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The Intermediate Language
Communication between the two phases of the compiler proper is carried out by means of a pair of intermediate
files. These files are treated as having identical structure, although the second file contains only the code generated
for strings. It is convenient to write strings out separately to reduce the need for multiple location counters in a later
assembly phase.
The intermediate language is not machine-independent; its structure in a number of ways reflects the fact
that C was originally a one-pass compiler chopped in two to reduce the maximum memory requirement. In
fact, only the latest version of the compiler has a complete intermediate language at all. Until recently, the
first phase of the compiler generated assembly code for those constructions it could deal with, and passed
expression parse trees, in absolute binary form, to the second phase for code generation. Now, at least, all
inter-phase information is passed in a describable form, and there are no absolute pointers involved, so the
coupling between the phases is not so strong.
The areas in which the machine (and system) dependencies are most noticeable are
1.Storage allocation for automatic variables and arguments has already been performed, and nodes for such
variables refer to them by offset from a display pointer. Type conversion (for example, from integer to
pointer) has already occurred using the assumption of byte addressing and 2-byte words.
2.Data representations suitable to the PDP-11 are assumed; in particular, floating point constants are passed
as four words in the machine representation.
As it happens, each intermediate file is represented as a sequence of binary numbers without any explicit
demarcations. It consists of a sequence of conceptual lines, each headed by an operator, and possibly con-
taining various operands. The operators are small numbers; to assist in recognizing failure in synchroniza-
tion, the high-order byte of each operator word is always the octal number 376. Operands are either 16-bit
binary numbers or strings of characters representing names. Each name is terminated by a null character.
There is no alignment requirement for numerical operands and so there is no padding after a name string.
The binary representation was chosen to avoid the necessity of converting to and from character form and
to minimize the size of the files. It would be very easy to make each operator-operand ‘line’ in the file be a
genuine, printable line, with the numbers in octal or decimal; this in fact was the representation originally
used.
The operators fall naturally into two classes: those which represent part of an expression, and all others.
Expressions are transmitted in a reverse-Polish notation; as they are being read, a tree is built which is iso-
morphic to the tree constructed in the first phase. Expressions are passed as a whole, with no non-expres-
sion operators intervening. The reader maintains a stack; each leaf of the expression tree (name, constant)
is pushed on the stack; each unary operator replaces the top of the stack by a node whose operand is the old
top-of-stack; each binary operator replaces the top pair on the stack with a single entry. When the expres-
sion is complete there is exactly one item on the stack. Following each expression is a special operator
which passes the unique previous expression to the ‘optimizer’ described below and then to the code gener-
ator.
Here is the list of operators not themselves part of expressions.

†UNIX is a Trademark of Bell Laboratories.
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EOF
marks the end of an input file.

BDAT A flag data ...
specifies a sequence of bytes to be assembled as static data. It is followed by pairs of words; the first mem-
ber of the pair is non-zero to indicate that the data continue; a zero flag is not followed by data and termi-
nates the operator. The data bytes occupy the low-order part of a word.

WDAT A flag data ...
specifies a sequence of words to be assembled as static data; it is identical to the BDAT A operator except
that entire words, not just bytes, are passed.

PROG
means that subsequent information is to be compiled as program text.

DATA
means that subsequent information is to be compiled as static data.

BSS
means that subsequent information is to be compiled as unitialized static data.

SYMDEF name
means that the symbolnameis an external name defined in the current program. It is produced for each
external data or function definition.

CSPACEname size
indicates that the name refers to a data area whose size is the specified number of bytes. It is produced for
external data definitions without explicit initialization.

SSPACEsize
indicates thatsizebytes should be set aside for data storage. It is used to pad out short initializations of ex-
ternal data and to reserve space for static (internal) data. It will be preceded by an appropriate label.

EVEN
is produced after each external data definition whose size is not an integral number of words. It is not pro-
duced after strings except when they initialize a character array.

NLABEL name
is produced just before a BDAT A or WDAT A initializing external data, and serves as a label for the data.

RLABEL name
is produced just before each function definition, and labels its entry point.

SNAME name number
is produced at the start of each function for each static variable or label declared therein. Subsequent uses
of the variable will be in terms of the given number. The code generator uses this only to produce a debug-
ging symbol table.

