
Behavior Research Methods & Instrumentation
1975, Vol. 7 (2), 137-142

4K Laboratory FOCAL

S. W. LINK
McMaster University, Hamilton. Ontario. Canada

While FOCAL has become a commonplace calculational language in many small computer
laboratories, the use of FOCAL as an experimental control system has been largely ignored. In the
present paper, a 4K FOCAL laboratory system is described. Extensions to the FOCAL function and
command lists provide for integer manipulations, high- and low-speed output, and a variable DO
statement. By providing access to experimental peripheral devices, FOCAL can be used as a powerful
operating system. As an illustration, a two-choice reaction time experiment is discussed, a FOCAL
control program for this experiment is described, and an assembly language listing illustrates how
changes to FOCAL can be made.

Like many of you, I began my computer training on a
small computer. The selection of a small computer was
not so much a matter of choice as of necessity, for at the
time most computers were small-if not physically, then
at least computationally. The Bendix G15-D was such a
computer. The D signified the presence of a drum that
revolved to expose, slowly, each of 1,024 words of bulk
storage. The machine was user operated, and, because of
modest operating tolerances, was abused by the vagaries
of both humidity and temperature. We programmed it in
hexadecimal, without an assembly language, but usually
with what we conceived of as consummate skill and
lofty logic. We soon learned the canard that while people
are smarter than computers, computers are smarter than
programmers.

As computers and their operating systems grew, so
grew our nostalgia for the "hands on" feature of a small
computer. We progressed to the 709, the 7090, the
B5500, and a variety of CDC machines only to abandon
them at the arrival of the first PDP-I. Our nostalgia
abated, we advanced toward the use of small laboratory
computers that were fast, simple to operate, reliable, but
often contained only 4K of core memory.

It was with this background that I approached
reviewing Bernard Weiss' very fine new book, Digital
Computers in the Behavioral Laboratory (1973) (Link,
1974). About the only criticism I had concerned the
omission from the book of a chapter describing how
FOCAL could be modified to provide a laboratory
operating system. I claimed that FOCAL could be a
powerful laboratory language; Bernard Weiss asked me
to demonstrate how-so here we are.

My purpose, then, is to illustrate in rather simple
terms how 4K FOCAL has been used in a laboratory
where choice responses and their response times are
always gathered and where the number of within-subject

The research described in this paper was supported by the
National Research Council of Canada. The paper was aided by
the support of Rockefeller University during my tenure as
visiting Associate Professor of Psychology. Reprint requests
should be sent to the Department of Psychology, McMaster
University, Hamilton. Ontario, Canada.

experimental outcomes is at most 30-about the largest
number that can be conveniently investigated during a
I-h experimental session. The point of this example is to
illustrate that a considerable savings in programming
effort can be obtained by the modification of one
manufacturer's user-oriented software.

The application of FOCAL to experimental control is
not new. A number of previous papers have pointed to
FOCAL applications, and some have even included
illustrations of FOCAL programming together with
patches designed to implement new instructions or
permit input from external experimental devices (e.g.,
Reece, 197-'; Siegel, 1972), At least one author has
suggested, however, that FOCAL will require more than
4K of storage for all but the simplest of experiments
(Doll, 1972). Yet, for many laboratories, simple
experiments are quite common, and the use of FOCAL
will provide faster set-up time than could be obtained by
assembly language programming or by the modification
of some quite sophisticated laboratory packages
(Matthews & Wescourt. 1974; Millman, 1971).

The laboratory environment will determine how
often, and how many additional, peripheral devices must
be sampled or supplied with data by FOCAL. In this
regard. our laboratory is similar to laboratories for which
large operating systems have been written. Minor
inspection would reveal the usual jungle of computer
(PDP-8!), peripheral equipment, and assorted, if not
tangled, cables connecting the computer to an
experimental room. We run one subject at a time, in part
because the stimulus equipment must sometimes be
calibrated for each subject, but mostly because our
experiments are lengthy within-subject psychophysical
studies which do not require more than a single subject
station. In addition to a high-speed reader/punch and
ASR-33. we have a calligraphic display system (Griffin,
1968: Link. 1969), auditory and tactual stimulus
control devices, indicator lights. various types of
response panels, a programmable clock, and a Tri-Data
Cartrifile that has been taught to perform like a DEC
disk monitor system,

137

138 LINK

A TWO CHOICE RT EXPERIMENTAL DESIGN WITH CUED

PRESENTATION PROBABILITIES.

