
A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard on April 3, 1978. We report here on a
compiler and run-time system for the new extended language. This is believed to be the
first complete Fortran 77 system to be implemented. This compiler is designed to be
portable, to be correct and complete, and to generate code compatible with calling
sequences produced by C compilers. In particular, this Fortran is quite usable onUNIX†

systems. In this paper, we describe the language compiled, interfaces between procedures, and file formats assumed
by the I/O system. An appendix describes the Fortran 77 language.

1 August 1978

†UNIX is a Trademark of Bell Laboratories.

-- --

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
The Fortran language has just been revised. The new language, known as Fortran 77, became an official
American National Standard [1] on April 3, 1978. for the language, known as Fortran 77, is about to be
published. Fortran 77 supplants 1966 Standard Fortran [2]. We report here on a compiler and run-time sys-
tem for the new extended language. The compiler and computation library were written by SIF, the I/O
system by PJW. We believe ours to be the first complete Fortran 77 system to be implemented. This com-
piler is designed to be portable to a number of different machines, to be correct and complete, and to gener-
ate code compatible with calling sequences produced by compilers for the C language [3]. In particular, it
systems. Two families of C compilers are in use at Bell Laboratories, those based on D. M.
Ritchie’s PDP-11 compiler[4] and those based on S. C. Johnson’s portable C compiler [5]. This
Fortran compiler can drive the second passes of either family. In this paper, we describe the lan-
guage compiled, interfaces between procedures, and file formats assumed by the I/O system. We
will describe implementation details in companion papers.

1.1. Usage
At present, versions of the compiler run on and compile for the PDP-11, the VAX-11/780, and the Inter-
data 8/32UNIX systems. The command to run the compiler is

f 77 flags file . . .

f 77 is a general-purpose command for compiling and loading Fortran and Fortran-related files. EFL [6]
and Ratfor [7] source files will be preprocessed before being presented to the Fortran compiler. C and
assembler source files will be compiled by the appropriate programs. Object files will be loaded. (Thef 77
andcc commands cause slightly different loading sequences to be generated, since Fortran programs need a
few extra libraries and a different startup routine than do C programs.) The following file name suffixes are
understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.o Object file

The following flags are understood:

−S Generate assembler output for each source file, but do not assemble it. Assembler output
for a source filex.f, x.e, x.r,or x.c is put on filex.s.

−c Compile but do not load. Output forx.f, x.e, x.r, x.c,or x.s is put on filex.o.
is in use onUNIX†

†UNIX is a Trademark of Bell Laboratories.

-- --

- 2 -

−m Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

−f Apply the EFL or Ratfor processor to all relevant files, and leave the output fromx.e or
x.r onx.f. Do not compile the resulting Fortran program.

−p Generate code to produce usage profiles.

−o f Put executable module on filef. (Default isa.out).

−w Suppress all warning messages.

−w66 Suppress warnings about Fortran 66 features used.

−O Inv oke the C object code optimizer.

−C Compile code the checks that subscripts are within array bounds.

−onetrip Compile code that performs everydo loop at least once. (see Section 2.10).

−U Do not convert upper case letters to lower case. The default is to convert Fortran pro-
grams to lower case.

−u Make the default type of a variableundefined. (see Section 2.3).

−I2 On machines which support short integers, make the default integer constants and vari-
ables short. (−I4 is the standard value of this option). (see Section 2.14). All logical
quantities will be short.

−E The remaining characters in the argument are used as an EFL flag argument.

−R The remaining characters in the argument are used as a Ratfor flag argument.

−F Ratfor and and EFL source programs are pre-processed into Fortran files, but those files
are not compiled or removed.

Other flags, all library names (arguments beginning−l), and any names not ending with one of the under-
stood suffixes are passed to the loader.

1.2. Documentation Conventions
In running text, we write Fortran keywords and other literal strings in boldface lower case. Examples will
be presented in lightface lower case. Names representing a class of values will be printed in italics.

1.3. Implementation Strategy
The compiler and library are written entirely in C. The compiler generates C compiler intermediate code.
Since there are C compilers running on a variety of machines, relatively small changes will make this For-
tran compiler generate code for any of them. Furthermore, this approach guarantees that the resulting pro-
grams are compatible with C usage. The runtime computational library is complete. The mathematical
functions are computed to at least 63 bit precision. The runtime I/O library makes use of D. M. Ritchie’s
Standard C I/O package [8] for transferring data. With the few exceptions described below, only docu-
mented calls are used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS
Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in the
Appendix. The most important additions are a character string data type, file-oriented input/output state-
ments, and random access I/O. Also, the language has been cleaned up considerably.
In addition to implementing the language specified in the new Standard, our compiler implements a few
extensions described in this section. Most are useful additions to the language. The remainder are exten-
sions to make it easier to communicate with C procedures or to permit compilation of old (1966 Standard)
programs.

