Behavior Research Methods & Instrumentation
1975, Vol. 7 (2), 137-142

4K Laboratory FOCAL

S. W. LINK

McMaster University, Hamilton, Ontario, Canada

While FOCAL has become a commonplace calculational language in many small computer
laboratories, the use of FOCAL as an experimental control system has been largely ignored. In the
present paper, a 4K FOCAL laboratory system is described. Extensions to the FOCAL function and
command lists provide for integer manipulations, high- and low-speed output, and a variable DO
statement. By providing access to experimental peripheral devices, FOCAL can be used as a powerful
operating system. As an illustration, a two-choice reaction time experiment is discussed, a FOCAL
control program for this experiment is described, and an assembly language listing illustrates how

changes to FOCAL can be made.

Like many of you, I began my computer training on a
small computer. The selection of a small computer was
not so much a matter of choice as of necessity, for at the
time most computers were small—if not physically, then
at least computationally. The Bendix G15-D was such a
computer. The D signified the presence of a drum that
revolved to expose, slowly, each of 1,024 words of bulk
storage. The machine was user operated, and, because of
modest operating tolerances, was abused by the vagaries
of both humidity and temperature. We programmed it in
hexadecimal, without an assembly language, but usually
with what we conceived of as consummate skill and
lofty logic. We soon learned the canard that while people
are smarter than computers, computers are smarter than
programmers.

As computers and their operating systems grew, so
grew our nostalgia for the “hands on” feature of a small
computer. We progressed to the 709, the 7090, the
B5500, and a variety of CDC machines only to abandon
them at the arrival of the first PDP-1. Our nostalgia
abated, we advanced toward the use of small laboratory
computers that were fast, simple to operate, reliable, but
often contained only 4K of core memory.

It was with this background that 1 approached
reviewing Bernard Weiss’ very fine new book, Digital
Computers in the Behavioral Laboratory (1973) (Link,
1974). About the only criticism I had concerned the
omission from the book of a chapter describing how
FOCAL could be modified to provide a laboratory
operating system. [claimed that FOCAL could be a
powerful laboratory language; Bernard Weiss asked me
to demonstrate how—so here we are.

My purpose, then, is to illustrate in rather simple
terms how 4K FOCAL has been used in a laboratory
where choice responses and their response times are
always gathered and where the number of within-subject

The research described in this paper was supported by the
National Research Council of Canada. The paper was aided by
the support of Rockefeller University during my tenure as
visiting Associate Professor of Psychology. Reprint requests
should be sent to the Department of Psychology, McMaster
University, Hamilton, Ontario, Canada.

experimental outcomes is at most 30—about the largest
number that can be conveniently investigated during a
I-h experimental session. The point of this example is to
iltustrate that a considerable savings in programming
effort can be obtained by the modification of one
manufacturer’s user-oriented software.

The application of FOCAL to experimental control is
not new. A number of previous papers have pointed to
FOCAL applications, and some have even included
iflustrations of FOCAL programming together with
patches designed to implement new instructions or
permit input from external experimental devices (e.g.,
Reece, 1973, Siegel, 1972). At least one author has
suggested, however, that FOCAL will require more than
4K of storage for all but the simplest of experiments
(Doll, 1972). Yet, for many laboratories, simple
experiments are quite common, and the use of FOCAL
will provide faster set-up time than could be obtained by
assembly language programming or by the modification
of some quite sophisticated laboratory packages
(Matthews & Wescourt, 1974 ; Millman, 1971).

The laboratory environment will determine how
often, and how many additional, peripheral devices must
be sampled or supplied with data by FOCAL. In this
regard, our laboratory is similar to laboratories for which
large operating systems have been written. Minor
inspection would reveal the usual jungle of computer
(PDP-81), peripheral equipment, and assorted, if not
tangled, cables connecting the computer to an
experimental room. We run one subject at a time, in part
because the stimulus equipment must sometimes be
calibrated for each subject, but mostly because our
experiments are lengthy within-subject psychophysical
studies which do not require more than a single subject
station. In addition to a high-speed reader/punch and
ASR-33., we have a calligraphic display system (Griffin,
1968 Link. 1969), auditory and tactual stimulus
control devices, indicator lights, various types of
response panels, a programmable clock, and a Tri-Data
Cartrifile that has been taught to perform like a DEC
disk monitor system.