RESPONSE

SELECT A

VALUE OF i

j=1,. ,7

SELECT AND

DISPLAY FOR

TIME II THE

CUED PROBABILITY

'1l' : i •. 125

PRESENT NOTHING

FOR TIME 12

(DELAY)

PRESENT SA~

PRESENT S8~

(7 VALUES OF 'IT))((2 STIMULI))((2 POSSIBLE RESPONSES) : 28 POSSIBLE EVENTS PER

Figure 1: A two-choice reaction time experimental design.

A typical laboratory experiment is illustrated in
Figure 1. The purpose of this two-choice response time
experiment was to bias a subject on a trial by trial basis
toward one of two response alternatives, RA or RB . A
point of major theoretical interest was how correct and
error response times would change as a function of
response bias (Link, 1975).

The program controlling the experiment must
perform the following tasks. At the start of each
self-paced trial, the probability of presenting stimulus
SA, on the current trial, must be presented to the
subject for a convenient length of time (TI). Thereafter,
a blank display screen is presented (for time T2) to clear
the visual field and provide a warning signal. Then
stimulus SA is presented with a marginal probability
equal to the displayed probability. The stimulus remains
visible until the subject responds RA or RB , and both
the response made and the response time must be
recorded and saved for later analysis. However, to
provide the experimenter and the subject with a
summary of results, we accumulated for each displayed
probability value, 1Ti(i = 1, .. , 7), the numbers of
responses of each type to each stimulus and the
associated response times. Since there were seven values
of 1T, two stimuli, two responses, and two response
measures, the results from a single trial would occupy 2
of 56 data collection bins. At the end of the subject
session, response frequencies and mean RTs for each
stimulus-response combination and each value of 1T were
to be reported on the Teletype.

The first question we face in adapting FOCAL to our
experimental needs is what changes to make. Any
changes that are made must either replace or modify
existing FOCAL routines or be patched to FOCAL in
any unused space. It is, therefore, of primary importance
that we have a clear idea of how free space can be
obtained.

There are three methods of increasing the amount of
available memory space. First, by deleting the extended

functions (LOG, EXP, ATN, SINE, and COSINE), an
area from 3206 8 to 54008 is made available. The size of
this area is greater than the space occupied by Symbolic
Editor. Second, by limiting the memory area used for
storage of the FOCAL program, variables, and the push
down list, we can reserve a memory area for patches or
data storage. Last, there are many sections of
4K-FOCAL 69 that are unused, and some command
routines, such as the L command, provide additional free
space when deleted. By these simple methods, well over
one-quarter of the 4K memory is free to be used for
storage of the FOCAL program, variables, push down
list, and user defined routines.

Having determined the available free space, we now
wish to use this space efficiently.

When a large number of variables are to be defined,
and the values assumed by these variables are less than
4095, an efficient use of free memory space can be made
by treating these variables as integers. In contrast to
variables defined by FOCAL, which require five
contiguous memory locations, our integers each occupy
only a single location. Naturally, deviating from the
FOCAL definition of a variable will require additional
programming space (approximately 18 locations), but
this increase is offset by more efficient storage.

In the sample program below, integer manipulation is
accomplished by defining two new FOCAL functions.
The function FPUT (X,Y) will convert to an integer
0< Y < 4095 either the value Y or a fixed numerical
value and place the integer value in Memory Location X
(specified in decimal). An example of FPUT is shown in
statement, 01.03 of the sample FOCAL program. We
wished to fill Memory Locations 2342 to 2453 with
zero. It can be seen that rather than using a FOCAL
variable set equal to zero, a fixed integer value of 0 was
used. To retrieve an integer already in memory, another
FOCAL function FLST (x) will convert the integer
found in (decimal) Location X to a FOCAL variable. For
example, the command S Z=FLST(X) will set the

FOCAL variable Z equal to the integer value found in
Location X. These two FOCAL functions control input
to and output from user selected areas of memory and
vastly increase the capability of FOCAL to store
experimentally obtained data values such as frequencies
of stimulus-response pairings.