-- --

- 3 -

2.1. Double Complex Data Type
The new typedouble complexis defined. Each datum is represented by a pair of double precision real
variables. A double complex version of everycomplexbuilt-in function is provided. The specific function
names begin withz instead ofc.

2.2. Internal Files
The Fortran 77 standard introduces ‘‘internal files’’ (memory arrays), but restricts their use to formatted
sequential I/O statements. Our I/O system also permits internal files to be used in direct and unformatted
reads and writes.

2.3. Implicit Undefined statement
Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement isinteger if
its first letter isi, j, k, l, m or n, andreal otherwise. Fortran 77 has animplicit statement for overriding
this rule. As an aid to good programming practice, we permit an additional type,undefined. The state-
ment

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each variable
that is used but does not appear in a type statement. Specifying the−u compiler flag is equivalent to begin-
ning each procedure with this statement.

2.4. Recursion
Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage
Tw o new keywords are recognized,static andautomatic. These keywords may appear as ‘‘types’’ in type
statements and inimplicit statements. Local variables are static by default; there is exactly one copy of the
datum, and its value is retained between calls. There is one copy of each variable declaredautomatic for
each invocation of the procedure. Automatic variables may not appear inequivalence, data,or savestate-
ments.

2.6. Source Input Format
The Standard expects input to the compiler to be in 72 column format: except in comment lines, the first
five characters are the statement number, the next is the continuation character, and the next sixty-six are
the body of the line. (If there are fewer than seventy-two characters on a line, the compiler pads it with
blanks; characters after the seventy-second are ignored).
In order to make it easier to type Fortran programs, our compiler also accepts input in variable length lines.
An ampersand (‘‘&’’) in the first position of a line indicates a continuation line; the remaining characters
form the body of the line. A tab character in one of the first six positions of a line signals the end of the
statement number and continuation part of the line; the remaining characters form the body of the line. A
tab elsewhere on the line is treated as another kind of blank by the compiler.
In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent with ordinaryUNIX

system usage, our compiler expects lower case input. By default, the compiler converts all upper case
characters to lower case except those inside character constants. However, if the−U compiler flag is speci-
fied, upper case letters are not transformed. In this mode, it is possible to specify external names with
upper case letters in them, and to have distinct variables differing only in case. Regardless of the setting of
the flag, keywords will only be recognized in lower case.

2.7. Include Statement
The statement

include′stuff ′

is replaced by the contents of the filestuff. includes may be nested to a reasonable depth, currently ten.

-- --

- 4 -

2.8. Binary Initialization Constants
A logical, real,or integer variable may be initialized in adata statement by a binary constant, denoted by
a letter followed by a quoted string. If the letter isb, the string is binary, and only zeroes and ones are per-
mitted. If the letter iso, the string is octal, with digits0−7. If the letter isz or x, the string is hexadecimal,
with digits0−9, a−f. Thus, the statements

integer a(3)
data a / b′1010′, o′12′, z′a′ /

initialize all three elements ofa to ten.

2.9. Character Strings
For compatibility with C usage, the following backslash escapes are recognized:

\nnewline
\ttab
\bbackspace
\fform feed
\0null
\′apostrophe (does not terminate a string)
\"quotation mark (does not terminate a string)
\\\
\xx, wherex is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system recognize both
the apostrophe (′) and the double-quote ("). If a string begins with one variety of quote mark, the other
may be embedded within it without using the repeated quote or backslash escapes.
Every unequivalenced scalar local character variable and every character string constant is aligned on an
integer word boundary. Each character string constant appearing outside adata statement is followed by a
null character to ease communication with C routines.

2.10. Hollerith
Fortran 77 does not have the old Hollerith (nh) notation, though the new Standard recommends imple-
menting the old Hollerith feature in order to improve compatibility with old programs. In our compiler,
Hollerith data may be used in place of character string constants, and may also be used to initialize non-
character variables indata statements.

2.11. Equivalence Statements
As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned array to be
represented by a singly-subscripted reference inequivalencestatements. Fortran 77 does not permit this
usage, since subscript lower bounds may now be different from 1. Our compiler permits single subscripts
in equivalencestatements, under the interpretation that all missing subscripts are equal to 1. A warning
message is printed for each such incomplete subscript.

2.12. One-Trip DO Loops
The Fortran 77 Standard requires that the range of ado loop not be performed if the initial value is already
past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common practice
that the range of ado loop would be performed at least once. In order to accommodate old programs,
though they were in violation of the 1966 Standard, the−onetrip compiler flag causes non-standard loops
to be generated.