137

138 LINK

A TWO CHOICE RT EXPERIMENTAL DESIGN WITH CUED
PRESENTATION PROBABILITIES.

RESPONSE
RA
PRESENT S
SELECT A SELECT AND PRESENT NOTHING o A < R
VALUE OF i DISPLAY FOR FOR TIME t, - o
o i A
s, 7 TIME t, THE (DELAY) PRESENT S, <
CUED PROBABILITY R
w =125

(7 VALUES OF T) x (2 STIMULI) x (2 POSSIBLE RESPONSES) = 28 POSSIBLE EVENTS PER

Figure 1: A two-choice reaction time experimental design,

A typical laboratory experiment is illustrated in
Figure 1. The purpose of this two-choice response time
experiment was to bias a subject on a trial by trial basis
toward one of two response alternatives, Ry or Rg. A
point of major theoretical interest was how correct and
error response times would change as a function of
response bias (Link, 1975).

The program controlling the experiment must
perform the following tasks. At the start of each
self-paced trial, the probability of presenting stimulus
Sa, on the current trial, must be presented to the
subject for a convenient length of time (T1). Thereafter,
a blank display screen is presented (for time T2) to clear
the visual field and provide a warning signal. Then
stimulus S, is presented with a marginal probability
equal to the displayed probability. The stimulus remains
visible until the subject responds Ry or Rg, and both
the response made and the response time must be
recorded and saved for later analysis. However, to
provide the experimenter and the subject with a
summary of results, we accumulated for each displayed
probability value, m(i=1,..,7), the numbers of
responses of each type to each stimulus and the
associated response times. Since there were seven values
of m, two stimuli, two responses, and two response
measures, the results from a single trial would occupy 2
of 56 data collection bins. At the end of the subject
session, response frequencies and mean RTs for each
stimulus-response combination and each value of 7 were
to be reported on the Teletype.

The first question we face in adapting FOCAL to our
experimental needs is what changes to make. Any
changes that are made must either replace or modify
existing FOCAL routines or be patched to FOCAL in
any unused space. It is, therefore, of primary importance
that we have a clear idea of how free space can be
obtained.

There are three methods of increasing the amount of
available memory space. First, by deleting the extended

functions (LOG, EXP, ATN, SINE, and COSINE), an
area from 32065 to 54005 is made available. The size of
this area is greater than the space occupied by Symbolic
Editor. Second, by limiting the memory area used for
storage of the FOCAL program, variables, and the push
down list, we can reserve a memory area for patches or
data storage. Last, there are many sections of
4K-FOCAL 69 that are unused, and some command
routines, such as the L command, provide additional free
space when deleted. By these simple methods, well over
one-quarter of the 4K memory is free to be used for
storage of the FOCAL program, variables, push down
list, and user defined routines.

Having determined the available free space, we now
wish to use this space efficiently.

When a large number of variables are to be defined,
and the values assumed by these variables are less than
4095, an efficient use of free memory space can be made
by treating these variables as integers. In contrast to
variables defined by FOCAL, which require five
contiguous memory locations, our integers each occupy
only a single location. Naturally, deviating from the
FOCAL definition of a variable will require additional
programming space (approximately 18 locations), but
this increase is offset by more efficient storage.

In the sample program below, integer manipulation is
accomplished by defining two new FOCAL functions.
The function FPUT (X,Y) will convert to an integer
0 <Y <4095 either the value Y or a fixed numerical
value and place the integer value in Memory Location X
(specified in decimal). An example of FPUT is shown in
statement, 01.03 of the sample FOCAL program. We
wished to fill Memory Locations 2342 to 2453 with
zero. It can be seen that rather than using a FOCAL
variable set equal to zero, a fixed integer value of O was
used. To retrieve an integer already in memory, another
FOCAL function FLST (x) will convert the integer
found in (decimal) Location X to a FOCAL variable. For
example, the command SZ=FLST(X) will set the

FOCAL variable Z equal to the integer value found in
Location X. These two FOCAL functions control input
to and output from user selected areas of memory and
vastly increase the capability of FOCAL to store
experimentally obtained data values such as frequencies
of stimulus-response pairings.