In addition to functions providing for integer storage
and retrieval, other functions can increase the
convenience of Laboratory FOCAL. To the version of
FOCAL controlling the two-choice reaction time
experiment, we have added a new random number
generator and a routine to switch between high- and
low-speed output. By setting Z=FRAN(), a
pseudorandom number bounded by 0 and 1 will be
generated. The random numbers so obtained have
satisfied marginal probability, runs, and sequential tests
for randomness. Switching between low- and high-speed
output is accomplished by the instruction S Z=FSWP().
Each execution of this instruction promotes a change
from the current to the alternative output mode.
High-speed output will, in many cases, obviate the need
to devote large memory areas to storage of trial by trial
results.

Other efficiencies are to be had by modifying or
augmenting the FOCAL command list. In the present
case, only two changes have been made. The first change
is a modification of the Comment (C) command.
Normally, whenever a C is encountered, the FOCAL
processor will simply ignore any subsequent characters
up to the next text terminator. With a rather minor
modification, the Comment command can also be made
to clear all device flags. If peripheral devices are not to
be serviced by a FOCAL interrupt handler, then it is
particularly important that these devices and their flags
be cleared at the beginning of a FOCAL program. Were
these devices not cleared, FOCAL would sense an
"illegal interrupt" and become quite confused.

The second command change provides for multiple
branching beyond that offered by use of an IF
statement. Suppose, for example, that on the basis of
calculation from random numbers, experimental trial
outcomes, or other methods, any 1 of 20 different
resultant computations must be performed. A chain of
IF statements would, of course, eventually lead to the
desired computation. On the other hand, if the
calculation yields a number that can be put into
correspondence with numbers ranging from 1 to 20,
then a single branching statement could provide direct
transfer to the desired computational sequence. To
effect this operation, we have replaced the usual Library
function, L, with a routine which will transfer program
control to an arbitrary FOCAL group number.
Execution of the statement L X will force a transfer of
control to Group Number X. After execution of
Group X, control is transferred back to the statement
following LX. Thus, the multiple branching statement
can be considered similar to a variable DO statement.

4K LABORATORY FOCAL 139

~1.~1 C PR\lGRA,M FOR TwO CHOICE pT 'wITH PROBA~ILIT{ SP_.A"
\Jl.lil2 C ERASt INTEGER STORAr,E. AIH:A
01.1'3 r I 2453;S Z:FPUT(I,ID
01.\1') ';[T -1(.' ST]MUl s-r
01.1116 S J2341;F K=",6;~) 8
01.09 (RI)~, ~ I'-LOCKS I)F ')b TRlALS EACH
01.10 F K::l,5;F 1=9,55;D S
01.19 C PRINT OUT SUMMARY OF RESULTS

9l.20 1 ! ~ ~ F K=0~6jD 2
01 . .H1 (A".L 'II~!SdEU QUIT

02.05 ((,IWUP 'I C::h-.JTROLS SUMMARy PRINTOUT
02.i0 T !;'. 1::1(::4+1,((+1)::4;D ~

" ~, • 211 R

l13.lill C GROUP 3 PRINTS ONE LINE UF RESULTS
"LilS S J'I+2397
150111 J LST(J»5.3,3.3iS T(1)::T(I)/FLSTC:';
93.31' T FLSTCd),TCl)iR

e4.91 C GROUP (I RANDOMLY CHOOSES THE SllMULUS Ar-.O
1'4.02 C PERMUTES THE STIMULUS LISf TRIAL BY TRIAL
94.03 C FRANC) YIELDS A PSUEDQ-RANOOM NUMBER >0,<1.
iJ4.1~ S J-::5G-IjS M::FITR(FRAN()::J+2342)iS x::23 l ol + J
114.211 S R::FLST(M);S Z::FPUT(M,FLST(X))jS Z::FPI)T(,~,P)

