick

seconds into struct_time structure as a tuple of 9 numbers as discussed above.

B Conole
cqmmngmeds ChPythan Worksgace MyFatPythenPisgscanc T e gy
Sarrent Locsl Cims i@ 1 TAMS, ACTECT_cime [t _yssr=JOl€, tA_mcn=4, TR mds=dE, Ex houre:i, TR mdn=l7, tm_sec=13, th_wdsy=l, oF_pday=l17, TR_isdecel)

¢ Formatting current local time: To get the current local readable format use the

function as time.asctime () as shown in the below example.

[Pl TimeTuple

lMpOrXT Time;

3 localtime = vtime.asctime(| time.localtime (cime.cime()))
1 princ ("l a Current time readable formatc :"; localtime)

B Console & 4
<terminated> C:\Python_Workspace\MyFirstPythonProject\src\TimeTuple.py

Local current time in readable format ! Tue Apr 26 22:48:20 2016

e Print calendar for a month: Python has a calendar module which gives a wide
range of methods to work with monthly and yearly calendars. In the below
example, we are going to print a calendar for a Feb 2016 month (leap year) using

the function calendar.month (year, month).

] Calendar &2

1 import calendar

calen = calendar.month (2016, 2)

4 print ("Beior 15 Lhe calendar for Feb 2018, %)

2 Pprint (calen)

& Console i3 b 4
<terminated> C:\Python_Workspace\MyFirstPythonProject\src\Calendar.py
Below is the calendar for Feb 2016.

February 2016

4
il

Mo Tu We Th Fr 5a Su

1 2 3 4 %5 & 7
B 910 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29

Summary of functions in Time Module

Below are the functions available in Calendar module.

Time Functions Description

This is to be used only when
Only use this if daylight is
nonzero. It is positive if the
offset of the local DST time

zone is west of UTC.

This is negative if the local
DST time zone is east of
UTC (as in Western Europe,
including the UK). All in

time.altzone seconds.

This function of time module

time.asctime([tupletime])

accepts a time-tuple and
returns a readable 24-
character string such as ‘Tue
Apr 26 19:09:19 2016°.

time.clock()

This function of time module
returns the current CPU time
as a floating-point number of

seconds.

time.ctime([seconds])

This function of time module
is just like function asctime
(localtime (seconds)) and
without arguments is like

asctime().

time.gmtime([seconds])

This function of time module
accepts an instant expressed
in seconds since the epoch
and returns a time-tuple xyz
with the UTC time. It is to be
noted that zyz.tm_isdst is

always 0.

time.localtime([seconds])

This function of time module
accepts an instant expressed
in seconds since the epoch
and returns a time-tuple t
with the local time
(ttm_isdst is 0 or 1,
depending on whether DST
applies to instant secs by

local rules).

This function of time module

accepts an instant expressed

time.mktime(tupletime)

as a time-tuple in local time.
It returns a floating-point
value with the instant
expressed in seconds since

the epoch.

time.sleep(secs)

This function of time module
suspends the calling thread

for secs seconds.

time.strftime(fmt[,tupletime])

This function of time module
accepts an instant expressed
as a time-tuple in local time.
It returns a string
representing the instant as

specified by string fmt.

time.strptime(strg,format="%a %b %d

%H:%M:%S %Y’)

This function of time module
parses strg according to
format string format. It
returns the instant in time-

tuple format.

time.time()

As discussed in above
examples, this function of
time module returns the
current time instant, a
floating-point number of

seconds since the epoch.

time.tzset()

This function of time module
resets the time conversion
rules used by the library

routines.

Summary of functions in Calendar Module

Below are the functions available in Calendar module.

Calendar Functions

Description

calendar.calendar(year,

width=2,line=1,space=6)

This function of calendar
module returns a multiline
string with a calendar for
year year formatted into three
columns separated by space
spaces, width is the width in
characters of each date; each
line has length
21*width+18+2*c. line is the
number of lines for each

week.

calendar.firstweekday()

This function of calendar
module returns the current
setting for the weekday that
starts each week. Default

value is 0, which is Monday.

calendar.isleap(year)

This function of calendar
module returns True if it is a

leap year; otherwise, False.

calendar.leapdays(yel,ye2)

This function of calendar
module returns the total
number of leap days in the

years within range (yel, ye2).

This function of calendar
module returns a multiline
string with a calendar for

month month of year year,

calendar.month(year, month,
width=2 line=1)

one line per week plus two
header lines. width is the
width in characters of each
date; each line has length
7*w+6. line is the number of

lines for each week.

calendar.monthcalendar(year, month)

This function of calendar
module returns a list of lists
of ints. Each such sublist
denotes a week. Days outside
‘month’ month of ‘year’ year
are set to 0; days within the
month are set to their day-of-

month, 1 and up.

calendar.monthrange(year, month)

This function of calendar
module returns two integers.
The first one is the code of
the weekday for the first day
of the month month in year
year; the second one is the
number of days in the month.
Month numbers are 1
(January) to 12 (December).
Weekday codes are 0
(Monday) to 6 (Sunday).

calendar.prcal(year,w=2,1=1,c=6)

This function of calendar
module works like print

calendar.calendar (year,w,l,c).

calendar.prmonth(year,month,w=2,1=1)

This function of calendar
module works like print
calendar.month

(year,month,w,l).

calendar.setfirstweekday(weekday)

This function of calendar
module sets the first day of
each week to weekday code
weekday. Month numbers are
1 (January) to 12
(December). Weekday codes
are 0 (Monday) to 6
(Sunday).

calendar.timegm(tupletime)

The inverse of time.gmtime:
accepts a time instant in time-
tuple form and returns the
same instant as a floating-
point number of seconds

since the epoch.

calendar.weekday(year, month, day)

This function of calendar
module returns the weekday
code for the given date.
Month numbers are 1
(January) to 12 (December).
Weekday codes are O
(Monday) to 6 (Sunday).

Chapter 13

User Defined Functions

As we have seen in previous chapters, Python has many in-built functions and the popular
print () function is one of those functions. Similarly, we can create our own functions
known as user defined functions (UDF). A function may be defined as a block of code that
is well organized and reusable multiple times to perform a number of operations in a

program that demands high modularity and reusability.