ANAME name number
Likewise, each automatic variable’s name and stack offset is specified by this operator. Arguments count
as automatics.

RNAME name number
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Each register variable is similarly named, with its register number.

SAVE number
produces a register-save sequence at the start of each function, just after its label (RLABEL).

SETREG number
is used to indicate the number of registers used for register variables. It actually gives the register number
of the lowest free register; it is redundant because the RNAME operators could be counted instead.

PROFIL
is produced before the save sequence for functions when the profile option is turned on. It produces code
to count the number of times the function is called.

SWIT deflab line label value ...
is produced for switches. When control flows into it, the value being switched on is in the register forced
by RFORCE (below). The switch statement occurred on the indicated line of the source, and the label
number of the default location isdeflab. Then the operator is followed by a sequence of label-number and
value pairs; the list is terminated by a 0 label.

LABEL number
generates an internal label. It is referred to elsewhere using the given number.

BRANCH number
indicates an unconditional transfer to the internal label number given.

RETRN
produces the return sequence for a function. It occurs only once, at the end of each function.

EXPR line
causes the expression just preceding to be compiled. The argument is the line number in the source where
the expression occurred.

NAME class type name

NAME class type number
indicates a name occurring in an expression. The first form is used when the name is external; the second
when the name is automatic, static, or a register. Then the number indicates the stack offset, the label num-
ber, or the register number as appropriate. Class and type encoding is described elsewhere.

CON type value
transmits an integer constant. This and the next two operators occur as part of expressions.

FCON type 4-word-value
transmits a floating constant as four words in PDP-11 notation.

SFCON type value
transmits a floating-point constant whose value is correctly represented by its high-order word in PDP-11
notation.

NULL
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indicates a null argument list of a function call in an expression; call is a binary operator whose second
operand is the argument list.

CBRANCH label cond
produces a conditional branch. It is an expression operator, and will be followed by an EXPR. The branch
to the label number takes place if the expression’s truth value is the same as that ofcond. That is, if
cond=1and the expression evaluates to true, the branch is taken.

binary-operator type
There are binary operators corresponding to each such source-language operator; the type of the result of
each is passed as well. Some perhaps-unexpected ones are: COMMA, which is a right-associative operator
designed to simplify right-to-left evaluation of function arguments; prefix and postfix ++ and −−, whose
second operand is the increment amount, as a CON; QUEST and COLON, to express the conditional ex-
pression as ‘a?(b:c)’; and a sequence of special operators for expressing relations between pointers, in case
pointer comparison is different from integer comparison (e.g. unsigned).

unary-operator type
There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF, ITOL, LTOI which
convert among floating, long, and integer; JUMP which branches indirectly through a label expression;
INIT, which compiles the value of a constant expression used as an initializer; RFORCE, which is used be-
fore a return sequence or a switch to place a value in an agreed-upon register.

Expression Optimization
Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis. This is performed by
theoptimroutine and a number of subroutines; the major things done are
1.Modifications and simplifications of the tree so its value may be computed more efficiently and con-
veniently by the code generator.
2.Marking each interior node with an estimate of the number of registers required to evaluate it. This regis-
ter count is needed to guide the code generation algorithm.
One thing that is definitely not done is discovery or exploitation of common subexpressions, nor is this
done anywhere in the compiler.
The basic organization is simple: a depth-first scan of the tree.Optimdoes nothing for leaf nodes (except
for automatics; see below), and callsunoptimto handle unary operators. For binary operators, it calls itself
to process the operands, then treats each operator separately. One important case is commutative and asso-
ciative operators, which are handled byacommute.
Here is a brief catalog of the transformations carried out by byoptim itself. It is not intended to be com-
plete. Some of the transformations are machine-dependent, although they may well be useful on machines
other than the PDP-11.
1.As indicated in the discussion ofunoptimbelow, the optimizer can create a node type corresponding to
the location addressed by a register plus a constant offset. Since this is precisely the implementation of au-
tomatic variables and arguments, where the register is fixed by convention, such variables are changed to
the new form to simplify later processing.
2.Associative and commutative operators are processed by the special routineacommute.
3.After processing byacommute,the bitwise & operator is turned into a newandnoperator; ‘a & b’ be-
comes ‘aandn˜b’. This is done because the PDP-11 provides noandoperator, but onlyandn. A similar
transformation takes place for ‘=&’.
4.Relationals are turned around so the more complicated expression is on the left. (So that ‘2 > f(x)’ be-
comes ‘f(x) < 2’). This improves code generation since the algorithm prefers to have the right operand re-
quire fewer registers than the left.
5.An expression minus a constant is turned into the expression plus the negative constant, and theacom-
muteroutine is called to take advantage of the properties of addition.