-- --

- 5 -

2.13. Commas in Formatted Input
The I/O system attempts to be more lenient than the Standard when it seems worthwhile. When doing a
formatted read of non-character variables, commas may be used as value separators in the input record,
overriding the field lengths given in the format statement. Thus, the format

(i10, f20.10, i4)

will read the record

−345,.05e−3,12

correctly.

2.14. Short Integers
On machines that support halfword integers, the compiler accepts declarations of typeinteger∗2. (Ordi-
nary integers follow the Fortran rules about occupying the same space as a REAL variable; they are
assumed to be of C typelong int; halfword integers are of C typeshort int.) An expression involving only
objects of typeinteger∗2 is of that type. Generic functions return short or long integers depending on the
actual types of their arguments. If a procedure is compiled using the−I2 flag, all small integer constants
will be of typeinteger∗2. If the precision of an integer-valued intrinsic function is not determined by the
generic function rules, one will be chosen that returns the prevailing length (integer∗2 when the−I2 com-
mand flag is in effect). When the−I2 option is in effect, all quantities of typelogical will be short. Note
that these short integer and logical quantities do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions
This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In addition, there
are functions for performing bitwise Boolean operations (or, and, xor, and not) and for accessing the
UNIX command arguments (getargandiargc).

3. VIOLATIONS OF THE STANDARD
We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment
The Fortran standards (both 1966 and 1977) permitcommonor equivalencestatements to force a double
precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on double
word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is not observed. It
is possible to tell which equivalenced and common variables suffer from a forced odd alignment, but every
double precision argument would have to be assumed on a bad boundary. To load such a quantity on some
machines, it would be necessary to use separate operations to move the upper and lower halves into the
halves of an aligned temporary, then to load that double precision temporary; the reverse would be needed
to store a result. We hav e chosen to require that all double precision real and complex quantities fall on
ev en word boundaries on machines with corresponding hardware requirements, and to issue a diagnostic if
the source code demands a violation of the rule.

3.2. Dummy Procedure Arguments
If any argument of a procedure is of type character, all dummy procedure arguments of that procedure
must be declared in anexternal statement. This requirement arises as a subtle corollary of the way we
represent character string arguments and of the one-pass nature of the compiler. A warning is printed if a
dummy procedure is not declaredexternal. Code is correct if there are nocharacter arguments.

-- --

- 6 -

3.3. T and TL Formats
The implementation of thet (absolute tab) andtl (leftward tab) format codes is defective. These codes
allow rereading or rewriting part of the record which has already been processed. (Section 6.3.2 in the
Appendix.) The implementation uses seeks, so if the unit is not one which allows seeks, such as a termi-
nal, the program is in error. (People who can make a case for usingtl should let us know.) A benefit of the
implementation chosen is that there is no upper limit on the length of a record, nor is it necessary to prede-
clare any record lengths except where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE
To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know the
conventions for procedure names, data representation, return values, and argument lists that the compiled
code obeys.

4.1. Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore appended to it by
the compiler to distinguish it from a C procedure or external variable with the same user-assigned name.
Fortran library procedure names have embedded underscores to avoid clashes with user-assigned subroutine
names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C

integer∗2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character∗6 x char x[6];

(By the rules of Fortran,integer, logical,andreal data occupy the same amount of memory).

4.3. Return Values
A function of typeinteger, logical, real,or double precisiondeclared as a C function that returns the cor-
responding type. Acomplex or double complexfunction is equivalent to a C routine with an additional
initial argument that points to the place where the return value is to be stored. Thus,

complex function f(. . .)

is equivalent to

f_(temp, . . .)
struct { float r, i; } ∗temp;
. . .

A character-valued function is equivalent to a C routine with two extra initial arguments: a data address and
a length. Thus,

character∗15 function g(. . .)

is equivalent to

g_(result, length, . . .)
char result[];
long int length;
. . .

-- --

- 7 -

and could be invoked in C by

char chars[15];
. . .
g_(chars, 15L, . . .);

Subroutines are invoked as if they wereinteger-valued functions whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed to the function, but are used to
do an indexed branch in the calling procedure. (If the subroutine has no entry points with alternate return
arguments, the returned value is undefined.) The statement

call nret(∗1, ∗2, ∗3)

is treated exactly as if it were the computedgoto

goto (1, 2, 3), nret()

4.4. Argument Lists
All Fortran arguments are passed by address. In addition, for every argument that is of type character or
that is a dummy procedure, an argument giving the length of the value is passed. (The string lengths are
long int quantities passed by value). The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character∗7 s
integer b(3)
. . .
call sam(f, b(2), s)

is equivalent to that in

int f();
char s[7];
long int b[3];
. . .
sam_(f, &b[1], s, 0L, 7L);

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1 by default.
Fortran arrays are stored in column-major order, C arrays are stored in row-major order.