Syntax of a Python function

def functionname (parameters or arguments):
“docstring”
Block of code or indented statements

return [expression]

Rules to define a Python function

A function block has a structure which starts with keyword def followed by the
name of function and parentheses ().

Parentheses can have number of input arguments or parameters within it. Also,

we can define values for these parameters inside these parentheses.

Python function can have its first statement as an optional statement known as
the docstring or the documentation string of that function.

A code block within a Python function starts with a colon (:) and all statements
in the block are indented.

A Python function ends with return [expression], this exits a function returning
an expression value and control to the caller. A return may or may not return an

expression value.

Calling a Python function

Python function can be called anywhere in the program with function name and passing
the values to its parameters. This is to be made sure that we should send equal number of
values to equal number of parameters i.e. if there is one parameter in a function then we
just need to send one value, similarly if there are two parameters then we need to send two
values and so on. Such type of parameters are also known as required arguments to a

function. Below is an example that demonstrates calling of a Python function.

¥] PythonFunctionDemo
def printString (atrg):
print (strg)

reTturn

printSering (" ling £ st time=!")
printScring{"Call 7 second Cime!"™)

printSering(“Calling third Eims=!")

B Consale 53 = 2,*
<terminated> C\Python_Waorkspace\MyFirstPythonProject\src\ PythonFunctionDemo, py

Calling firast cime!

Calling sscond time!

Calling third cime!

Passing by reference vs Passing by value

All parameters or arguments in Python are passed by reference. Therefore, if we change a
parameter that refers to within a function, this change will be reflected in the actual calling

function as shown in the below example.

] PassByReferenceFunction &

def listFunotionl (elelis=st):

elelist.append([1,2,3])
rint { "Appeanded salemsnts Eo 1isE are ", alslisc)

def listFonction? (elelist):

elelist = [10,20,30]

print { "Overvritten elements in list are ",elelist)
Al recurn
elelisc = [100,200,300];

listFunctionl (elelist)

16 print ("List aiemeants ontbside Ehea fonctionl ", elelist)

18 liscFunction? (eleliact)

print {"LisC elements ouisi .".Z.'.‘.':L'.'(f " eleliat)

[T
i
i

B Console &2 ® 5

<terminated> C:\Python_WorkspacehMyFirstPythonProject\src\ PassByReferenceFunction.py
Appended eslements to lisc are [100, 200, 300, [1, 2, 3]]
List elements outside the functionl [100, 200, 300, [1, 2,
Overwricten slements in list are [10, 20, 30]

Liat elements outside the function? [100, 200, 300, [1, 2, 3]]

L¥E]

In the second case, although we have passed arguments by reference the change of list
overwritten is visible only in the local scope (parameter elelist) of the function yet outside
the function the actual list remains unaffected as shown in the above example for
listFunction2.

Python function arguments
A function in Python can be called with the following types of formal arguments.

Required arguments: In case of the required arguments, the arguments to a
function are passed in correct positional order. Therefore, the number of arguments
defined in a function should match exactly the number of arguments passed to that
function. If there is mismatch, system will throw an error as shown in the below

example.

Fl Requiredfrgurments
def printString (strg):
print (sTrg)

princstringl()
prine3cring("Calling s=cond Eime!T)

princString ("Calling chird time!")
B Consate © LR R & Df
<termenated > L:".F:,'tl'-nn_\"l'nrkspace"-M\‘.-FlrstF‘:r‘lh DnP‘rDj=-|:t".-srl:'-.ﬁequlred.ﬁrguments.p}-
raceback [(most recent ca last) :
File "C Pychon Workspace\MyFirscPycthonProjesthars\Requiredirgumentca. ¢ 1ine 7, in <modules:
——- pPrintstc - i Asing o ad D tian a . 5t

Keyword arguments: In python, when we use keyword argument in a function
call then the caller identifies the arguments by its name. This feature of Python,
provides the flexibility to place the arguments out of order as Python interpreter
uses the keywords to match the values with parameters. This is demonstrated in the
below example. Here we have entered arguments which are out of sequence with

parameter but interpreter by using the keywords processed them correctly.

F| KeywordArgument

def printStrings (strg, numb):

P,] & " - 5

print | "First Argument 1s ", S3Trg)
print | "Second Argument 1s ", numb)
return
printStringa (numb = 3, strg = "First String”)
Console &3 5 R 5%

<terminated> C\Python_Workspace\WMyFirstPythonProject\src\KeywordArgument. py
Firstc Argument is Firstc Scring
Second Argument is 3

Default arguments: Python has a feature of the default arguments. Default
argument assumes a default value if a value is defaulted or not provided in the

function call for that argument. This is demonstrated in the below example.

P| DefaultArgument 332

def printStrings (name, age, gender = 'Femals'):
print{"Nam= is5 " name)
rint ("Gender 1s ",gender)
printc ("Age 15 ",age)
rELUER
princStringa (age 32, name cin", gender = 'Mals"')

printsctrings (age 32, name

2 Console i3

<terminated> C:\Python_Workspace'\MyFirstPythonProject'src\ DefaultArgument. py
Hame iz Martin

Gender 13 Male
hge ia 32

Hame is Julie
Gender is Female

Age i= 332

L

Variable-length arguments: Python supports the feature of specifying variable
length arguments. These arguments are not named in the function definition as

compared to required and default arguments. The syntax and example for variable-

length arguments are shown below.

def functionname([formal_args,] *var_args_tuple):

“docstring”
Block of code or statements

return [expression]

In the below example, during the first function call when single argument is passed, it just
printed that argument and variable-length argument remained untouched. In the next

example, when three arguments are passed then variable-length argument parsed the

additional arguments and helped program to print them.