6.Operators with constant operands are evaluated.
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7.Right shifts (unless by 1) are turned into left shifts with a negated right operand, since the PDP-11 lacks a
general right-shift operator.
8.A number of special cases are simplified, such as division or multiplication by 1, and shifts by 0.
Theunoptimroutine performs the same sort of processing for unary operators.
1.‘*&x’ and ‘&*x’ are simplified to ‘x’.
2.If r is a register andc is a constant or the address of a static or external variable, the expressions ‘*(r+c)’
and ‘*r’ are turned into a special kind of name node which expresses the name itself and the offset. This
simplifies subsequent processing because such constructions can appear as the the address of a PDP-11 in-
struction.
3.When the unary ‘&’ operator is applied to a name node of the special kind just discussed, it is reworked
to make the addition explicit again; this is done because the PDP-11 has no ‘load address’ instruction.
4.Constructions like ‘*r++’ and ‘*−−r’ wherer is a register are discovered and marked as being imple-
mentable using the PDP-11 auto-increment and -decrement modes.
5.If ‘!’ is applied to a relational, the ‘!’ is discarded and the sense of the relational is reversed.
6.Special cases involving reflexive use of negation and complementation are discovered.
7.Operations applying to constants are evaluated.
The acommuteroutine, called for associative and commutative operators, discovers clusters of the same
operator at the top levels of the current tree, and arranges them in a list: for ‘a+((b+c)+(d+f))’ the list would
be‘a,b,c,d,e,f ’. After each subtree is optimized, the list is sorted in decreasing difficulty of computation; as
mentioned above, the code generation algorithm works best when left operands are the difficult ones. The
‘degree of difficulty’ computed is actually finer than the mere number of registers required; a constant is
considered simpler than the address of a static or external, which is simpler than reference to a variable.
This makes it easy to fold all the constants together, and also to merge together the sum of a constant and
the address of a static or external (since in such nodes there is space for an ‘offset’ value). There are also
special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products.Distrib is based on the fact that it is better to com-
pute ‘c1*c2*x + c1*y’ as ‘c1*(c2*x + y)’ and makes the divisibility tests required to assure the correctness
of the transformation. This transformation is rarely possible with code directly written by the user, but it
invariably occurs as a result of the implementation of multi-dimensional arrays.
Finally, acommutereconstructs a tree from the list of expressions which result.