In addition to functions providing for integer storage
and retrieval, other functions can increase the
convenience of Laboratory FOCAL. To the version of
FOCAL controlling the two-choice reaction time
experiment, we have added a new random number
generator and a routine to switch between high- and
low-speed output. By setting Z=FRAN(), a
pseudorandom number bounded by O and 1 will be
generated. The random numbers so obtained have
satisfied marginal probability, runs, and sequential tests
for randomness. Switching between low- and high-speed
output is accomplished by the instruction S Z=FSWP().
Each execution of this instruction promotes a change
from the current to the alternative output mode.
High-speed output will, in many cases, obviate the need
to devote large memory areas to storage of trial by trial
results.

Other efficiencies are to be had by modifying or
augmenting the FOCAL command list. In the present
case, only two changes have been made. The first change
is a modification of the Comment (C) command.
Normally, whenever a C is encountered, the FOCAL
processor will simply ignore any subsequent characters
up to the next text terminator. With a rather minor
modification, the Comment command can also be made
to clear all device flags. If peripheral devices are not to
be serviced by a FOCAL interrupt handler, then it is
particularly important that these devices and their flags
be cleared at the beginning of a FOCAL program. Were
these devices not cleared, FOCAL would sense an
“illegal interrupt” and become quite confused.

The second command change provides for multiple
branching beyond that offered by use of an IF
statement. Suppose, for example, that on the basis of
calculation from random numbers, experimental trial
outcomes, or other methods, any 1 of 20 different
resultant computations must be performed. A chain of
IF statements would, of course, eventually lead to the
desired computation. On the other hand, if the
calculation yields a number that can be put into
correspondence with numbers ranging from 1 to 20,
then a single branching statement could provide direct
transfer to the desired computational sequence. To
effect this operation, we have replaced the usual Library
function, L, with a routine which will transfer program
control to an arbitrary FOCAL group number.
Execution of the statement L X will force a transfer of
control to Group Number X. After execution of
Group X, control is transferred back to the statement
following L X. Thus, the multiple branching statement
can be considered similar to a variable DO statement.

4K LABORATORY FOCAL 139

£-FOCAL, 1369

§1.p1 C PROGRAM FOR TwD CHOICE RT WITH PROBABILEITY CUISPLAY

$1.82 C ERASE INTEGER STORAGE AREA

91.83 ¥ 1-2342,2653;5 Z=FPUT(I,8)
BI.US ¢ SET U0 STIMULLS LIST

p1.96 S U 2341;F K=8,6;0 8

F1.89 ¢ RUL 5 CLOCKS OF S6 TRIALS EACH
p1l.10 FoK=1,5;F 1=8,55,D 5

$1.19 € PRINT OUT SUMMARY OF RESULTS
B1.20 TOLNLGE KE9,6;D 2

$1.38 C ALL TINISAED S0; QUIT

GROUP 7 CONTROLS SUMMARY PRINTOUT
R TOUGE I=kMual, (v 1)FU;D 3
vo.28 R

93.91 € GROUP 3 PRINTS ONE wINE UF RESULTS

83,95 S Jr1+2397
#3.19 1OCFLSTCUIY3.3,3.3;5 TCI=TCI)/FLSTLSD
83.39 T %S, FLSTCUY, TCI);R

§u.P1 C GROUP 4 RANDOMLY CHOOSES THE STIMULUS AND
PERMUTES THE STIMULUS LIST TRIAL BY TRIAL

-

a
-
~
o

94,93 C FRAN() YIELDS A PSUEDO-RANDOM NUMBER >9,<1,

gu. 18 S Js56-1;5 M=FITRCFRANC)®U+2342);S X=2341+y
.28 S RZFLST(M);S Z=FPUT(M,FLST(X));s Z=FPUT(x, R}
Au.30 R

§5.81 C GROUP 5 CONTROLS A SINGLE TRIAL BY FIRST OBTAINING
@5.92 C A STIMULUS LIST NUMBER AND CONVERTING 1T TO A
$5,83 C STIMULUS NUMBER,S, AND 70O A PROBABILITY DISPLAY
95.94 C POINTER, X,

95.95 D 4;5 X=FITR((R-1)/2);S S=R-2%X

95.15 C ENTER REAL TIME STIMULUS PRESENTATION ROUTINE
#5.16 C X3 POINTS TO A DISPLAY VECTOR CONTAINING THREE
5,17 CHARACTERS;125,258,375,588,625,758,875.