F] VariablelengthArgument %
def printInformation(argl, *variabletuple):
print | "Cutr -
print (argl)
for variables in variabletuple:
print (variables)
return;
princInformation(100)
princtInformation{ 200, 300, 400)
B Console & ®x 5
<terminated> C:\Python Workspace\MyFirstPythonProject\src\VariableLengthArgument.py
Oucpuc is:
100
Oucput i=
200
300
400

Python Anonymous Functions

When function in Python are not declared in the standard manner using def keyword but

with use of lambda keyword are known as Anonymous functions in Python. Syntax is
shown below:

Syntax

lambda [arg1 [,arg2,.....argn]]:expression

Below are the features of the anonymous function.

Lambda can accept any number of arguments but return just one value as
expression. They do not contain multiple expressions or commands.

Since lambda requires an expression therefore, anonymous function cannot
make a direct call to print.

Lambda functions can have their own local namespace but cannot access

variables other than those present in their parameter list and in the global
namespace.

Below is an example of anonymous function.

VariablelengthArgument Fl AnonymousFunction i3

2 subcract = lambda argl, arg2: argl — arg2;

print ("% of total : ", subtract{ 20, 30
& primtc [™% of cotal : ™, subcract| 50, 25
B Console 52

B
(]

<terminated> CAPython_Workspace' MyFirstPythonProjectisrc\ AnonymousFunction.py
Value of tocal : &0
Value of total : 25

o X

Python return Statement

Using return statement in Python, we can return a value as expression and the control back
to the caller. Below is an example.

F] ReturnStatement 22

def addition (argl, argl):

argd = argl + arg2
return args3
def subtractiomn (argl, argl):
argd = argl - argz
return arg3l
10~ def moltiplication (argl, arg2):

argd = argl * argl
IeTuUr arg3
1 print ("Result of addition 1s ", additcion (200,100})
print ("Result of subtraction i1s *, subtraction(200,100))
print ("Result of ltiplication 15 “, multiplicacion(200,100))
B Console = ® 5

<terminated> C\Python_Workspace MyFirstPythonProjectisrc\ReturnStatement. py
Result of addicion ia 300

Result of subtraction is 100

Result of multiplication is 20000

Scope of Variables in Python
There are two scopes of variables defined in Python.

Global Variables: These are the variables defined outside the function body

and can be accessed from anywhere within the program.

Local Variables: These are the variables defined inside the function body and
have a local scope of accessibility.

Below is the example to demonstrate local and global scope of a variable in Python.

P] VariableScope &%

total = B9

def addition (argl, argd):

TR 4 e e A e s e
total = argl 4+ arg2
return total
rint ("RHesult of addition is ", addition (200,100)}
print (total)
B Console =2 x %

<terminated> C:\Python_Workspace\MyFirstPythonProject'srci VariableScope.py

Result of additiom is 300
Ba

In the above example, the variable total present inside the function has a local scope and
the variable total declared at the top of the program has global scope. When both of the

variable values printed shows the different result due to their accessibility scope.

Chapter 14
Organizing Code With Modules

In this chapter, we are going to learn about modules in Python language. Modules allows
us to logically organize our Python code which makes the code easier to understand and
use. In Python language, a module is just a file consisting of Python code which has

several in-built or user defined functions.

Python import Statement

We can call the Python code or functions present in a file as module by using the import
statement followed by the Python file name. Below is the syntax for import statement in
Python.

import modulel [, module2][,... moduleN]

Below is an example to work in Python modules.

Creating a Python file to be used as module.

F] ReturnStatement &2

Il

def addition (argl, arg2):
arg3d = argl + arg?
recurn arg3

6~ def sobtraction (argl, arg2):

arg3 = argl - arga
= AR B
return Arg3

def mmltiplication (argl, arg):

argd = argl * arg2

return arg3

Calling the above module and operating on the user defined function in the current Python

program is shown in the below example.

P] ReturnStatement | [P] PythonModules 22

import ReturnStatement

print ("Result of addit 15 ", ReturnStatement.addition (200,100))

yrint (“Result of subtracticon is ", RecturnStatement.subtraccion(200,100))

princ ("Result I mulciplica n 15 ", RecurnStatement.multiplicaction(200,100))
2 Conscle L E L

<terminated> C:\Python_ Workspace\MyFirstPythonProjectisrc\PythonModules.py
Besult of addition is 300
Result of subtraction is 100

Result of multiplication is 20000

Python from...import Statement

In Python language, from...import statement lets us import only specific and not all
attributes from a module into the current namespace. It has the following syntax —

from modulename import namel [, name2/[, ... nameN]]

For example, if we need to import only the function addition from the above module
ReturnStatement, then we use the following statement — from ReturnStatement import
addition

This statement does not import the entire module ReturnStatement into the current
namespace but it just introduces the function addition from the module ReturnStatement
into the global symbol table of the importing module. This is demonstrated in the below
example.

¥ ReturnStatement | [FremimportStatement 7

2 from ReturnStatement import addition

"Resull I' additi 15 ", addition (200,100})

printc |

B Console &2 K %
<terminated> C:\Python_Workspace'\MyFirstPythonProjectisrc FromlmportStatement.py

Result of addition is 300

Python from...import* Statement

Using this Python statement, we can import all names or functions from a module into the

current namespace. It has the following syntax.

from modulename import *

Although, it provides an easy way to import everything from a module into the current

namespace yet this statement is used rarely.

Locating Python Modules

In Python, when we import a module, the Python interpreter searches for the module in the
following sequences. First in the current directory, if that module isn’t located then Python
searches each directory in the shell variable PYTHONPATH. If it fails here as well then
lastly Python checks the default path.

Search path for module is stored in the system module sys as the sys.path variable. The
sys.path variable contains the current directory, PYTHONPATH, and the installation-
dependent default.

The PYTHONPATH Variable:

The PYTHONPATH is an environment variable that consists of a list of directories. Below
are the syntaxes of PYTHONPATH for Windows and UNIX.

PYTHONPATH from a Windows system:

set PYTHONPATH=c:\Python34\lib;

PYTHONPATH from a UNIX system:

set PYTHONPATH=/usr/local/lib/python

Python in-built functions for Modules

Below are the in-built Python functions that are used while working with modules.

Functions Description

The dir () Python built-in function returns a sorted list of
strings containing the names defined by a module. E.g. if
module name is math then dir (math) will list down all
dir() the names present in that module.