5. FILE FORMATS

5.1. Structure of Fortran Files
Fortran requires four kinds of external files: sequential formatted and unformatted, and direct formatted
and unformatted. OnUNIX systems, these are all implemented as ordinary files which are assumed to have
the proper internal structure.
Fortran I/O is based on ‘‘records’’. When a direct file is opened in a Fortran program, the record length of
the records must be given, and this is used by the Fortran I/O system to make the file look as if it is made up
of records of the given length. In the special case that the record length is given as 1, the files are not con-
sidered to be divided into records, but are treated as byte-addressable byte strings; that is, as ordinaryUNIX

file system files. (A read or write request on such a file keeps consuming bytes until satisfied, rather than
being restricted to a single record.)
The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read or
written by any means except Fortran I/O statements. Each record is preceded and followed by an integer

-- --

- 8 -

containing the record’s length in bytes.
The Fortran I/O system breaks sequential formatted files into records while reading by using each newline
as a record separator. The result of reading off the end of a record is undefined according to the Standard.
The I/O system is permissive and treats the record as being extended by blanks. On output, the I/O system
will write a newline at the end of each record. It is also possible for programs to write newlines for them-
selves. This is an error, but the only effect will be that the single record the user thought he wrote will be
treated as more than one record when being read or backspaced over.

5.2. Portability Considerations
The Fortran I/O system uses only the facilities of the standard C I/O library, a widely available and fairly
portable package, with the following two nonstandard features: The I/O system needs to know whether a
file can be used for direct I/O, and whether or not it is possible to backspace. Both of these facilities are
implemented using thefseekroutine, so there is a routinecanseekwhich determines iffseekwill have the
desired effect. Also, theinquire statement provides the user with the ability to find out if two files are the
same, and to get the name of an already opened file in a form which would enable the program to reopen it.
(The UNIX operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services. In any case,
the I/O system runs on the PDP-11, VAX-11/780, and Interdata 8/32UNIX systems.

5.3. Pre-Connected Files and File Positions
Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the standard input, unit
6 is connected to the standard output, and unit 0 is connected to the standard error unit. All are connected
for sequential formatted I/O.
All the other units are also preconnected when execution begins. Unitn is connected to a file named
fort.n. These files need not exist, nor will they be created unless their units are used without first executing
anopen. The default connection is for sequential formatted I/O.
The Standard does not specify where a file which has been explicitlyopened for sequential I/O is initially
positioned. In fact, the I/O system attempts to position the file at the end, so awrite will append to the file
and aread will result in an end-of-file indication. To position a file to its beginning, use arewind state-
ment. The preconnected units 0, 5, and 6 are positioned as they come from the program’s parent process.

REFERENCES
1.Sigplan Notices11, No.3 (1976), as amended in X3J3 internal documents through ‘‘/90.1’’.
2.USA Standard FORTRAN, USAS X3.9-1966, New York: United States of America Standards Institute,
March 7, 1966. Clarified inComm. ACM12,289 (1969) andComm. ACM14, 628 (1971).
3.B. W. Kernighan and D. M. Ritchie,The C Programming Language,Englewood Cliffs: Prentice-Hall
(1978).
4.D. M. Ritchie, private communication.
5.S. C. Johnson, ‘‘A Portable Compiler: Theory and Practice’’, Proc. 5th ACM Symp. on Principles of Pro-
gramming Languages (January 1978).
6.S. I. Feldman, ‘‘An Informal Description of EFL’’, internal memorandum.
7.B. W. Kernighan, ‘‘RATFOR — A Preprocessor for a Rational Fortran’’,Bell Laboratories Computing
Science Technical Report #55,(January 1977).
8.D. M. Ritchie, private communication.