T1 IS THE DISPLAY DURATION
T2 1§ THE DELAY FROM DISPLAY TO STIMULUS

-
=
[¥aksRakaksl

85,28 5 1S THE STIMULUS(1 OR 2D

B5.25 $ Z=FTRL(X®3,71,72,$)

B5.38 © GET RESPONSE AND RT FROM KNOWN MEMORY LOCATIONS

$5.35 S R=FLST(2745);S RT=FLST(2746)

$5.39 C OUTPUT TRIAL RESULTS ON HIGH SPEED PUNCH

§5.49 S Z=FSWP();T %1, ",X,5,R;T %4 ,RT;S Z=FSWP()
25.59 C ACCUMJLATE RESULTS

25.69 S YExUR4+(S-1)H24R;S TLY)=T(Y)+RT;S v=Y+2397

ps5.79 S ZzFPUTCY,FLST{Y)+1)

95.89 R

P8.81 C THI5 ROUTINE COMPUTES AN ARRAY (LINEARIZED) OF 7 ROWS
98.82 C AND 8 COLUMNS, ODD NUMBERS REFER TO STIMULUS 1 AND EVEN
98.93 C NUMBERS TO STIMULUS 2. THE MAGNITUDE OF A NUMBER INDICATES
P8.%4 C A ROW OF THE ARRAY AND ALSC DETERMINES THE PROBABILITY
g8.95 C DISPLAY TO BE SHOWN TO THE SUBJECT(CALCULATED [N GROUP 4).
98.1¢ F 1z1,7-K;S J=J+1;5 Z=FPUT(Y, 2%K+1D

98.2¢ Fo1=9,K;5 J=d+l;S 2=FPUT(Y,27K+2)

98.39 R

Figure 2: A 4K Laboratory FOCAL program for a two-choice
reaction time experiment with cued presentation probabilities,

As an illustration of this command, let Y be a random
number uniformly distributed between zero and one. If
we want to execute 20 different, but equally likely,
calculations based on the wvalue of Y, we set
X=20*Y + 10. The value of X will range from 10
through 29, and execution of the L X command will
transfer control to Group Number X where the
appropriate calculations can be performed.

A more powerful use of the L command is in
sequencing program operation. The execution of the
instruction F I=1, N; L X(I) provides an example. In this
statement, the first group of statements to be executed
is defined by X(1). A statement in Group X(1) could
modify any values in the vector X(1). Furthermore, since
the values of I and N can be changed by statements
within Group X(1), the sequence of program operation,
after the completion of Group X(1), can be altered.
Since any group may operate on I,N, or any value of
X(1), a program can be thought of as series of transitions
from one group to another, where each group is sensitive
to the current state of the program vector X. The use of
the L command can provide great programming

flexibility and can greatly simplify complicated multiple
branching structures.

140 LINK

The final problem to be faced in adapting FOCAL to
the laboratory centers on access to experimental control
devices. Access from the FOCAL control program can be
provided by extension of the FOCAL function and
command repertoire. At a minimum, a single function
could pass to an assembly language subroutine all
parameters required for execution of a single
experimental trial while the subroutine would return to
FOCAL the observed response measures. In this
instance, the subroutine would assume complete control
during an experimental epoch by disabling the FOCAL
processor and operating in real time.

A second, and often preferable, method is to define a
FOCAL function or command which will control a
single experimental device such as a display device, a
clock, and so forth. This method has the advantage of
providing a single FOCAL operating system that can be
used by experimenters not acquainted with assembly
language programming. Although the implementation of
this method may require substantial modification to the
FOCAL interrupt handler, it provides a quite flexible
experimental language (cf. Reece, 1973).