If Python in-built function globals () is called from within
a function then it will return all the names (as dictionary
datatype) that can be accessed globally from that
globals() | function.

If Python in-built function locals () is called from within
a function then it will return all the names (as dictionary
locals() datatype) that can be accessed locally from that function.

In Python, when we import a module into a script, the
code in the top-level portion of a module is executed only
once. Therefore, if we want to execute the top-level code
in a module again, then we have to use the reload ()
function. This function imports a previously imported
reload() | module again.

Packages in Python

In Python, a package may be defined as a hierarchical file directory structure which
defines a single Python application environment that consists of modules, sub-packages

and so on.

Using eclipse, we can give the package name when we are creating a new Python program
file as shown in the below screenshot.

ik O *
Create a new Python module P

Source Folder | IMyFirstPythonProject/src | | Browse..,

Package | modulg | :Erowse...

! Mote: package not found (will be created).

Mame | PackageDemo |

@ []l e

After click of finish button, a new package with name as module will be created along

with _init_.py file as shown in the below screenshot.

f# PyDev Package Explorer &2 = q:ﬂ s
v =5 MyFirstPythonProject ~
v 3B s
v module

[_init_.py
PackageDemao.
q By

="

In order to make all of our existing required functions available for files present within a
new package, we import Python file present at PYTHONPATH in this in __init__.py file.
For this we need to put explicit import statements in __init__.py as shown in the below

example.

@ PackageDemo| @ module &8 i @ ReturnStaternent

from ReturnStatement import addition

[YEN I S T

After setting up above import in __init__.py file, we can now call addition function from
the Python program that present in a new package module. Only things that we need to

make sure here are as follows.

First we need to declare import statement and the current package name where

this file is present. This will be the first statement in the program file.

Next, we can call the existing function (already imported) starting with current

package name (e.g., module.addition (4, 5)).

] PackageDemo &% [module| [F] ReturnStatement

import module

e

printlﬂ”?.‘:_‘; for additien ", deulc.ndditiDni'ﬂ,E-]]l

iﬁ

) Conscle &4 b4
<terminated> C\Python_Workspace'\MyFirstPythonProject\src\modulelPackag eDemo.py
Total for addicion 9

Chapter 15
I/0 Input Used in Python

In the previous chapters, we learned to use print function for printing the output on screen
or console. In this we chapter we are going to learn about I/O (accepting input and printing

output on console) and basic file operations.

Python print Function

By using simple print function as print (set of strings or variables), the system will print

the content on to the console.

E.g., print (“Hello World!”)

Python input Function

Python has input ([prompt]) as its in-built function that read one line from standard input
assuming it as a valid Python expression and returns it to the system as a string. Below is

an example.

¥] Rawlnput :
1 strg = input ("Please enter your input: P}:

print ("iFe kave raceive : s : ", acrg)

B Console i 4 -:ﬂ
<terminated> C:\Python_Workspace\MyFirstPythonProjectsrc Rawlnput.py

Please enter your input:

FJ: have received input a= : Hello Fython

Opening and Closing files in Python

Python language provides basic functions and methods which are necessary to manipulate

files by default. We can do the file manipulation in Python by using a file object.

The open () Function

Python has in-built open () function that creates a file object with which we can read or

write a file and call other support methods associated with it.

Syntax

file object = open(file_name [, access_mode][, Buffering])

Description of the parameter in detail:

file_name: It is a string value that contains the name of the file that we want to

dCcess.

access_mode: It determines the mode in which the file has to be opened, i.e.,
write, read, append, etc. Given below is the complete list of possible values in the

table. This parameter is optional with default file access mode as read (r).

Modes Description

This mode opens a file in read only mode. Beginning of the
r file has the file pointer. This is the default mode.

This mode opens a file in read only mode in binary format.
Beginning of the file has the file pointer. This is the default
b mode.

This mode opens a file in both reading and writing mode.
r+ Beginning of the file has the file pointer.

This mode opens a file in both reading and writing mode in
rb+ binary format. Beginning of the file has the file pointer.

This mode opens a file in writing only mode. It overwrites
the file if the file exists. If the file does not exist, then it
w creates a new file for writing.

This ode opens a file in writing only mode in binary
format. It overwrites the file if the file exists. If the file
wb does not exist, then it creates a new file for writing.

This mode opens a file in both writing and reading mode. It
overwrites the existing file if the file exists. If the file does
w+ not exist, then it creates a new file for reading and writing.

This mode opens a file in both writing and reading mode in
binary format. It overwrites the existing file if the file
exists. If the file does not exist, then it creates a new file
wb+ for reading and writing.

This mode opens a file for appending. The file pointer is
present at the end of the file if the file exists. If the file
a does not exist, then it creates a new file for writing.

This mode opens a file for appending in binary format. The
file pointer is at the end of the file if the file exists. If the
ab file does not exist, then it creates a new file for writing.

This mode opens a file for both appending and reading.
The file pointer is at the end of the file if the file exists. If
the file does not exist, then it creates a new file for reading
a+ and writing.

This mode opens a file for both appending and reading in
binary format. The file pointer is at the end of the file if the
file exists. If the file does not exist, then it creates a new
ab+ file for reading and writing.

Buffering: It can have value as negative, 0, 1, 2, etc. Depending on these
values, if it is set to O then no buffering takes place. If it is set to 1 then line
buffering is performed while accessing a file. If this buffering value as an integer
greater than 1 then buffering action takes place with the indicated buffer size. If the

value is negative, then the buffer size has the system default behavior.

The file Object Attributes

When a data file is opened then we get a file object using which we get various
information related to that file.

Given below are the file attributes which provide the information associated with the file
object.

Attribute Description

This attribute returns true if file is closed, otherwise

file.closed

false.

file.mode

This attribute returns access mode with which file
was opened.

file.name

This attribute returns name of the file.

file.softspace

This attribute returns false if space explicitly
required with print, otherwise true.

Below is the example for reading file Attributes from a file object.