04.30 R

il5.S! C GROUP 'j CONTROLS A SINGLE TRIAL BY FIRST OBTAPHNG
\LI5.112 C A STtMULUS LIST NUMBER AND CONVERTING IT TO A
05."3 (STIMULUS NUMBER,S, AND '0 A PROBABILITY C)ISPlAY
05.~4 C POINHR,I-.
"5.~5 0 X::FITR((R-!)/2)jS S::R-2::x
95.15 C ENTER REAL lME STIMULUS PRESENTATION ROUTP"t::
"5.16 C X;:3 POINTS TO A DISPLAY VECTOR CONTAINING T.-<REE
":'.17 (CHARACTERSi125,250,375,5U,h25,75I1,875.
"5.18 C r : IS THE DISPLAy DURATION
115.19 C 12 IS THE DELAY FROM DISPLAY TO STIMULUS
115.20 C (j I~ fHE STIMULUS(l OR 2)
05.25 S Z::FTRL(X::3,Tl,T2,S)
"5. 3iJ I~ GeT kit-~SJ.'ONSE AND RT FROM KNOWN MEMORY LOCAT!Q~6

05.35 S R::FLST(2745);S IH:::FLST(2746)
if 5.39 C OUTPUT TRIAI_ RESULTS ON HIGH SPEED PUNCH
~5.4la S Z::FSWPC);; %1," ",X,S,R;T %4,RT;S Z=FSWP()
~S. 59 C A\:CUMU!..-ATE RESULTS
lJ5.6il 5):::T(Y)+RT;S Y::Y .. 23')7

"5.1la s
"5.811 R

~8.~1 C T'-115 ROUTINE COMPUTES AN ARRAY (LINEARIZED) OF 7 ROWS
118.112 C AND 8 COLUMNS. ODD NUMBERS REFER TO STIMULUS 1 AND EVEN
li8.iJ3 C NUMBERS TO STIMULUS 2. THE MAGNiTUDE OF A NUMBER INDICATES
08.94 C A ROW OF THE ARRAY AND ALSO DETERMINES THE PROBABILITY
IIB.liS (DISPLAY TO BE SHOWN TO THE SUBJECT(CALCULATED [N GROUP 4).
0S.U F !::1,7-K;S J::J+1;S Z::FPUT(J,2::K+1)
0B.a F I::iJ,KjS ,J::,J+l;S Z:::FPUT(J,2::K+2)

"8. 3li R

Figure 2: A 4K Laboratory FOCAL program for a two-choice
reaction time experiment with cued presentation probabilities.

As an illustration of this command, let Y be a random
number uniformly distributed between zero and one. If
we want to execute 20 different, but equally likely,
calculations based on the value of Y, we set
X=20*Y + 10. The value of X will range from 10
through 29, and execution of the L X command will
transfer control to Group Number X where the
appropriate calculations can be performed.

A more powerful use of the L command is in
sequencing program operation. The execution of the
instruction F 1=1, N; L XCI) provides an example. In this
statement, the first group of statements to be executed
is defined by X(1). A statement in Group X(1) could
modify any values in the vector X(I). Furthermore, since
the values of I and N can be changed by statements
within Group X(1), the sequence of program operation,
after the completion of Group X(1), can be altered.
Since any group may operate on I,N, or any value of
X(l), a program can be thought of as series of transitions
from one group to another, where each group is sensitive
to the current state of the program vector X. The use of
the L command can provide great programming
flexibility and can greatly simplify complicated multiple
branching structures.

140 LINK

The final problem to be faced in adapting FOCAL to
the laboratory centers on access to experimental control
devices. Access from the FOCAL control program can be
provided by extension of the FOCAL function and
command repertoire. At a minimum, a single function
could pass to an assembly language subroutine all
parameters required for execution of a single
experimental trial while the subroutine would return to
FOCAL the observed response measures. In this
instance, the subroutine would assume complete control
during an experimental epoch by disabling the FOCAL
processor and operating in real time.

A second, and often preferable, method is to define a
FOCAL function or command which will control a
single experimental device such as a display device, a
clock, and so forth. This method has the advantage of
providing a single FOCAL operating system that can be
used by experimenters not acquainted with assembly
language programming. Although the implementation of
this method may require substantial modification to the
FOCAL interrupt handler, it provides a quite flexible
experimental language (cf. Reece, 1973).