A FOCAL EXAMPLE

Figure 2 represents a FOCAL program which uses
many of the function and command features described
above. The program has been used to obtain two-choice
RT data in an experiment designed to bias a subject
toward one or the other of the two response alternatives.
In this program, a single FOCAL function passes
parameter values to an assembly language subroutine,
FTRL, which assumes complete computer control
during an experimental trial. Each group of statements is
self-explanatory, given the numerous comments, but a
short description of the main features of the program
may be of some value.

Briefly, the FOCAL function FTRL (Y, T1, T2, S)
was defined so that the arguments of the function could
be computed in the body of the FOCAL program. These
arguments refer to the presentation probability to be
displayed to the subject, Y; the duration of that display,
T1; the time interval between the termination of the
probability display and the presentation of the stimulus,
T2; and the value of the stimulus, S. Upon execution,
FTRL controls all within-trial experimental events, waits
for the subject’s response, and then stores the response
and response time in absolute memory locations. When
FTRL has completed execution, the main body of the
FOCAL program retrieves the response and response
time. FTRL uses one page of memory.

The FOCAL program consists of two main sections.
Group 1 is an executive routine that first clears all device
flags and then initializes Locations 2342 to 2453 to
zero. Then a 7 by 8 linearized array is filled with
numbers which simultaneously indicate presentation

probability and stimulus values. After these initial
computations have been completed, five blocks of 56
experimental trials are run, and then summary results are
printed on the Teletype.

Group 5 executes a single trial. First, a value is
selected at random from the linearized array filled by
Group 1. The value obtained is decomposed into a
presentation probability indicator ranging from 1 to 7
and a stimulus value S. These values, together with T1
and T2, are passed to the assembly language trial
controller by FTRL. After a response, control returns to
FOCAL, and the values of the response and response
time are obtained from Absolute Locations 2745 and
2746. All data summarizing the trial are then punched
on paper tape, and surnmary statistics are gathered in
two linearized arrays. At the end of Group 5, control is
returned to Statement 1.10.

What has been gained through this approach to the
laboratory use of FOCAL is a bookkeeping system that
relegates to FOCAL data handling operations. The
control of a single trial is in the hands of FTRL where
real time operation can be effected. Taking advantage of
the great flexibility provided by FOCAL saves valuable
programming time and yet allows for hands-on operation
by laboratory personnel who are unfamiliar with
assembly language programming. Furthermore,
debugging time is greatly reduced since the experimenter
can simultaneously act as programmer and subject and
can easily modify his FOCAL program to meet the
demands of a new experimental design.

The major question most computer users ask
concerning this application of FOCAL is how to get
started. My experience is probably similar to that of
others who have adapted FOCAL to their own purposes.
First, one needs a model illustrating the assembly
language programming required in defining new
commands and functions. One of the best models is that
of Reece (1973). However, to provide other illustrations,
the appendix to this paper contains a PALS listing of the
FOCAL modifications required to define FRAN, FLST,
FPUT, FSWP, and changes to the C and L commands. In
order to write a patch to FOCAL, one should have
available a listing of FOCAL, the Advanced Focal
manual (DEC-08-AJBB-DL, 1969). and the very useful
monograph by Wrege entitled “FOCAL: How to write
new subroutines and use internal routines.” With these
programming aids, an experimenter should have little
difficulty in adapting FOCAL to his laboratory needs.

APPENDIX

The program listed below provides examples of
patches to 4K-FOCAL 69. Some routines are identical to
those employed by Reece (1973), and some other
routines will be recognized by FOCAL users,

/PATCH TO FOCAL FOR TWO CHOICE

gegpl
peap2

sadp3
BOBFL

Re3s

#p174
9p171

p172
pR173
#0174
BBL75

pB377
92178
[TEY}]
#pup1

82172

LLES®Y
92292
opL12
B2283

#1574

#1179
#1173

81217

26982

1343
91344
1345
#1346
g13u7
81359
91351

#2564
92565
92566
p2567
#2579
B2571
82572
82573
#2574
92575
92576
2577

953
g136
4569
4542
4543
45up
1413
4544
5541
4557
gp22
pR6Ss
9067
goup
pauL
Bu2g
1613
1579
8374
2165
1163
2698
3952