& filedemotat 23 | [F] FileAttribute 52
2 file = gpen|"riledemo. ExE™, "¥B™)
3 print [*"Names of [— ¢ Lile.name)
i print ("File 15 Closed or mot : ", file.closed)
5 print ("Opening mode of file : %, file.mode)
B Console 2 X 5

<terminated> C\Python_Workspace' MyFirstPythonProject\src FileAttribute. py
Hame of the file: filedemo.txt

File is Closed or not : False

Cpening mode of file : wb

Python in-built Methods for File Operations

Below table has the in-built function name and description for a file.

Methods Description
The close () method of a file object flushes any
unwritten information and closes the file object. Once
file is closed the no more writing can be done. E.g.
close() fileObject.close ().

write()

The write () method writes string data to an open file.
Python strings can have binary data as well as text. It
is to be note that the write () method does not add a
newline character (‘\n’) to the end of the string. E.g.
fileObject.write (string).

read()

The read () method reads a string data from an open
file. Python strings can have binary data as well as
text data. E.g. fileObject.read ([count]); count is the
passed parameter which represents the number of
bytes to be read from the opened file. If count is
missing, then it tries to read data from file as much as
possible until the end of file.

tell()

The function tell () method tells us about the current
position within the file. It tells us about position of
the next read or write of string data at that many
bytes from the beginning of the file. E.g.
fileObject.tell ().

seek(offset],
from])

The function seek (offset [, from]) is used to change
the current file position. The offset argument
indicates the number of bytes that to be moved. The
‘from’ argument specifies the reference position from
where the bytes are required to be moved.

If from has value set to 0, it means use the beginning
of the file as the reference position and it has value
set to 1 means use the current position as the
reference position and if it has value set to 2 then the
end of the file would be taken as the reference
position. E.g. fileObject.seek (0, 0).

rename()

The rename () method takes two arguments, the
current filename and the new filename. E.g.
fileObject.rename (current_file_name,
new_file_name).

remove()

The remove () method is used to delete files by
supplying the name. It can be used to delete files by
supplying the name of the file to be deleted as the
argument. E.g. fileObject.remove
(current_file_name).

mkdir()

The mkdir () method of the os module is used to
create directories in the current directory. We need to
supply an argument to this method that contains the
name of the directory to be created. E.g. os.mkdir
(“newdir”).

The chdir () method is used to change the current
directory. The chdir () method takes an argument,
that is the name of the directory that you want to

chdir() make the current directory. E.g. os.chdir (“newdir”).

The getcwd () method is used to display the current
getcwd() working directory. E.g. os.getcwd ().

The rmdir () method is used to delete the directory,
which is passed as an argument in the method. E.g.
rmdir() os.rmdir (‘dirname’).

Example on file operations using Python in-built file methods

Cl filedemot | [F] FileOpeartions I

fileCbject = open|“filedemo.Lxt™, "r+")

; print {"Name= of the file: ", fileObject.nams)
; print (fileObject.read(1d))

6 fileObject.close()

B fileObjectl = gpen("filsdeme.Ext™, "a+")

g 4 } i .

0 fileObjectl.write|"Hello PyEhon!™)

print {"Current file pointer positicon 15 Y, fileObijectl.tell(})

fileObjectl.seek (0,0)

14 printE"Cu:::nt file pointar pogition iz ", fil!ﬂbjuctl.tellﬂ}ﬂ
print (fileCbjectl.read(100))

16 fileObjectl.close ()

in

& Console & X%

<terminated> C:\Python_ Workspace\MyFirstPythonProjectisrc\FileQpeartions.py
Name of the file: filedemo.txt

Hello Worl

Corrent file pointer position is 25

Current file pointer position is 0O

Hello World!Hello Python!

Chapter 16

Exceptions and Assertions

Python language has two very important features to handle any unexpected error that may
occur while executing the Python programs and to add debugging capabilities in them.
Those features are as follows.

Exception Handling: While writing a Python code, if we have a feeling that
have some part of the code may raise an exception then we can handle that part by
placing the code in a try: block. After the try: block, include an except: statement,
followed by a block of code that handles the problem as effectively as possible.

Syntax is given below.

try:

We do our operations here;

except Exception I:
If Exception I, then execute this block.
except Exception II:

If Exception II, then execute this block.

else: If no exception then execute this block.

Few points to remember about Python exception handling.

1. A single try statement can have multiple except statements. This feature
can be well utilized when the try block contains statements that may throw

more than one and different types of exceptions.

2. It supports feature to provide a generic except clause, which can handle any

type of exception.

3. Syntactically, we can include an else-clause after the except clause(s). The
code in the else-block will be executed only if the code in the try: block

does not raise an exception.

4. The else-block is a useful programming place for code that does not need

the try: block’s protection.

Below is a list of standard Exceptions available in Python programming language.

EXCEPTION NAME DESCRIPTION

This exception is the base class for all
Exception exceptions.

This exception is raised when the next ()
method of an iterator does not point to any
Stoplteration object.

This exception is raised by the sys.exit ()
SystemExit function.

This exception is the base class for all
built-in exceptions except SystemExit and
StandardError Stoplteration.

This exception is the base class for all
ArithmeticError errors that occur for numeric calculation.

This exception is raised when a calculation
OverflowError exceeds maximum limit for a numeric type.

This exception is raised when a floating
FloatingPointError point calculation fails.

This exception is raised when division or
modulo by zero takes place for all numeric
ZeroDivisonError types.

This exception is raised in case of failure of
AssertionError the Assert statement.

AttributeError

This exception is raised in case of failure of
attribute reference or assignment.

EOFError

This exception is raised when there is no
input from either the raw_input () or input
() function and the end of file is reached.

ImportError

This exception is raised when an import
statement fails.

KeyboardInterrupt

This exception is raised when the user
interrupts program execution, usually by
pressing Ctrl+c.

LookupError

This exception is the base class for all
lookup errors.

IndexError

Raised when an index is not found in a
sequence.

KeyError

This exception is raised when the specified
key is not found in the dictionary.

NameError

This exception is raised when an identifier
is not found in the local or global
namespace.