-- --

- 9 -

APPENDIX. Differences Between Fortran 66 and Fortran 77
The following is a very brief description of the differences between the 1966 [2] and the 1977 [1] Standard
languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be complete, pre-
cise, or unbiased, but plan to describe what we feel are the most important aspects of the new language. At
present the only current information on the 1977 Standard is in publications of the X3J3 Subcommittee of
the American National Standards Institute. The following information is from the ‘‘/92’’ document. This
draft Standard is written in English rather than a meta-language, but it is forbidding and legalistic. No tuto-
rials or textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith
All notions of ‘‘Hollerith’’ (nh) as data have been officially removed, although our compiler, like almost
all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range
In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible to jump out
of the range of ado loop, then jump back into it. Extended range has been removed in the Fortran 77 lan-
guage. The restrictions are so special, and the implementation of extended range is so unreliable in many
compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now leg al comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that onlyone unnamed block data procedure may appear in a program. (This rule is
not enforced by our system.) The Standard does not specify the effect of the program and block data
names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement
Multiple entry points are now leg al. Subroutine and function subprograms may have additional entry
points, declared by anentry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following theentry line. All variable declarations must precede all
executable statements in the procedure. If the procedure begins with asubroutine statement, all entry
points are subroutine names. If it begins with afunction statement, each entry is a function entry point,
with type determined by the type declared for the entry name. If any entry is a character-valued function,
then all entries must be. In a function, an entry name of the same type as that where control entered must
be assigned a value. Arguments do not retain their values between calls. (The ancient trick of calling one
entry point with a large number of arguments to cause the procedure to ‘‘remember’’ the locations of those
arguments, then invoking an entry with just a few arguments for later calculation, is still illegal. Further-
more, the trick doesn’t work in our implementation, since arguments are not kept in static storage.)

-- --

- 10 -

2.4. DO Loops
do variables and range parameters may now be of integer, real, or double precision types. (The use of
floating pointdo variables is very dangerous because of the possibility of unexpected roundoff, and we
strongly recommend against their use). The action of thedo statement is now defined for all values of the
do parameters. The statement

do 10 i = l, u, d

performs max(0 ,(u − l)/d) iterations. Thedo variable has a predictable value when exiting a loop: the
value at the time agotoor return terminates the loop; otherwise the value that failed the limit test.

2.5. Alternate Returns
In asubroutine or subroutineentry statement, some of the arguments may be noted by an asterisk, as in

subroutine s(a,∗, b, ∗)

The meaning of the ‘‘alternate returns’’ is described in section 5.2 of the Appendix.

3. Declarations

3.1. CHARACTER Data Type
One of the biggest improvements to the language is the addition of a character-string data type. Local and
common character variables must have a length denoted by a constant expression:

character∗17 a, b(3,4)
character∗(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument may have a constant
length, or the length may be declared to be the same as that of the corresponding actual argument at run
time by a statement like

character∗(∗) a

(There is an intrinsic functionlen that returns the actual length of a character string). Character arrays and
common blocks containing character variables must be packed: in an array of character variables, the first
character of one element must follow the last character of the preceding element, without holes.

3.2. IMPLICIT Statement
The traditional implied declaration rules still hold: a variable whose name begins withi, j, k, l, m, or n is
of type integer, other variables are of typereal, unless otherwise declared. This general rule may be over-
ridden with animplicit statement:

implicit real(a-c,g), complex(w-z), character∗(17) (s)

declares that variables whose name begins with ana ,b, c,or g arereal, those beginning withw, x, y, or z
are assumedcomplex,and so on. It is still poor practice to depend on implicit typing, but this statement is
an industry standard.

3.3. PARAMETER Statement
It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159d0, s=′hello′)

The type of each parameter name is governed by the same implicit and explicit rules as for a variable. The
right side of each equal sign must be a constant expression (an expression made up of constants, operators,
and already defined parameters).

-- --

- 11 -

3.4. Array Declarations
Arrays may now hav e as many as sev en dimensions. (Only three were permitted in 1966). The lower
bound of each dimension may be declared to be other than 1 by using a colon. Furthermore, an adjustable
array bound may be an integer expression involving constants, arguments, and variables incommon.

real a(−5:3, 7, m:n), b(n+1:2∗n)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to indicate that
the upper bound is not specified:

integer a(5,∗), b(∗), c(0:1,−2:∗)

3.5. SAVE Statement
A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily retain their val-
ues between invocations of that procedure. At any instant in the execution of a program, if a common
block is declared neither in the currently executing procedure nor in any of the procedures in the chain of
callers, all of the variables in that common block also become undefined. (The only exceptions are vari-
ables that have been defined in adata statement and never changed). These rules permit overlay and stack
implementations for the affected variables. Fortran 77 permits one to specify that certain variables and
common blocks are to retain their values between invocations. The declaration

save a, /b/, c

leaves the values of the variablesa andc and all of the contents of common blockb unaffected by a return.
The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must besaved in
ev ery procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement
All of the functions specified in the Standard are in a single category, ‘‘intrinsic functions’’, rather than
being divided into ‘‘intrinsic’’ and ‘‘basic external’’ functions. If an intrinsic function is to be passed to
another procedure, it must be declaredintrinsic. Declaring itexternal (as in Fortran 66) causes a function
other than the built-in one to be passed.