4579
52949
61649
7583
4626
2564
1343
#e11
B127

[110¢
6451
7e8e

S4g4
2683

935
5423

p179
1343
(T3]

5733
4421
3g4d
1.3

#377
5299
21749
2709
gugg
3852
Bupl
7583
2172
2712
8411

2564
2292
2652
pu12
6169
2283
2676
1574
e 1L

1178
hous

1173
4626

1217
7688
68d2

7688

1343
daos
7398
4569
4sup
1612
Lu53
5743

2564
4453
3377
1777
7110
3Bu5
7919
3946
1376
ETELY
5536
fB1y
sapd

PALB-V7
JPATCH TO FOCAL FOR TWO CHOICE RT EXPERIMENT
/DEFINITIONS

INTEGER=0P53
EFUN3I=@136

PUSHU=454P
POPA=1413
POPF=4544
POPJ=5541
RTLE=4557
PC=22
NAGSW=65
LINENO=67
EX1=4p
EXPzb4
00=429
EVAL=1613
ATLIST=1578
FNTABF=8374
FNTABL=2165
COMGO=1163
SAVAC=26@9
FRAN=30@52

/

/SPECIAL DEFINITIONS FOR PATCH
ARG=JMS 1 XARG1

XTRL=5208

XPUT=6169

SWAP=7503

LCOM=4626

XLST=2564

XARG=1343

CT=11

M2P=127

/

/CHANGES TO LOW CORE FOCAL
ERY

6451 /CLEAR RESPONSE FLAG
NOP
UMP 1 4
2693 /FOCAL INTERRUPT HANDLER
=35
BOTTOM, LCOM-293 /LAST FOCAL LOCATION
=178
XARG1, XARG
SHOW, [} /LOCATION FILLED WITH FwA
/OF DISPLAY ROUTINE
ADD, 5733 /ADDITION ROUTINE
RANDOM, 4421 /CURRENT FLOATING
3gup /REPRESENTATION OF
9481 /RANDOM NUMBER
/CHANGES TO FUNCTION TABLES
HENTABF +3
XTRL /MAIN TRIAL SEQUENCER
HENTABL+3
2749 /CODE FOR FTRL=GRT+25R4L
HENTABF +4
FRAN /NEW RANDOM NUMBER GENERATOR
SENTABF+5
SWAP /SWITCH OUTPUT MODE
HENTABL+5
2712 /CODE FOR FSWP=4RS4+2%W4P
HENTABF
+15
XLST /ROUTINE 70O RETURN LOCATION CONTENTS
HENTABL+15
2652 /CODE FOR FLST=4XL42¥S4T
HENTABF +16
XPUT /ROUTINE 10 PUT INTO CORE
FFNTABL+16
2676 JCODE = 4XPA2RyU4T
HATLIST +4
614 JREPLACE ADDR OF SYMBOL TABLE TYPEQUT
/(3852)WITH ADDR OF EXIT FROM A CALL.
HCOMGO+5
XCLR /C COMMAND NOW CLEARS FLAGS AND BUFFERS
FCOMGO+ 18
LCOM /THE L COMMAND NOW EXECUTES A DO X.
1217
7608 /ERASE COLONS
‘6p92
agr) /ERASE EQUAL SIGN
JROUTINE TO GET AN ARGUMENT FROM A FUNCTION CALL.
HXARG
XARG,] PENTRY PUINT
CLL CLA
SPNOR
PUSHY
EVAL-1
JMS | INTEGER
JMP I XARG /RETURN

/ROUTINE TO GET CONTENTS OF A CORE ADDRESS.

/% Z=FLST{1), WHERE [1S ADDRESS IN DECIMAL
HXLST
XLST, JMS 1 INTEGLR /GEV 1

DCA XLIST1

TAD T XLI3TI /GET CONTENTS OF I

CLL RAR /NORMALIZE IN FLAC

DCA 45

RAR

DCA 46

TAD XFLCNI

DCA uu

JMP]
XFLCNL, 16
XLISTL, 4

ErONSL RETURN

3852
93053
B3BSu
83p55
g3psh6
§3857
#3068
g3p61
#3952
23053
AT
[RT'A%}
g3gb6H
93867
#3878
p3p71
B3972
93873
93874
43075
#3876
93877
gs1e9
ailel
p21p2
LERY 3]
B31py
g31@5
#3196
83187
ARV}
g3l
B3112
pails