UnboundLocalError

This exception is raised when trying to
access a local variable in a function or
method but no value has been assigned to
it.

EnvironmentError

This exception is the base class for all
exceptions that occur outside the Python
environment.

IOError

This exception is raised when an input/
output operation fails, such as the print
statement or the open () function when
trying to open a file that does not exist.

IOError

This exception is raised for operating
system-related errors.

SyntaxError

This exception is raised when there is an
error in Python syntax.

This exception is raised when indentation

IndentationError is not specified properly.

This exception is raised when the
interpreter finds an internal problem, but
when this error is encountered the Python
SystemError interpreter does not exit.

This exception is raised when Python
interpreter is quit by using the sys.exit()
function. If not handled in the code, causes
SystemExit the interpreter to exit.

This exception is raised when the built-in
function for a data type has the valid type
of arguments, but the arguments have
ValueError invalid values specified.

This exception is raised when a generated
RuntimeError error does not fall into any category.

This exception is raised when an abstract
method that needs to be implemented in an
NotImplementedError inherited class is not actually implemented.

Python example on exception handling.

= filedemebt 33 | ¥] ExceptionHandling 2

try:
fileObject — open|"testfilel.txt", “r")
fileObject.write | "This is my test file that ve are using for saxception handling!!"}
except ICError:
print [“Errcr: System can)'t find file or read data'™)
elae:
print {“Content is written in the fils successfully™)
fileObject.clo=e ()

B Consele x Eﬂ Q. S "
<terminated= C\Python_Workspace\MyFirstPythonProjectisrc\ ExceptionHandling. py

Error: Syscem can't find file or read data

The try-finally Clause

Finally is the block that comes at the last and is always executed irrespective of exception

occurred or not. This is demonstrated in the below example.

filedemo. bt ¥| ExceptionHandfing I

chvi
rileOhject = gpen|"tascfilsal. CXE”, "e7)
fileCbject.write(“This is my test file that ve
except IOError:
prine ("Error: Systam can C find fila gr read data™
elye:
prine (["Conten i writbean in Ehe fils g =ssfully™)
fileQhject.clome()
Linally:

print ("= reach=d finall lock ™)

B2 Console IZ
<terminated> CA\Python_ Workspace\bMyFirstPythonProjectisrc, ExceptionHandling. py
rror: System can't find file or read data

We reached finally block

X %<

Assertions: An assertion in Python can be defined as a sanity-check that can
turn on or turn off when we are done with the testing of the program. An
expression is tested for the result, and if that comes up false, an exception is raised.

Below is the syntax for assertions.
assert Expression[, Arguments]

If the assertion fails, Python will use an ArgumentExpression as the argument for the
AssertionError. AssertionError is an exceptions that can be caught and handled like
any other exception using the try-except statement If this exception is not handled,
then it will terminate the program and produce a traceback as shown in the below

example.

Given below is an example on Python Assertion, here, we are checking for account
balance if it is lower than minimum balance of 5000. During first test for balance of
500, it passed the test therefore no AssertionError happened. However, in the second
case the input balance is 1000 which is less than minimum balance therefore
AssertionError was raised in the console with our pre-defined message string (Account

is in good condition above minimum balance).

F] Assertion

def account (balance) :

B Console x a Qo
< terminated> C\Python_ Weorkspace' MyFirstPythonProject sreh dasertion. py

raceback (mosat recent call lasc

5000
L i

Chapter 17

Object Oriented Programming

Python was an object-oriented language from the day it was made. Let’s take a quick

revision on OOP (Object Oriented Programming) concepts.

OOP Concepts

Class: A class is a user-defined prototype for an object that defines a set of
attributes. The attributes are the data members (class or instance variables) and

methods that are usually accessed via dot notation.

Class variable: A class variable is the class reference that is shared by all
instances of a class. Class variables are defined within a class but they are always

outside any of the class’s methods.

Data member: It is a class or instance variable that holds data associated with a

class and its objects.
Instance: An individual object is an instance of a certain class.

Instantiation: The creation of an instance of a class is called instantiation that

creates a class object.

Method: It is the name given to the function that is defined inside the class. It

performs the actual operation on the variables.

Function overloading (Function Polymorphism): Two or more functions with
the same name but performing the different operation based on number of

parameters, data type, etc.

Operator overloading (Operator Polymorphism): A single operator has
assignment of more than one function. E.g. ‘+’ operator doing the mathematical

addition of two numbers as well as concatenation of two strings.

Inheritance: The transfer of the characteristics or traits from parent class to the

child class. It encourages reusability.

Instance variable: It is a variable that is defined inside a method and just

belongs only to the current instance of a class.

Object: It is a unique instance of a data structure (variables and methods) that’s
defined inside its class.

Creating Classes

In Python, the class statement creates a new class definition. It has the following syntax.

class ClassName:
‘Optional class documentation string’

class_suite/component statements

The class has an optional documentation string, which can be accessed via
ClassName. doc_ .

The class_suite consists of all the component statements that define class

members, data attributes and functions.

Creating Instance Objects

An instance of class is created by calling the class using class name and pass in whatever
arguments its __init__ method accepts.

Accessing Attributes

Attributes of the class can be accessed through the object’s attributes using the dot

operator with object.

Class demonstration in Python

In the below example, we are going to create a class and then instantiate its three objects
to access their attributes.

Chapter 18
Python Regular Expressions

You might have heard the term ‘Regular Expressions’ in UNIX where these are used to
match or find other strings or sets of strings based on specialized syntax in the form of
patterns. In the similar way, Python regular expression is a special sequence of characters
that helps to match a string or sets of strings based on a particular pattern.

In Python, the module known as “re” provides the support for regular expressions in
Python. If any error occurs while compiling or handling a regular expression in Python

then this “re” module will raise an exception known as “re.error”.

There are two important functions in the “re” module. They are “match” and “search”
functions. In the following Python regular expression examples we are going to use Raw

Strings as “rexpression”.

The match Function

It is the function present in “re” module that matches the RE pattern to string with optional
flags.

Syntax

re.match (pattern, string, flags=0)

Following is the description of these parameters.