Code Generation
The grand plan for code-generation is independent of any particular machine; it depends largely on a set of
tables. But this fact does not necessarily make it very easy to modify the compiler to produce code for oth-
er machines, both because there is a good deal of machine-dependent structure in the tables, and because in
any event such tables are non-trivial to prepare.
The arguments to the basic code generation routinercexpr are a pointer to a tree representing an expres-
sion, the name of a code-generation table, and the number of a register in which the value of the expression
should be placed.Rcexprreturns the number of the register in which the value actually ended up; its caller
may need to produce amov instruction if the value really needs to be in the given register. There are four
code generation tables.
Regtabis the basic one, which actually does the job described above: namely, compile code which places
the value represented by the expression tree in a register.
Cctab is used when the value of the expression is not actually needed, but instead the value of the condi-
tion codes resulting from evaluation of the expression. This table is used, for example, to evaluate the ex-
pression afterif. It is clearly silly to calculate the value (0 or 1) of the expression ‘a==b’ in the context ‘if
(a==b) ... ’
Thesptabtable is used when the value of an expression is to be pushed on the stack, for example when it is
an actual argument. For example in the function call ‘f(a)’ it is a bad idea to loada into a register which is
then pushed on the stack, when there is a single instruction which does the job.
Theefftabtable is used when an expression is to be evaluated for its side effects, not its value. This occurs
mostly for expressions which are statements, which have no value. Thus the code for the statement ‘a = b’
need produce only the approoriatemov instruction, and need not leave the value ofb in a register, while in
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the expression ‘a + (b = c)’ the value of ‘b = c’ will appear in a register.
All of the tables besidesregtabare rather small, and handle only a relatively few special cases. If one of
these subsidiary tables does not contain an entry applicable to the given expression tree,rcexprusesregtab
to put the value of the expression into a register and then fixes things up; nothing need be done when the
table wasefftab,but atst instruction is produced when the table called for wascctab,and amovinstruction,
pushing the register on the stack, when the table wassptab.
The rcexpr routine itself picks off some special cases, then callscexprto do the real work.Cexprtries to
find an entry applicable to the given tree in the given table, and returns −1 if no such entry is found, letting
rcexpr try again with a different table. A successful match yields a string containing both literal characters
which are written out and pseudo-operations, or macros, which are expanded. Before studying the contents
of these strings we will consider how table entries are matched against trees.
Recall that most non-leaf nodes in an expression tree contain the name of the operator, the type of the val-
ue represented, and pointers to the subtrees (operands). They also contain an estimate of the number of reg-
isters required to evaluate the expression, placed there by the expression-optimizer routines. The register
counts are used to guide the code generation process, which is based on the Sethi-Ullman algorithm.
The main code generation tables consist of entries each containing an operator number and a pointer to a
subtable for the corresponding operator. A subtable consists of a sequence of entries, each with a key de-
scribing certain properties of the operands of the operator involved; associated with the key is a code string.
Once the subtable corresponding to the operator is found, the subtable is searched linearly until a key is
found such that the properties demanded by the key are compatible with the operands of the tree node. A
successful match returns the code string; an unsuccessful search, either for the operator in the main table or
a compatble key in the subtable, returns a failure indication.
The tables are all contained in a file which must be processed to obtain an assembly language program.
Thus they are written in a special-purpose language. To provided definiteness to the following discussion,
here is an example of a subtable entry.

%n,aw
F
add A2,R
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The ‘%’ indicates the key; the information following (up to a blank line) specifies the code string. Very
briefly, this entry is in the subtable for ‘+’ ofregtab; the key specifies that the left operand is any integer,
character, or pointer expression, and the right operand is any word quantity which is directly addressible
(e.g. a variable or constant). The code string calls for the generation of the code to compile the left (first)
operand into the current register (‘F’) and then to produce an ‘add’ instruction which adds the second
operand (‘A2’) to the register (‘R’). All of the notation will be explained below.
Only three features of the operands are used in deciding whether a match has occurred. They are:
1.Is the type of the operand compatible with that demanded?
2.Is the ‘degree of difficulty’ (in a sense described below) compatible?
3.The table may demand that the operand have a ‘*’ (indirection operator) as its highest operator.
As suggested above, the key for a subtable entry is indicated by a ‘%,’ and a comma-separated pair of spec-
ifications for the operands. (The second specification is ignored for unary operators). A specification indi-
cates a type requirement by including one of the following letters. If no type letter is present, any integer,
character, or pointer operand will satisfy the requirement (not float, double, or long).
bA byte (character) operand is required.
wA word (integer or pointer) operand is required.
fA float or double operand is required.
dA double operand is required.
lA long (32-bit integer) operand is required.
Before discussing the ‘degree of difficulty’ specification, the algorithm has to be explained more complete-
ly. Rcexpr(andcexpr)are called with a register number in which to place their result. Registers 0, 1, ... are
used during evaluation of expressions; the maximum register which can be used in this way depends on the
number of register variables, but in any event only registers 0 through 4 are available since r5 is used as a
stack frame header and r6 (sp) and r7 (pc) have special hardware properties. The code generation routines
assume that when called with registern as argument, they may usen+1, ... (up to the first register variable)
as temporaries. Consider the expression ‘X+Y’, where both X and Y are expressions. As a first approxi-
mation, there are three ways of compiling code to put this expression in registern.
1.If Y is an addressible cell, (recursively) put X into registern and add Y to it.
2.If Y is an expression that can be calculated ink registers, wherek smaller than the number of registers
available, compile X into registern, Y into registern+1, and add registern+1 to n.
3.Otherwise, compile Y into registern, save the result in a temporary (actually, on the stack) compile X into
registern, then add in the temporary.
The distinction between cases 2 and 3 therefore depends on whether the right operand can be compiled in
fewer thank registers, wherek is the number of free registers left after registers 0 throughn are taken: 0
throughn−1 are presumed to contain already computed temporary results;n will, in case 2, contain the val-
ue of the left operand while the right is being evaluated.
These considerations should make clear the specification codes for the degree of difficulty, bearing in mind
that a number of special cases are also present:
zis satisfied when the operand is zero, so that special code can be produced for expressions like ‘x = 0’.
1is satisfied when the operand is the constant 1, to optimize cases like left and right shift by 1, which can be
done efficiently on the PDP-11.