A FOCAL EXAMPLE

Figure 2 represents a FOCAL program which uses
many of the function and command features described
above. The program has been used to obtain two-choice
RT data in an experiment designed to bias a subject
toward one or the other of the two response alternatives.
In this program, a single FOCAL function passes
parameter values to an assembly language subroutine,
FTRL, which assumes complete computer control
during an experimental trial. Each group of statements is
self-explanatory, given the numerous comments, but a
short description of the main features of the program
may be of some value.

Briefly, the FOCAL function FfRL (Y, TI, T2, S)
was defmed so that the arguments of the function could
be computed in the body of the FOCAL program. These
arguments refer to the presentation probability to be
displayed to the subject, Y; the duration of that display,
TI; the time interval between the termination of the
probability display and the presentation of the stimulus,
T2; and the value of the stimulus, S. Upon execution,
FTRL controls all within-trial experimental events, waits
for the subject's response, and then stores the response
and response time in absolute memory locations. When
FfRL has completed execution, the main body of the
FOCAL program retrieves the response and response
time. FfRL uses one page of memory.

The FOCAL program consists of two main sections.
Group 1 is an executive routine that first clears all device
flags and then initializes Locations 2342 to 2453 to
zero. Then a 7 by 8 linearized array is filled with
numbers which simultaneously indicate presentation

probability and stimulus values. After these initial
computations have been completed, five blocks of 56
experimental trials are run, and then summary results are
printed on the Teletype.

Group 5 executes a single trial. First, a value is
selected at random from the linearized array filled by
Group 1. The value obtained is decomposed into a
presentation probability indicator ranging from 1 to 7
and a stimulus value S. These values, together with TI
and T2, are passed to the assembly language trial
controller by FfRL. After a response, control returns to
FOCAL, and the values of the response and response
time are obtained from Absolute Locations 2745 and
2746. All data summarizing the trial are then punched
on paper tape, and summary statistics are gathered in
two linearized arrays. At the end of Group 5, control is
returned to Statement 1.10.

What has been gained through this approach to the
laboratory use of FOCAL is a bookkeeping system that
relegates to FOCAL data handling operations. The
control of a single trial is in the hands of FTRL where
real time operation can be effected. Taking advantage of
the great flexibility provided by FOCAL saves valuable
programming time and yet allows for hands-on operation
by laboratory personnel who are unfamiliar with
assembly language programming. Furthermore,
debugging time is greatly reduced since the experimenter
can simultaneously act as programmer and subject and
can easily modify his FOCAL program to meet the
demands of a new experimental design.

The major question most computer users ask
concerning this application of FOCAL is how to get
started. My experience is probably similar to that of
others who have adapted FOCAL to their own purposes.
First, one needs a model illustrating the assembly
language programming required in defining new
commands and functions. One of the best models is that
of Reece (1973). However, to provide other illustrations,
the appendix to this paper contains a PAL8 listing of the

FOCAL modifications required to define FRAN, FLST,
FPUT, FSWP, and changes to the C and L commands. In
order to write a patch to FOCAL, one should have
available a listing of FOCAL, the Advanced Focal
manual (DEC-08-AJBB·DL, 1969). and the very useful
monograph by Wrege entitled "FOCAL: How to write
new subroutines and use internal routines." With these
programming aids, an experimenter should have little
difficulty in adapting FOCAL to his laboratory needs.

APPENDIX

The program listed below provides examples of
patches to 4K-FOCAL 69. Some routines are identical to
those employed by Reece (1973), and some other
routines will be recognized by FOCAL users.

/PATCH TO FOC~L FOR TWO CHOICE PAl8 V7

/PATCH TO FOCAL FOR TWO CHOICE RT EXPERIMENT

un3 541J4 JMP I 4
Ue\J4 2be3 2&1iI3 /FOCAl INTERRUPT HANDLER

U35 "35
UIiI35 4423 l30TTOM, LCOM 21i13 /LAST FOCAL LOCATION

0111
11001 &451
00112 7111

6451 /CLEAR RESPONSE FLAG
NOP

(ROuTINE TO CLEAR ALL flAGS AND BUFFERS. THIS
/ROUTINE REPLACES THE c COMMAND IN FOCAL.