PARAMETERS DESCRIPTION

It accepts the regular expression that to be
Pattern matched.

This is the string, which would be searched

String to match the pattern at the beginning.

This exception is raised by the sys.exit ()
Flags function.

The re.match function returns the matched object when the matching is successful and
none when the matching fails. After that, we can use “group (num)” or “groups ()”
function on matched object to get matched expression.

Match Object Methods DESCRIPTION

This function returns entire match or

group (num=0) specific subgroup num.

This function returns all matching
subgroups in a tuple. It will be empty if
groups () there aren’t any.

Regular expression example for match function

F| RegularbepblatchFuncieen Fl RegularEspSearchFunction

marchily = P mares| T g @', seringhine, Ex.M|Ee.I)

When we execute the above Python program, we will observe the following output.

= Console X 5RO & bE EE| - v P
<terminated> Ci\Python Workspace\ MyFirstPythonP rojectisrc ReguladixpbatchFumction.py

maACs graup() : OGirls are ssarcer tham Boys

The search Function

It is the function present in “re” module that searches for first occurrence of RE pattern

within string with optional flags.

Syntax

re.search (pattern, string, flags=0)

Following is the description of these parameters.

PARAMETERS DESCRIPTION

It accepts the regular expression that to be

Pattern matched.

This is the string, which would be searched
String to match the pattern anywhere.

This parameter is used to specify different
flags using bitwise OR (|). These are the
modifiers which are listed in the table

Flags below.

The re.search function returns the matched object when the matching is successful and

none when the matching fails. After that, we can use “group (num)” or “groups ()”

function on matched object to get the matched expression.

Match Object Methods DESCRIPTION

This function returns entire match or

group (num=0) specific subgroup num.

This function returns all matching
subgroups in a tuple. It will be empty if
groups () there aren’t any.

Regular expression example for search function

BegulsrfapSesrchFuncton

stripgline =

searchibject = re.searchl r 4 - - =", acringline, re.Mjre.l

print (~ssa L E.gE 2] : ", searchObjec

princ | 2 t ; searahlbiec

When we execute the above Python program, we will observe the following output.

B conicle ' L. e B = BT Tl
terrenateds C:\Python_ Workspace MyFintPathonProject o PegulaEopSearchFunction. py

a=grohd co.groapil 1 Girls ar= smarcer than boys

3 roapil) s Girla

seacrchibiect.group(f) : smartes

Match vs Search function of “re” module

Both of these functions are different primitive operations which do the matching of string
or set of strings based on a particular pattern. The only difference is in their way of
operation. Regular expressions: match function checks for the matching pattern at the
beginning of the string whereas Regular expressions: search function checks for the
matching pattern anywhere in that string. If we compare Python language with the Perl
language in term of matching of strings using regular expressions, then expressions:

search is the default matching operation for the Perl language.

Search and Replace

Python “re” module has an important function known as “sub”. This function is used to do
search and replace operations. Let’s understand this with the help of following example.

Following is the syntax for this method.

Syntax

re.sub (pattern, replace, string, max=0)

This “sub” method or function replaces all occurrences of the Regular Expression pattern
present in the string with “replace” string parameter, it will substitute all of the
occurrences unless max limit is passed in the parameter. This method will return a

modified string after matching regular expression substitution with “replace” string

parameter.
PARAMETERS DESCRIPTION
It accepts the regular expression that to be
Pattern matched.

It is the string which will replace or
substitute the matching portion in the main

Replace String passed as a parameter.

This is the main string, which would be
matched to match the pattern anywhere in
String the string.

This is an optional parameter that defines
the limit for maximum number of

Max substitution with the matching pattern.

Let’s understand this “sub” method with the help of following example.

| BequlartspSearchindReplace

When we execute the above Python program, we will observe the following output.

2 Conacle X R = b | -
“termingteds C:\Python_Workspece MyFintPthonProject, s RegulsrfopiesrchircReplsce. oy
New Fax Mumber | 1305-287-344

Wew Fax Humber ;@ 1900AZ8TAISEARAARARAARARAARAARAIARR

Regular Expression Modifiers: Option Flags

Regular expression literals includes an optional modifiers that controls various aspects of
matching. These optional modifiers are specified as an optional flag. We can supply
multiple modifiers by using exclusive OR (]) operation. Following are the representation

for such an operation.

MODIFIERS

DESCRIPTION

re.l

This modifier performs a case-insensitive

matching.

re.LL

This modifier interprets words according to the
current locale. This type of interpretation affects
the alphabetic group (\w and \W) as well as word
boundary behavior (\b and \B).

re.M

This modifier makes $ match the end of a line,
and not just the end of the string. It makes A match
the start of any line, and not just the start of the

string.

re.S

This modifier is used to make a period (dot) match
with any character and it includes a newline as

well.

re.U

This modifier interprets letters according to the
Unicode character set and this flag affects the
behavior of \w, \W, \b, \B.

re.X

This modifier permits “cuter” regular expression
syntax. It ignores whitespace except those which
are present inside a set [] or when escaped by a
backslash. It treats un-escaped # as a comment

marker.

Regular Expression Pattern Summary

PATTERN

DESCRIPTION

This pattern is used to match the beginning of line.

This pattern is used to match the end of line.

This pattern is used to match any single character
except newline. Using m option allows it to match

newline as well.

[...] This pattern is used to match any single character
in brackets.

[A...] This pattern is used to match any single character
not in brackets

re* This pattern is used to match O or more
occurrences of preceding expression.

re+ This pattern is used to match 1 or more occurrence
of preceding expression.

re? This pattern is used to match 0 or 1 occurrence of
preceding expression.

re{ n} This pattern is used to match exactly n number of
occurrences of preceding expression.

re{ n,} This pattern is used to match n or more
occurrences of preceding expression.

re{ n, m} This pattern is used to match at least n and at most
m occurrences of preceding expression.

alb This pattern is used to match either a or b.

(re) This pattern is used to group the regular
expressions and remembers matched text.

(?imx) This pattern will temporarily toggle on i, m, or x

options within a regular expression. If it is present

with in parentheses, then only that area is affected.