cis satisfied when the operand is a positive (16-bit) constant; this takes care of some special cases in long
arithmetic.
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ais satisfied when the operand is addressible; this occurs not only for variables and constants, but also for
some more complicated constructions, such as indirection through a simple variable, ‘*p++’ wherep is a
register variable (because of the PDP-11’s auto-increment address mode), and ‘*(p+c)’ wherep is a regis-
ter andc is a constant. Precisely, the requirement is that the operand refers to a cell whose address can be
written as a source or destination of a PDP-11 instruction.
eis satisfied by an operand whose value can be generated in a register using no more thank registers, where
k is the number of registers left (not counting the current register). The ‘e’ stands for ‘easy.’
nis satisfied by any operand. The ‘n’ stands for ‘anything.’
These degrees of difficulty are considered to lie in a linear ordering and any operand which satisfies an ear-
lier-mentioned requirement will satisfy a later one. Since the subtables are searched linearly, if a ‘1’ speci-
fication is included, almost certainly a ‘z’ must be written first to prevent expressions containing the con-
stant 0 to be compiled as if the 0 were 1.
Finally, a key specification may contain a ‘*’ which requires the operand to have an indirection as its lead-
ing operator. Examples below should clarify the utility of this specification.
Now let us consider the contents of the code string associated with each subtable entry. Conventionally,
lower-case letters in this string represent literal information which is copied directly to the output. Upper-
case letters generally introduce specific macro-operations, some of which may be followed by modifying
information. The code strings in the tables are written with tabs and new-lines used freely to suggest in-
structions which will be generated; the table-compiling program compresses tabs (using the 0200 bit of the
next character) and throws away some of the new-lines. For example the macro ‘F’ is ordinarily written on
a line by itself; but since its expansion will end with a new-line, the new-line after ‘F’ itself is dispensable.
This is all to reduce the size of the stored tables.
The first set of macro-operations is concerned with compiling subtrees. Recall that this is done by thecex-
pr routine. In the following discussion the ‘current register’ is generally the argument register tocexpr;that
is, the place where the result is desired. The ‘next register’ is numbered one higher than the current regis-
ter. (This explanation isn’t fully true because of complications, described below, inv olving operations
which require even-odd register pairs.)
Fcauses a recursive call to thercexpr routine to compile code which places the value of the first (left)
operand of the operator in the current register.
F1generates code which places the value of the first operand in the next register. It is incorrectly used if
there might be no next register; that is, if the degree of difficulty of the first operand is not ‘easy;’ if not,
another register might not be available.
FSgenerates code which pushes the value of the first operand on the stack, by callingrcexprspecifyingspt-
abas the table.
Analogously,
S, S1, SScompile the second (right) operand into the current register, the next register, or onto the stack.
To deal with registers, there are
Rwhich expands into the name of the current register.
R1which expands into the name of the next register.
R+which expands into the the name of the current register plus 1. It was suggested above that this is the
same as the next register, except for complications; here is one of them. Long integer variables have 32
bits and require 2 registers; in such cases the next register is the current register plus 2. The code would
like to talk about both halves of the long quantity, so R refers to the register with the high-order part and
R+ to the low-order part.
R−This is another complication, involving division and mod. These operations involve a pair of registers of
which the odd-numbered contains the left operand.Cexprarranges that the current register is odd; the R−
notation allows the code to refer to the next lower, even-numbered register.
To refer to addressible quantities, there are the notations:
A1causes generation of the address specified by the first operand. For this to be legal, the operand must be
addressible; its key must contain an ‘a’ or a more restrictive specification.