4 b i LJ ::LCUM
ill, b '26 73 110 LCOM, eLL eLA
114627 1022 fAD PC I SAVE FOCAL PROGRAM COUNTER
14611 4') 1+;' PUSHA ION THE PUSHDOWN Ll S T FOR RETURN
114631 451" ARG /EVALUATE THE SYMBOL FOLLOW I NG L
9463 '} 455 J RT Lf /CONVERT TO GROUP NUMBER
114b 3 3 7U4 RAL
04634 3eG? aCA L I NENO
14635 306~ DCA I\AGSW 15ET ALL GROUP SWITCH
114656 4') 40 PUSHJ I EXECUTE THE GROUP
94637 0421 DO+ 1
04640 14 1 ~ POPA / GET RE.TURN
IJ46 4 1 Hn DCA PC /RESTORE PROGRA/'o1. (OUNTER
114642 ',5111 POPJ !EX IT

!LOCATION FILLED WITH HoiA
IOF DISPLAY ROUTINE
! ADD I T I ON ROUT I NE
!CuRRENT fLOAT ING
/REPRESENTATlON OF
/RANDOM NUMBER

ADD, 5733
RANDOM... 4421

li41
0101

.:171
XARG1, XARG
SHOW, I'l

/DEF\NI T IONS
INTEGER::1I1053
EFUN31::it136
SPNOR::1,560
PUSHA= 4 54 2
rUSliF::4543
PUSHJ::4540
POPA:: 1y 13
POPF::454 l l

POPJ.::5')41
RTL6::4557
PC::22
NAGsw::65
L1NENO=67
EXI ::4111
EXP::44
00::428
EVAL::1&13
ATLIST=1570
FNTABF::0374
FNTABL::2165
COMGO=1163
SAVAC::2600
FRAN=3lJ52
I
(SPECIAL DEFINITIONS FOR PATCH
ARG::JMS I XARGI
XTRL=52U
XPUT::!i160

SWAP:: 7 5" 3
LCOM::4626
XLST::2564
XARG::1343
CT:: 11
M2p:: 12 7
I
/CHANGES TO LOW CORE FOCAL
::1

5733
4421
li40
UI!

45711
5211
616"
751 3
4625
2564
1343
0011
1127

0053
Ill6
4560
4542
4543
4540
1413
4544
5541
4557
0022
I IG5
fi67
0041
1144
1421
1613
1578
ID74
2165
1163
2511
H52

111)2
11173
01174
10175

01!70
1J1i1171

/CHANGES TO FUNCTION TABL ES
1377 ::FNTABF+3

11377 5200 XTRL /MAI N TR I AL ',EQUENCER

2170 ::FNT ABL+ 3
12170 2710 27i! /CODE FOR ~ T Rt > 4:: T+2:; R+L

1411 ::FNTABF+4
10411 3052 FRAN INEW RANDOM ~WMBE R GENf.RATOR

lit491 ::FNTABF+5
U401 75 I J SWAP /Sw ITCH OUTPUT MODE

2172 ::FNTABL+5
1'l2172 2712 27 12 / CODf FOR fSWP::lt:;S+2~ W+P

1it411 ~:FNT ABF
+ 1\

1J0411 2561+ XlS T IROUT]NE TO RETURN lOCATION CONTENTS
22112 ::FNTABL+15

12202 2652 2652 /CODE FOR F LS T::4:;L+2 :S + T
1)412 ::FNTABF+16

"6412 6 16~ XPUT IROUT INE r 0 POT I NTQ CORE

221 J ~:FNTABL+ 16
1122113 2676 2676 /CODE - 4:;P+-2::U+ T

1574 ;:ATLlST+4
111574 0614 614 !REPtACE ADDR OF SYMBOL TABLE TYPEOUT

/OI'l5nWIIH AODR OF EXIT FROM A CALL.
117i'! ::COMGO+ 5

It 1171J 4643 XCLR /C COMMAND NOW CLEARS FLAGS AND BUFFF. RS
1173 ::COMGO+ Ii'!