4. Expressions

4.1. Character Constants
Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is to be
included in a constant, it is repeated:

′abc′
′ain′′t′

There are no null (zero-length) character strings in Fortran 77. Our compiler has two different quotation
marks, ‘‘ ′ ’’’ and ‘‘ " ’’. (See Section 2.9 in the main text.)

4.2. Concatenation
One new operator has been added, character string concatenation, marked by a double slash (‘‘//’’). The
result of a concatenation is the string containing the characters of the left operand followed by the charac-
ters of the right operand. The strings

′ab′ // ′cd′
′abcd′

are equal. The strings being concatenated must be of constant length in all concatenations that are not the
right sides of assignments. (The only concatenation expressions in which a character string declared

-- --

- 12 -

adjustable with a ‘‘∗(∗)’’ modifier or a substring denotation with nonconstant position values may appear
are the right sides of assignments).

4.3. Character String Assignment
The left and right sides of a character assignment may not share storage. (The assumed implementation of
character assignment is to copy characters from the right to the left side.) If the left side is longer than the
right, it is padded with blanks. If the left side is shorter than the right, trailing characters are discarded.

4.4. Substrings
It is possible to extract a substring of a character variable or character array element, using the colon nota-
tion:

a(i, j) (m:n)

is the string of (n − m + 1) characters beginning at themth character of the character array elementaij .
Results are undefined unlessm ≤ n. Substrings may be used on the left sides of assignments and as proce-
dure actual arguments.

4.5. Exponentiation
It is now permissible to raise real quantities to complex powers, or complex quantities to real or complex
powers. (The principal part of the logarithm is used). Also, multiple exponentiation is now defined:

a∗∗b∗∗c = a∗∗ (b∗∗c)

4.6. Relaxation of Restrictions
Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer and com-
plex quantities in an expression.)
Constant expressions are permitted where a constant is allowed, except indata statements. (A constant
expression is made up of explicit constants andparameters and the Fortran operators, except for exponen-
tiation to a floating-point power). An adjustable dimension may now be an integer expression involving
constants, arguments, and variables in B common..
Subscripts may now be general integer expressions; the oldcv ± c′ rules have been removed.do loop
bounds may be general integer, real, or double precision expressions. Computedgoto expressions and I/O
unit numbers may be general integer expressions.

5. Executable Statements

5.1. IF-THEN-ELSE
At last, the if-then-else branching structure has been added to Fortran. It is called a ‘‘Block If’’. A Block
If begins with a statement of the form

if (. . .) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else if(. . .) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements following it up to the
next elseif, else,or endif are executed. Otherwise, the nextelseif statement in the group is executed. If
none of theelseifconditions are true, control passes to the statements following theelsestatement, if any.
(Theelsemust follow allelseifs in a Block If. Of course, there may be Block Ifs embedded inside of other

-- --

- 13 -

Block If structures). A case construct may be rendered

if (s .eq.′ab′) then
. . .
else if (s .eq.′cd′) then
. . .
else
. . .
end if

5.2. Alternate Returns
Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as in

call joe(j,∗10, m,∗2)

A return statement may have an integer expression, such as

return k

If the entry point hasn alternate return (asterisk) arguments and if 1≤ k ≤ n, the return is followed by a
branch to the corresponding statement label; otherwise the usual return to the statement following thecall
is executed.

6. Input/Output

6.1. Format Variables
A format may be the value of a character expression (constant or otherwise), or be stored in a character
array, as in

write(6, ′(i5)′) x

6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may containend=, err=,andiostat= clauses, as in

write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are theunits on which the I/O is done, 101 is the statement number of the associated format,
20 and 30 are statement numbers, anda andx are integers. If an error occurs during I/O, control returns to
the program at statement 20. If the end of the file is reached, control returns to the program at statement
30. In any case, the variable referred to in theiostat= clause is given a value when the I/O statement fin-
ishes. (Yes, the value is assigned to the name on the right side of the equal sign.) This value is zero if all
went well, negative for end of file, and some positive value for errors.

6.3. Formatted I/O

6.3.1. Character Constants
Character constants in formats are copied literally to the output. Character constants cannot be read into.

write(6,′(i2,′′ isn′′′′t ′′,i1)′) 7, 4

produces

7 isn′t 4

Here the format is the character constant

(i2,′ isn′′t ′,i1)

and the character constant

-- --

- 14 -

isn′t

is copied into the output.