A2correspondingly generates the address of the second operand providing it has one.
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We now hav e enough mechanism to show a complete, if suboptimal, table for the + operator on word or
byte operands.

%n,z
F

%n,1
F
inc R

%n,aw
F
add A2,R

%n,e
F
S1
add R1,R

%n,n
SS
F
add (sp)+,R

The first two sequences handle some special cases. Actually it turns out that handling a right operand of 0
is unnecessary since the expression-optimizer throws out adds of 0. Adding 1 by using the ‘increment’ in-
struction is done next, and then the case where the right operand is addressible. It must be a word quantity,
since the PDP-11 lacks an ‘add byte’ instruction. Finally the cases where the right operand either can, or
cannot, be done in the available registers are treated.
The next macro-instructions are conveniently introduced by noticing that the above table is suitable for
subtraction as well as addition, since no use is made of the commutativity of addition. All that is needed is
substitution of ‘sub’ for ‘add’ and ‘dec’ for ’inc.’ Considerable saving of space is achieved by factoring out
several similar operations.
Iis replaced by a string from another table indexed by the operator in the node being expanded. This sec-
ondary table actually contains two strings per operator.
I′is replaced by the second string in the side table entry for the current operator.
Thus, given that the entries for ‘+’ and ‘−’ in the side table (which is calledinstab)are ‘add’ and ‘inc,’
‘sub’ and ‘dec’ respectively, the middle of of the above addition table can be written

%n,1
F
I’ R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and several other operators, as well.
Next, there is the question of character and floating-point operations.
B1generates the letter ‘b’ if the first operand is a character, ‘f’ if it is float or double, and nothing otherwise.
It is used in a context like ‘movB1’ which generates a ‘mov’, ‘movb’, or ‘movf ’ instruction according to
the type of the operand.

B2is just like B1 but applies to the second operand.
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BEgenerates ‘b’ if either operand is a character and null otherwise.
BFgenerates ‘f’ if the type of the operator node itself is float or double, otherwise null.
For example, there is an entry inefftabfor the ‘=’ operator

%a,aw
%ab,a

IBE A2,A1

Note first that two key specifications can be applied to the same code string. Next, observe that when a
word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruction, amovor movb
as appropriate, does the job. Howev er, when a byte is assigned to a word, it must pass through a register to
implement the sign-extension rules:

%a,n
S
IB1 R,A1

Next, there is the question of handling indirection properly. Consider the expression ‘X + *Y’, where X
and Y are expressions, Assuming that Y is more complicated than just a variable, but on the other hand
qualifies as ‘easy’ in the context, the expression would be compiled by placing the value of X in a register,
that of *Y in the next register, and adding the registers. It is easy to see that a better job can be done by
compiling X, then Y (into the next register), and producing the instruction symbolized by ‘add (R1),R’.
This scheme avoids generating the instruction ‘mov (R1),R1’ required actually to place the value of *Y in a
register. A related situation occurs with the expression ‘X + *(p+6)’, which exemplifies a construction fre-
quent in structure and array references. The addition table shown above would produce

[put X in register R]
mov p,R1
add $6,R1
mov (R1),R1
add R1,R

when the best code is

[put X in R]
mov p,R1
add 6(R1),R

As we said above, a key specification for a code table entry may require an operand to have an indirection
as its highest operator. To make use of the requirement, the following macros are provided.
F*the first operand must have the form *X. If in particular it has the form *(Y + c), for some constantc,
then code is produced which places the value of Y in the current register. Otherwise, code is produced
which loads X into the current register.
F1*resembles F* except that the next register is loaded.
S*resembles F* except that the second operand is loaded.
S1*resembles S* except that the next register is loaded.
FS*The first operand must have the form ‘*X’. Push the value of X on the stack.
SS*resembles FS* except that it applies to the second operand.
To capture the constant that may have been skipped over in the above macros, there are
#1The first operand must have the form *X; if in particular it has the form *(Y + c) forc a constant, then
the constant is written out, otherwise a null string.
#2is the same as #1 except that the second operand is used.
Now we can improve the addition table above. Just before the ‘%n,e’ entry, put

%n,ew*
F
S1*
add #2(R1),R
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and just before the ‘%n,n’ put