91173 4626 LCOH / THf L COMMAND NOW EXECUTES A DO X.
1217 ::1217

81217 7601 76ii I ERASE COLONS

60i2 "6102

1b102 n00 n0~ / ERAs t. EQUAL SIGN

/RQUTIN! TO GfT AN ARGUMENT FROM A FUNCTION CALL.

CLL CLA

61'l12

6022

b 1 'i2 SABLE CLOCK
h4Sl /CLEAR AND SKIP ON RESP fLAG
G\56 'FREEZE SCOPD
b456 'CLEAR OUTPUT BUFf·ER
,)MP I Xl:LRI /RETuRN

b14 /RET'JRN FOR A CALL

RI)UT INl r o CHANGE ouTPUT MODE FROM LOW TO HIGH OR FROM
'·jl(;:"" Til LOW SPEED. EACH CALL. REVERSES THE MODE.

::XPU T
XP;) ~ , JMS I INTEGER /GE T X

DCA XPU T 1
ARG ~f::T C'ATA VALUE
DCA r xPU T I
JMP 1 EFUN} I iRETURN FROM CAL L

XPU T 1, I

::';",',\P
$voJAlo, 1 AD 16 /WAl T FOR OUTPUT TO F IN I SH

51 A eLA
JMP . -2

;>10< I TC'1, lAl) CURDE-. '/ /(CURDEV)=20 OR - 20
Cl!\
UlA CURDt V
TAO AODRS
DCA 11

lUI)P, TAD 1 11
5NA

JMP 1 EFUN.~ I IRETURN
DCA PLACE
TAO 1 PLACE IGET rOT
TAD CUROEV
DCA 1 PLACE
JMP L.OOP

~'LACE.I 0
lURUEV, 20 I SF.: T INITIALLY FOR LGl-1 T0 HI G'1 SPEE 0

AlJ[lRS, ADDRS

1>1t CODING OF 'filS ROuTINE WILL Bt. UNIQUE TO INDIVIDUAL
lABORATORIES 1\,'\ID riAS BEEN OMITTED FROM r-n s L,I5TING.
FOR THE P:JRPOS[OF T~I\S Ll5TING THE AVAILABLE SPACE
1<-., FR(),~ Idj5G~(5400.

RUUllNE 10 PuT iJATA I~,TO CORD LOCATION.
'C.ALL AS S Z::FPUT(X,Y), WHERE X IS ADDRESS
/(IN DECIMAL) AND i IS DATA VALUE.

tXPERIMENTAL ROUTiNf FOR TWO (HOICE RT
/(M.L WITH S Z::FTRL(X::3, TI, T2,S)

.X::0, ••• ,b SPECIFIES THE TRIAL TYPE, ::3 GIVES TABLE LOCATION
r:::OURATiON OF PROBABILITY DISPLAY IN .1 SEC. UNITS
U~INrF.RVAL BE.TwElN PROS. [lISPLAY AND STIM.C.l SEC. 'JNIT5)
~=ST!MlJLUS(] 'R ~'J

73i!1fl XCLR.

6" 12
beLl
b! 5'
be 4 2
613 2
645 I
6:5 ') b
6:.. ', f
')&'is

"614 xrt.k i ,

04&43
04lJ l l 4

0464')

04646
01~ b 47
04b 'i 0
o4f, 5 1
04b 5 2
o4tJ 5 3
04(-, <;4

0':' i:J'-' ')

6161it
IIb 16 i!I 4453
ob r6 1 n65
961 b 2 4') 70
ilb 163 i7 b"
lH> 1 b4 ') S 3 b
06 1b 5 II 01

l S ~ \
PS~'i 10 I b
0! ')114 IE. 40
jl7 5 ~ 'i S30 5
Iitn06 132 1,

! 751 I 7041
lit75 It'I 532'+
117<,11 131"
Iit?Sl2 HI]
87513 141 1
en14 74 S0
87515 5536
07516 3323
117517 1 t r ~

1iIl'>2 8 1324
87521 3773
07q2 5 .\ 1 ~

I' 7 S25 "00oP-, '14 102!
lJ7')?',)