gu626
pub27
gu63g
Bu631
Bub32
Bu633
Pub3L
B4635
§4636
us37
pubup
gubul
Pu6u2

BubLs
Babuy
pubLs
publh
Plubh7
Buosp
[ELER
#4652
Bubs3
BubSH
[ELES

96168
86161
#6162
#6163
B61b4
#6165

[RAY M
B75p4
7585
87586
87587
875148
g7511
#7512
47513
7514
#7515
#7516
#7517
97528
B7521
Bp7522
p7525
Brs7u
8752%

3852
3pau
1174
3445
L7
3phh
CELS
9173
4544
et
1313
3811
L5277
2911
5265
4572
4527
4572
hsu3
(110
4544
173
3947
3Pk
186y
7788
5516
1Bus
7148
3pus
1940
Jaug
3pu6
5536

T4

4u2u
73¢9
1922
4547
45749
4557
7884
3867
3865
4549
au21
1413
3922
5541

7388
6d12
bl
bB32
6abL2
6132
6451
6356
6456
5659
bl

6164
b4s3
3365
4579
3764
5536
ange

Topt
1816
/649
5303
1324
7941
332
1328
3911
1611
7499
5536
3323
1723
1324
37723
5313
pape
paze
7520

! PANDOI
BERAN
ERAN,

My

’

4K LABORATORY FOCAL

M NUMBER GENERATOR: FRAN///

DEA G4
TAG RANDOM+ 1
SCA 65
TAD RANDOM+2Z
DCA 46
PUSHF
RANDOM
POPF
Exi+l
TAL My
DA LT
JMS 1 M2P
1sZ CT /70 GET R¥2416
JMP L -2
JMS 1 ADD
UMS 1 M2P
JMS 1 ADD
PUSHF
EXP+1
POPF
RANDOM /NEW RANDOM NUMBER
DCA EXP+3 /CHOP TO 2 WORDS
DCA EXP /MAKE A FRACTION
TAD EXP+1 /CHECK SIGN
SMA CLA
JMP L 136
TAD EXP+1
CLL CMA
DCA EXP+1
TAD EXP+2
CMA
DCA EXP+2
UMP [136
-4

JFLACZR®2¢412

/MULT BY 214

/RETURN
/TAKE 1'S COMPLEMENT

/ALWAYS RETURN A POSITIVE NUM

/ROUTINE TO EXECUTE A COMPUTED DO X WITH X AS

/A VARIABLE.
/DEFINED GROUP NUMBER,

CALL AS L X WHERE X IS A PREVIQUSLY
THIS ROUTINE REPLACES THE

/1 COMMAND,

FLUOM

LCOM, CLL CLA
TAD PC /SAVE FOCAL PROGRAM COUNTER
PUSHA /ON THE PUSHDOWN LIST FOR RETURN

/ROUTINE
/ROUTINE

XCLR,

XCLR1,

ARG /EVALUATE THE SYMBOL FOLLOWING L

RTLG JCONVERT TO GROUP NUMBER

RAL

OCA LINENO

DCA NAGSW /SET ALL GROUP SWITCH
PUSHY /EXECUTE THE GROUP

00+1

POPA /GET RETURN

DCA PC /RESTORE PROGRAM COUNTER

POPYJ JEXIT

TO CLEAR ALL FLAGS AND BUFFERS. THIS

REPLACES THE C COMMAND IN FOCAL.
CLL CLA

bp12

6B22

op32

6pL2

6132 /DISABLE CLOCK

B4S1 /CLEAR AND SKIP ON RESP FLAG
6356 /FREEZE SCOPD

bu5H JCLEAR QUTPUT BUFFER

JMP 1 XULR1 /RETURN

blh /RETURN FOR A CALL

{EXPERIMENTAL ROUTINE FOR TWO CHOICE RT

FCALL Wi
x=9

TH S Z=FTRL(

%3,71,72,5)