%n,nw*
SS*
F
add *(sp)+,R

When using the stacking macros there is no place to use the constant as an index word, so that particular
special case doesn’t occur.
The constant mentioned above can actually be more general than a number. Any quantity acceptable to the
assembler as an expression will do, in particular the address of a static cell, perhaps with a numeric offset.
If x is an external character array, the expression ‘x[i+5] = 0’ will generate the code

mov i,r0
clrb x+5(r0)

via the table entry (in the ‘=’ part ofefftab)

%e*,z
F
I’B1 #1(R)

Some machine operations place restrictions on the registers used. The divide instruction, used to imple-
ment the divide and mod operations, requires the dividend to be placed in the odd member of an even-odd
pair; other peculiarities of multiplication make it simplest to put the multiplicand in an odd-numbered regis-
ter. There is no theory which optimally accounts for this kind of requirement.Cexprhandles it by check-
ing for a multiply, divide, or mod operation; in these cases, its argument register number is incremented by
one or two so that it is odd, and if the operation was divide or mod, so that it is a member of a free even-odd
pair. The routine which determines the number of registers required estimates, conservatively, that at least
two registers are required for a multiplication and three for the other peculiar operators. After the expres-
sion is compiled, the register where the result actually ended up is returned. (Divide and mod are actually
the same operation except for the location of the result).
These operations are the ones which cause results to end up in unexpected places, and this possibility adds
a further level of complexity. The simplest way of handling the problem is always to move the result to the
place where the caller expected it, but this will produce unnecessary register moves in many simple cases;
‘a = b*c’ would generate

mov b,r1
mul c,r1
mov r1,r0
mov r0,a

The next thought is used the passed-back information as to where the result landed to change the notion of
the current register. While compiling the ‘=’ operation above, which comes from a table entry like

%a,e
S
mov R,A1

it is sufficient to redefine the meaning of ‘R’ after processing the ‘S’ which does the multiply. This tech-
nique is in fact used; the tables are written in such a way that correct code is produced. The trouble is that
the technique cannot be used in general, because it invalidates the count of the number of registers required
for an expression. Consider just ‘a*b + X’ where X is some expression. The algorithm assumes that the
value of a*b, once computed, requires just one register. If there are three registers available, and X requires
two registers to compute, then this expression will match a key specifying ‘%n,e’. If a*b is computed and
left in register 1, then there are, contrary to expectations, no longer two registers available to compute X,
but only one, and bad code will be produced. To guard against this possibility,cexprchecks the result re-
turned by recursive calls which implement F, S and their relatives. If the result is not in the expected regis-
ter, then the number of registers required by the other operand is checked; if it can be done using those reg-
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isters which remain even after making unavailable the unexpectedly-occupied register, then the notions of
the ‘next register’ and possibly the ‘current register’ are redefined. Otherwise a register-copy instruction is
produced. A register-copy is also always produced when the current operator is one of those which have
odd-even requirements.
Finally, there are a few loose-end macro operations and facts about the tables. The operators:
Vis used for long operations. It is written with an address like a machine instruction; it expands into ‘adc’
(add carry) if the operation is an additive operator, ‘sbc’ (subtract carry) if the operation is a subtractive op-
erator, and disappears, along with the rest of the line, otherwise. Its purpose is to allow common treatment
of logical operations, which have no carries, and additive and subtractive operations, which generate car-
ries.
Tgenerates a ‘tst’ instruction if the first operand of the tree does not set the condition codes correctly. It is
used with divide and mod operations, which require a sign-extended 32-bit operand. The code table for the
operations contains an ‘sxt’ (sign-extend) instruction to generate the high-order part of the dividend.
His analogous to the ‘F’ and ‘S’ macros, except that it calls for the generation of code for the current tree
(not one of its operands) usingregtab. It is used incctabfor all the operators which, when executed nor-
mally, set the condition codes properly according to the result. It prevents a ‘tst’ instruction from being
generated for constructions like ‘if (a+b) ...’ since after calculation of the value of ‘a+b’ a conditional
branch can be written immediately.
All of the discussion above is interms of operators with operands. Leaves of the expression tree (variables
and constants), however, are peculiar in that they hav e no operands. In order to regularize the matching
process,cexpr examines its operand to determine if it is a leaf; if so, it creates a special ‘load’ operator
whose operand is the leaf, and substitutes it for the argument tree; this allows the table entry for the created
operator to use the ‘A1’ notation to load the leaf into a register.
Purely to save space in the tables, pieces of subtables can be labelled and referred to later. It turns out, for
example, that rather large portions of the theefftabtable for the ‘=’ and ‘=+’ operators are identical. Thus
‘=’ has an entry