OF I

I HHEGtR /Gt I J
xt.t ST 1
I XLI:3TI !GE:r CONTENTS
RAR /NORMAL-jZE IN FLAC
4 \

46
XFLCNI
44
I lf~'~,5! rURN

iJ 'ENTRY POINT
ell CLA
SPNOR
PUSHJ
tVAL-l
JMS I I NTEGE R
,)MP I XARG IRE TURN

JMS
DCA
TAD

CLl
DCA
RAR
~)(A

TAD
DCA
JMP
: 4
~

::XARG
XARG,

/ROUTINE TO GET CONTENTS OF A CORE ADDRESS.
IS Z::FLST(I), wHERf I IS AnDRESS IN DECIMAL

::XL 5 T
XL') r,

XL 1ST

1343
1110
7J0I
45bl,t
4141
1612
4453
5743

2564
445 J
3377
177 7
7lU
l!45
7011
3 lit46
1376
H44
5536
IIl4
iill

iJ1343
01344
11 1345
1'l1346
IH347
11 J 50
iJI 351

i'!2 56 4
11 2 56 5
i2 566
02567
12 \ 70
112571
lit2 572
il2 5 73
02574
11 2 ') 75
02 'i 76
02577

142 LINK

87526 616 261b billj 1
, 7)27 619 261' \142
'7530 615 261 S b044
'7531 711 7711 6"6
'753 , 762. 2762 "4b'75 J 1 '" UU

ADD 'I7 2
ADDRS 7525
ARG 457 e
All I ST 1571
BOTTOM ."35
COMGO 1163
CT "II
CURDEV 7524
DO "21
EFUN3 I , 136
EVAl 1613
EXP "44EXI 1141
fNT ABF 1374
FNT ABL 2165
FRAN 3152
INTEGE '~5 3
LeOH 4626
LI NENQ "67
LOOP 7513
M2P '127
M4 3113
NAGSW .. 65
PC "22
PLACE 7523
PQPA 1413
POPF 4544
POPJ 5541
PUSHA 4542
PUSHF 4543
PUSHJ 454'
RANDOM , 173
RTLo 45') 7
SAVAC 26"
SI-IQW e171
SPNOR 4 56~
SWAP 75' 3
SWITCH 7506
XARG 1343
XARG 1 , 17'
XCLR 4643
« LR I 4655

XFLCNI 2576
XLiSTl 2,77
XLST 2564
XPUT 6160
XPUTI 616S
xTRL S2!U

REFERENCES
Doll, T. J. A 4-K computer language for experimentation with

human subjects. Behavioral Research Methods &:
Instrumentation. 1972.4,27-31.

Griffin, J. D. A. Investigation of CRT control room displays
using a computer. Second Canadian Symposium Proceedings,
DECUS, Toronto, 1968.

Link, S. W. A computer controlled laboratory for visual
perception and human learning. Third Canadian Symposium
Proceedings, DEC US, Toronto, 1969.

Link, S. W. Deus Ex Machina. Contemporary Psychology, 1974,
19,8,596-597.

Link, S. W. The relative judgment theory of two choice response
time. Journal of Mathematical Psychology. 1975, 12.

Matthews, P., & Wescourt, K. Imlac control program for
psychological experiments. Department of Psychology.
Stanford uiversitv , Stanford. California, 1974.

Millman. B. PSYPAL: A computer language for the control of
psychological experiments. Department of Psychology
Technical Report, University of Calgary, Alberta, 1971.

Reece, P. Some simple I/O patches for 4K FOCAL. Decuscope,
1973,12,23-29.

Siegel, W. Combining FOCAL and assembly language. Behavioral
Research Methods & Instrumentation. 1972, 4, 105-106.

Weiss, B. Digital compuiers in the behavioral laboratory. New
York: Appletcn-Centurv-Crofts, 1973.

Wrege, D. FOCAL: How to write new subroutines and use
internal routines. DECUS: FOCAL-17.

Advanced FOCAL technical specificaiio ns, Maynard, Mass:
'Digital Equipment Corporation, DEC~8-AJBB-DL,1969.