6.3.2. Positional Editing Codes
t, tl, tr, andx codes control where the next character is in the record.tr n or nx specifies that the next char-
acter isn to the right of the current position.tln specifies that the next character isn to the left of the cur-
rent position, allowing parts of the record to be reconsidered.tn says that the next character is to be char-
acter numbern in the record. (See section 3.4 in the main text.)

6.3.3. Colon
A colon in the format terminates the I/O operation if there are no more data items in the I/O list, otherwise
it has no effect. In the fragment

x=′("hello", :, " there", i4)′
write(6, x) 12
write(6, x)

the firstwrite statement printshello there 12, while the second only printshello.

6.3.4. Optional Plus Signs
According to the Standard, each implementation has the option of putting plus signs in front of non-neg-
ative numeric output. Thesp format code may be used to make the optional plus signs actually appear for
all subsequent items while the format is active. Thessformat code guarantees that the I/O system will not
insert the optional plus signs, and thes format code restores the default behavior of the I/O system. (Since
we never put out optional plus signs,ssands codes have the same effect in our implementation.)

6.3.5. Blanks on Input
Blanks in numeric input fields, other than leading blanks will be ignored following abn code in a format
statement, and will be treated as zeros following abz code in a format statement. The default for a unit
may be changed by using theopenstatement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values
The Standard requires that if a numeric item cannot be represented in the form required by a format code,
the output field must be filled with asterisks. (We think this should have been an option.)

6.3.7. Iw.m
There is a new integer output code,iw.m. It is the same asiw, except that there will be at leastm digits in
the output field, including, if necessary, leading zeros. The caseiw. 0 is special, in that if the value being
printed is 0, the output field is entirely blank.iw.1 is the same asiw.

6.3.8. Floating Point
On input, exponents may start with the letterE, D, e,or d. All have the same meaning. On output we
always usee. Thee andd format codes also have identical meanings. A leading zero before the decimal
point in e output without a scale factor is optional with the implementation. (We do not print it.) There is
a gw.d format code which is the same asew.d andfw.d on input, but which choosesf or e formats for out-
put depending. on the size of the number and ofd.

6.3.9. ‘‘A’’ Format Code
A codes are used for character values.aw use a field width ofw, while a plaina uses the length of the
character item.

-- --

- 15 -

6.4. Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be explicitly specified by an
asterisk, as in

read(∗, 10) a,b

Similarly, the standard output units is specified by aprint statement or an asterisk unit:

print 10
write(∗, 10)

6.5. List-Directed Formatting
List-directed I/O is a kind of free form input for sequential I/O. It is invoked by using an asterisk as the
format identifier, as in

read(6,∗) a,b,c

On input, values are separated by strings of blanks and possibly a comma. Values, except for character
strings, cannot contain blanks. End of record counts as a blank, except in character strings, where it is
ignored. Complex constants are given as two real constants separated by a comma and enclosed in paren-
theses. A null input field, such as between two consecutive commas, means the corresponding variable in
the I/O list is not changed. Values may be preceded by repetition counts, as in

4∗(3.,2.) 2∗, 4∗′hello′

which stands for 4 complex constants, 2 null values, and 4 string constants.
For output, suitable formats are chosen for each item. The values of character strings are printed; they are
not enclosed in quotes, so they cannot be read back using list-directed input.

6.6. Direct I/O
A file connected for direct access consists of a set of equal-sized records each of which is uniquely identi-
fied by a positive integer. The records may be written or read in any order, using direct access I/O state-
ments.
Direct accessread andwrite statements have an extra argument,rec=, which gives the record number to
be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the arraya.
The size of the records must be given by anopen statement (see below). Direct access files may be con-
nected for either formatted or unformatted I/O.

6.7. Internal Files
Internal files are character string objects, such as variables or substrings, or arrays of type character. In the
former cases there is only a single record in the file, in the latter case each array element is a record. The
Standard includes only sequential formatted I/O on internal files. (I/O is not a very precise term to use
here, but internal files are dealt with usingread andwrite). There is no list-directed I/O on internal files.
Internal files are used by giving the name of the character object in place of the unit number, as in

character∗80 x
read(5,"(a)") x
read(x,"(i3,i4)") n1,n2

which reads a card image intox and then reads two integers from the front of it. A sequentialread or
write always starts at the beginning of an internal file.

-- --

- 16 -

(We also support a compatible extension, direct I/O on internal files. This is like direct I/O on external
files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather information about units
and files.