‘TZZINTERVAL BETWEEN PRQB, DISPLAY AND STIM.(.l SEC,

S=S8TH

i+t CODING QF

MULUS(L R0

THIS ROUTINE WILL Bt UNIQUE TO INDIVIODI

LABORATORIES AND HAS BEEN OMITTED FROM THIS LISTING
'FOR THE PURPOSE CF THIS LISTING THE AVAILABLE SPACE

1S FRO

ROUTINE
JCALL AS
/{IN DEC
HXPUT
xPur,

XPUTL,

MOLESE TC Supd.
0 PUT UATA ENTO CORD LCCATION,
S Z=FPUT(X,Y), WHERE X 1§ ADDRESS
TMAL) ANG ¥ 15 DATA VALUE,
JMS 1 INTEGER JGET X
DCA XPUT1
ARG FGET DATA VALUE
DCA 1 xPUT1
JMP T EFUN3I /RETURN FROM CALL
B

141

BER

..,6 SPECIFIES THE TRIAL TYPE, %3 GIVES TABLE LOCATION
T=DURATION OF PRCBABILITY DISPLAY IN .1 SEC. UNITS

UNTTS)

UAL

ROUTINE TO CHANGE OUTPUT MODE FROM LOW TO HIGH OR FROM

e T

FRWAP
SwaP,

SWiTCH,

LODP,

PLACE,
CURVEV,
ADDRS,

O LOW SPEED, EACH CALL REVERSES THE MODE.

TAD 16
SZA CLA
IMP L -2
TAD CURDEY
ClA

LCA CURDEV
TAD ADDRS
DCA 11

TAD T 11

SNA

JMP [EFUN3I
DCA PLACE
TAD 1 PLACE
TAD CURDEY
DCA 1 PLACE
JMP LOOP

L)

20 JSET INITIALLY FOR LOW TO HIGH SPEED
ADDRS

/WAIT FOR QUTPUT TO FINISH

/CCURDEV)}=29 OR -28

/RETURN

/GEY 107

142

2606
2618
2615
2711
2762

(2342

9172
7525
4578
1578

8935

1163
(1%}
7524
9428
136
1613
B84
ppus
8374
2165
3852
9953
4626
9967
7513
gi127
3113
9865
#p22
7523
1413
4544
5541
4542
4543
LE1Y)
$173
4557
2688
#171
4569
7503
7596
1343
179
houl
4655

LINK

2606
2618
2615
2711
2762
epop

/6841
/5842
JoBuL
/6B46
/6846

XFLCNL 2576

XLISTL 2577
XLST 2564
XPUT 616¢
XPUT1 6165
XTRL 5298

REFERENCES

Doll, T. J. A 4-K computer language for experimentation with
human subjects. Behavioral Research Methods &
Instrumentation. 1972, 4, 27-31.

Griffin, J, D. A. Investigation of CRT control room displays
using a computer. Second Canadian Symposium Proceedings,
DECUS, Toronto, 1968,

Link, S. W. A computer controlled laboratory for visual
perception and human Jearning. Third Canadian Symposium
Proceedings, DECUS, Toronto, 1969.

Link, S. W. Deus Ex Machina. Contemporary Psychology, 1974,
19, 8, 596-597.

Link, S. W. The relative judgment theory of two choice response
time. Journal of Mathematical Psychology. 1975, 12.

Matthews, P., & Wescourt, K. Imlac control program for
psychological experiments. Department of Psychology.
Stanford uiversity, Stanford, California, 1974,

Millman, B. PSYPAL: A computer language for the control of
psychological experiments. Department of Psychology
Technical Report, University of Calgary, Alberta, 1971.

Reece, P, Some simple 1/0 patches for 4K FOCAL. Decuscope,
1973, 12, 23-29.

Siegel, W. Combining FOCAL and assembly language. Behavioral
Research Methods & Instrumentation. 1972, 4, 105-106.

Weiss, B. Digital computers in the behavioral laboratory. New
York: Appleton-Century-Crofts, 1973.

Wrege, D. FOCAL: How to write new subroutines and use
internal routines, DECUS: FOCAL-17.

Advanced FOCAL technical specifications, Maynard, Mass:
‘Digital Equipment Corporation, DEC-08-AJBB-DL, 1969,