%[move3:]
%a,aw
%ab,a

IBE A2,A1

while part of the ‘=+’ table is

%aw,aw
% [move3]

Labels are written as ‘%[ ... : ]’, before the key specifications; references are written with ‘% [ ... ]’ after
the key. Peculiarities in the implementation make it necessary that labels appear before references to them.
The example illustrates the utility of allowing separate keys to point to the same code string. The assign-
ment code works properly if either the right operand is a word, or the left operand is a byte; but since there
is no ‘add byte’ instruction the addition code has to be restricted to word operands.

Delaying and reordering
Intertwined with the code generation routines are two other, interrelated processes. The first, implemented
by a routine calleddelay, is based on the observation that naive code generation for the expression ‘a =
b++’ would produce

mov b,r0
inc b
mov r0,a

The point is that the table for postfix ++ has to preserve the value ofb before incrementing it; the general
way to do this is to preserve its value in a register. A cleverer scheme would generate

mov b,a
inc b
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Delay is called for each expression input torcexpr,and it searches for postfix ++ and −− operators. If one
is found applied to a variable, the tree is patched to bypass the operator and compiled as it stands; then the
increment or decrement itself is done. The effect is as if ‘a = b; b++’ had been written. In this example, of
course, the user himself could have done the same job, but more complicated examples are easily construct-
ed, for example ‘switch (x++)’. An essential restriction is that the condition codes not be required. It
would be incorrect to compile ‘if (a++) ...’ as

tst a
inc a
beq ...

because the ‘inc’ destroys the required setting of the condition codes.
Reordering is a similar sort of optimization. Many cases which it detects are useful mainly with register
variables. Ifr is a register variable, the expression ‘r = x+y’ is best compiled as

mov x,r
add y,r

but the codes tables would produce

mov x,r0
add y,r0
mov r0,r

which is in fact preferred ifr is not a register. (Ifr is not a register, the two sequences are the same size, but
the second is slightly faster.) The scheme is to compile the expression as if it had been written ‘r = x; r =+
y’. The reorder routine is called with a pointer to each tree thatrcexpr is about to compile; if it has the
right characteristics, the ‘r = x’ tree is constructed and passed recursively torcexpr; then the original tree is
modified to read ‘r =+ y’ and the calling instance ofrcexpr compiles that instead. Of course the whole
business is itself recursive so that more extended forms of the same phenomenon are handled, like ‘r = x +
y | z’.
Care does have to be taken to avoid ‘optimizing’ an expression like ‘r = x + r’ into ‘r = x; r =+ r’. It is re-
quired that the right operand of the expression on the right of the ‘=’ be a ’, distinct from the register vari-
able.
The second case thatreorder handles is expressions of the form ‘r = X’ used as a subexpression. Again,
the code out of the tables for ‘x = r = y’ would be

mov y,r0
mov r0,r
mov r0,x

whereas ifr were a register it would be better to produce

mov y,r
mov r,x

Whenreorderdiscovers that a register variable is being assigned to in a subexpression, it callsrcexprrecur-
sively to compile the subexpression, then fiddles the tree passed to it so that the register variable itself ap-
pears as the operand instead of the whole subexpression. Here care has to be taken to avoid an infinite
regress, withrcexprandreordercalling each other forever to handle assignments to registers.
A third set of cases treated byreordercomes up when any name, not necessarily a register, occurs as a left
operand of an assignment operator other than ‘=’ or as an operand of prefix ‘++’ or ‘−−’. Unless condition-
code tests are involved, when a subexpression like ‘(a =+ b)’ is seen, the assignment is performed and the
argument tree modified so thata is its operand; effectively ‘x + (y =+ z)’ is compiled as ‘y =+ z; x + y’.
Similarly, prefix increment and decrement are pulled out and performed first, then the remainder of the ex-
pression.
Throughout code generation, the expression optimizer is called wheneverdelayor reorder change the ex-
pression tree. This allows some special cases to be found that otherwise would not be seen.