6.8.1. OPEN
Theopenstatement is used to connect a file with a unit, or to alter some properties of the connection. The
following is a minimal example.

open(1, file=′fort.junk′)

opentakes a variety of arguments with meanings described below.
unit= a small non-negative integer which is the unit to which the file is to be connected. We allow, at the
time of this writing, 0 through 9. If this parameter is the first one in theopenstatement, theunit= can be
omitted.
iostat= is the same as inread or write.
err= is the same as inread or write.
file= a character expression, which when stripped of trailing blanks, is the name of the file to be con-
nected to the unit. The filename should not be given if thestatus=scratch.
status=one ofold, new, scratch,or unknown. If this parameter is not given,unknown is assumed. If
scratch is given, a temporary file will be created. Temporary files are destroyed at the end of execution.
If new is given, the file will be created if it doesn’t exist, or truncated if it does. The meaning of
unknown is processor dependent; our system treats it as synonymous withold.
access= sequentialor direct, depending on whether the file is to be opened for sequential or direct I/O.
form= formatted or unformatted.
recl= a positive integer specifying the record length of the direct access file being opened. We mea-
sure all record lengths in bytes. OnUNIX systems a record length of 1 has the special meaning
explained in section 5.1 of the text.
blank= null or zero. This parameter has meaning only for formatted I/O. The default value isnull.
zeromeans that blanks, other than leading blanks, in numeric input fields are to be treated as zeros.
Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CLOSE
closesevers the connection between a unit and a file. The unit number must be given. The optional
parameters areiostat= and err= with their usual meanings, andstatus= either keep or delete.
Scratch files cannot be kept, otherwisekeep is the default.deletemeans the file will be removed. A
simple example is

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (‘‘inquire by unit’’) or a file (‘‘inquire by file’’).
Simple examples are:

inquire(unit=3, namexx)
inquire(file=′junk′, number=n, exist=l)

file= a character variable specifies the file theinquire is about. Trailing blanks in the file name are
ignored.
unit= an integer variable specifies the unit theinquire is about. Exactly one offile= or unit= must
be used.
iostat=, err= are as before.

-- --

- 17 -

exist=a logical variable. The logical variable is set to.true. if the file or unit exists and is set to
.false. otherwise.
opened=a logical variable. The logical variable is set to.true. if the file is connected to a unit or
if the unit is connected to a file, and it is set to.false. otherwise.
number= an integer variable to which is assigned the number of the unit connected to the file, if
any.
named=a logical variable to which is assigned.true. if the file has a name, or.false. otherwise.
name=a character variable to which is assigned the name of the file (inquire by file) or the name
of the file connected to the unit (inquire by unit). The name will be the full name of the file.
access=a character variable to which will be assigned the value′sequential′ if the connection is
for sequential I/O,′direct′ if the connection is for direct I/O. The value becomes undefined if
there is no connection.
sequential=a character variable to which is assigned the value′yes′ if the file could be con-
nected for sequential I/O,′no′ if the file could not be connected for sequential I/O, and
′unknown′ if we can’t tell.
direct= a character variable to which is assigned the value′yes′ if the file could be connected
for direct I/O,no′ if the file could not be connected for direct I/O, and′unknown′ if we can’t
tell.
form= a character variable to which is assigned the value′formatted′ if the file is connected
for formatted I/O, or′unformatted′ if the file is connected for unformatted I/O.
formatted= a character variable to which is assigned the value′yes′ if the file could be con-
nected for formatted I/O,′no′ if the file could not be connected for formatted I/O, and
′unknown′ if we can’t tell.
unformatted= a character variable to which is assigned the value′yes′ if the file could be
connected for unformatted I/O,′no′ if the file could not be connected for unformatted I/O,
and′unknown′ if we can’t tell.
recl= an integer variable to which is assigned the record length of the records in the file if
the file is connected for direct access.
nextrec=an integer variable to which is assigned one more than the number of the the last
record read from a file connected for direct access.
blank= a character variable to which is assigned the value′null ′ if null blank control is in
effect for the file connected for formatted I/O,′zero′ if blanks are being converted to zeros
and the file is connected for formatted I/O.
The gentle readerwill remember that the people who wrote the standard probably weren’t
thinking of his needs. Here is an example. The declarations are omitted.

open(1, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/O. An
inquire statement for either unit 1 or file "/dev/console" would reveal that the file exists, is
connected to unit 1, has a name, namely "/dev/console", is opened for sequential I/O, could
be connected for sequential I/O, could not be connected for direct I/O (can’t seek), is con-
nected for formatted I/O, could be connected for formatted I/O, could not be connected for
unformatted I/O (can’t seek), has neither a record length nor a next record number, and is
ignoring blanks in numeric fields.
In theUNIX system environment, the only way to discover what permissions you have for a
file is to open it and try to read and write it. Theerr= parameter will return system error
numbers. Theinquire statement does not give a way of determining permissions.