(?-imx) This pattern will temporarily toggle off i, m, or x
options within a regular expression. If it is present
with in parentheses, then only that area is affected.

(?: re) This pattern is used to group the regular
expressions without remembering matched text.

(?imx: re) This pattern will temporarily toggle on i, m, or x
options within parentheses.

(?-imx: re) This pattern will temporarily toggle off i, m, or x
options within parentheses.

(P#...) This pattern is used to match comment.

(?=re) This pattern is used to specify the position using a
pattern. It doesn’t have a range.

(?! re) This pattern is used to specify the position using
pattern negation. It doesn’t have a range.

(?> re) This pattern is used to match the independent
pattern without backtracking.

\w This pattern is used to match the word characters.

\W This pattern is used to match the non-word
characters.

\s This pattern is used to match the whitespace.
Equivalent to [\t\n\r\f].

\S This pattern is used to match the non-whitespace.

\d This pattern is used to match the digits. Equivalent
to [0-9].

\D This pattern is used to match the non-digits.

\A This pattern is used to match the beginning of
string.

\Z This pattern is used to match the end of string. If a
newline exists, then it matches just before
newline.

\z This pattern is used to match the end of string.

\G This pattern is used to match the point where last
match finished.

\b This pattern is used to match the word boundaries
when outside brackets. It also matches backspace
(0x08) when inside brackets.

\B This pattern is used to match the non-word
boundaries.

\n, \t, etc. This pattern is used to match newlines, carriage
returns, tabs, etc.

\1...\9 This pattern is used to match the nth grouped
subexpression.

\10 This pattern is used to match the nth grouped
subexpression if it matched already. Otherwise it
will refer to the octal representation of a character
code.

(?!' re) This pattern is used to specify the position using

pattern negation. It doesn’t have a range.

Chapter 19

Python Multithreaded Programming

Python programming language is a multi-threading language. It means this language is
capable of executing multiple program threads at a time or concurrently. A single Thread
is a light weight process that performs a particular task during its lifecycle until it is
terminated after that task completion. Multithreading approach of programming has the

following benefits.

A process may have multiple threads which share the same data space within the
main thread. Therefore, they can communicate with each other and can share
required information which is easier with less performance overhead as compared

L0 separate processes.

As threads are light-weight processed therefore, they do not require much
memory overhead. In terms of memory and performance, the threads are cheaper

than processes.

Each thread has a life cycle as the start, the execution and the termination. Each thread has

an instruction pointer that keeps track of its context where it is currently running.
During the life cycle of a thread, the following events can also occur.
A Thread can be pre-empted or interrupted.

A Thread can be put on hold temporarily or sleep while other threads are

executing or running. This is also known as yielding.

Starting a New Thread using “thread” module

Python’s “thread” module has the method available that starts a new thread. Following is

the syntax to start a new Thread in Python programming language.

thread.start_new_thread (function, args[, kwargs])

Above method is used to create a new thread in both Linux and Windows operating
systems. This method call returns instantly and the child thread starts to call the function
that is passed in the list of arguments (args). When the called function returns, the thread
will be terminated. In the above syntax, the args is a tuple of arguments. If we want to call
function without passing any arguments, then we may pass an empty tuple as args. The

parameter kwargs is an optional dictionary of keyword arguments.

The Threading Module

This is a new module that is included with Python 2.4. It provides much more powerful,
high-level support for threads than the “thread” module discussed before.

The “threading” module exposes all the methods that are present in the “thread” module

and provides some additional methods as follows.

e Method threading.activeCount (): This method returns the number of thread
objects that are active.

e Method threading.currentThread (): This method returns the number of
thread objects in the caller’s thread control.

e Method threading.enumerate (): This method returns a list of all thread
objects that are currently active.

In addition to these methods, the threading module has the Thread class that implements
threading. Following are the methods provided by the Thread class.

e Method run (): The run () method of the Thread class is the entry point for a
thread.

e Method start (): The start () method of the Thread class starts a thread by
calling the run method.

e Method join ([time]): The join () method of the Thread class waits for threads
to terminate.

e Method isAlive (): The isAlive () method of the Thread class checks whether a
thread is still executing.

e Method getName (): The getName () method of the Thread class returns the
name of a thread.

e Method setName (): The setName () method of the Thread class sets the name
of a thread.

Creating Thread Using Threading Module

Following are the steps to implement a new thread using the threading module.

Firstly, define a new subclass of the Thread class.

After inheritance, Override the __init__ (self [, args]) method to add additional

arguments.

Next, override the run (self [, args]) method to implement what the thread

should do when started.

After doing above steps, we can now create the instance of subclass and then start a new

thread by invoking the start () method, which in turn will call the run () method.

Following is the Thread example by using “threading” threading module in Python

language

Output

When we execute the above Python program, we will observe the following output.

& Console X 5o = hff =i s [l
<terminsbed> ChRython Workspace s FrstPythonProjectisrc TheeadingDemo oy
Scarcing a Th Bread Bef =1

Synchronizing Threads in Python

The simple-to-implement locking mechanism is provided in the “threading” module of

Python that permits us to synchronize threads. It has following methods to achieve
Thread synchronization.

Method Lock (): When this method is called it returns the new lock.

Method acquire (blocking): This method of the new lock object is used to
force threads to run synchronously. It accepts an optional blocking parameter that
enables us to control whether the thread waits to acquire the lock. If the value of
blocking is set to 0 then the thread returns immediately with a 0 value if the lock
cannot be acquired and with a 1 if the lock was acquired. If the value of blocking
is set to 1 then the thread blocks and wait for the lock to be released.

Method release (): This method of the new lock object is used to release the
lock when it is no longer required.

Let’s understand thread synchronization with the help of following example.

Output

When we execute the above Python program, we will observe the following output.

X %o & Bl EliE | - .= -

Conclusion

Thank you, my hope is that after finishing this book I have given you some level of
understanding of Python greater than what you had before. I like to add more sections and
more information to my books over time based on what my readers would like to see. I’d
love to hear what you think about the book so far and what you would like to see added.

