A Tutorial Introduction to the uNix Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on theNix T
operating system is done with the text-edédr This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most users’ day-to-day needs. This includes
printing, appending, changing, deleting, moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands; and the use of special characters for
advanced editing.

November 2, 1997

TUNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to the uNix Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Edis a “text editor”, that is, an interactive program
for creating and modifying “text”, using directions
provided by a user at a terminal. The text is often a
document like this one, or a program or perhaps data
for a program.

This introduction is meant to simplify learniregl.
The recommended way to leagdis to read this docu-
ment, simultaneously usingd to follow the examples,
then to read the description in section | of thelX
Programmer’s Manual,all the while experimenting
with ed. (Solicitation of advice from experienced users
is also useful.)

Do the exercises! They cover material not com-
pletely discussed in the actual text. An appendix sum-
marizes the commands.

Disclaimer

This is an introduction and a tutorial. For this rea-
son, no attempt is made to cover more than a part of the
facilities thated offers (although this fraction includes
the most useful and frequently used parts). When you
have mastered the Tutorial, tAdvanced Editing on
UNIX. Also, there is not enough space to explain basic
UNIX procedures. We will assume that you know how
to log on toUNIX, and that you have at least a vague
understanding of what a file is. For more on that, read
UNIX for Beginners.

You must also know what character to type as the
end-of-line on your particular terminal. This character
is theRETURN key on most terminals. Throughout, we
will refer to this character, whatever it is, RETURN.

Getting Started

We’'ll assume that you have logged in to your sys-
tem and it has just printed the prompt character, usually
either aor a%. The easiest way to getlis to type

ed (followed by a return)

You are now ready to go edis waiting for you to tell
it what to do.

Creating Text — the Append command “a”

As your first problem, suppose you want to create
some text starting from scratch. Perhaps you are typing
the very first draft of a paper; clearly it will have to start
somewhere, and undergo modifications later. This sec-

tion will show how to get some text in, just to get
started. Later we'll talk about how to change it.

When ed is first started, it is rather like working
with a blank piece of paper - there is no text or infor-
mation present. This must be supplied by the person
usinged; it is usually done by typing in the text, or by
reading it intoedfrom a file. We will start by typing in
some text, and return shortly to how to read files.

First a bit of terminology. Ired jargon, the text
being worked on is said to be “kept in a buffer.” Think
of the buffer as a work space, if you like, or simply as
the information that you are going to be editing. In
effect the buffer is like the piece of paper, on which we
will write things, then change some of them, and finally
file the whole thing away for another day.

The user telled what to do to his text by typing
instructions called “commands.” Most commands
consist of a single letter, which must be typed in lower
case. Each command is typed on a separate line.
(Sometimes the command is preceded by information
about what line or lines of text are to be affected — we
will discuss these shortly. Ed makes no response to
most commands - there is no prompting or typing of
messages like “ready”. (This silence is preferred by
experienced users, but sometimes a hangup for begin-
ners.)

The first command iappendwritten as the letter

a

all by itself. It means “append (or add) text lines to the
buffer, as | type them in.” Appending is rather like
writing fresh material on a piece of paper.

So to enter lines of text into the buffer, just type an
a followed by aRETURN, followed by the lines of text
you want, like this:

a
Now is the time
for all good mem
to come to the @id of their party.

The only way to stop appending is to type a line
that contains only a period. The"is used to telled
that you have finished appending. (Even experienced
users forget that terminating.”™ sometimes. If ed
seems to be ignoring you, type an extra line with just
“.” on it. You may then find you've added some

garbage lines to your text, which you’ll have to take out
later.)

After the append command has been done, the

buffer will contain the three lines

Now is the time
for all good men
to come to the @id of their party.

The “a” and “.” aren't there, because they are not text.
To add more text to what you already have, just
issue anothem command, and continue typing.

Error Messages — “?”
If at any time you make an error in the commands
you type toed, it will tell you by typing

?

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file — the Write command “w”

It's likely that you’'ll want to save your text for later
use. To write out the contents of the buffer onto a file,
use thewrite command

w

followed by the filename you want to write on. This
will copy the buffer's contents onto the specified file
(destroying any previous information on the file). To
save the text on a file namjohk , for example, type

w junk

Leave a space betwe@&nand the file nameEd will
respond by printing the number of characters it wrote
out. In this caseedwould respond with

68

(Remember that blanks and the return character at the
end of each line are included in the character count.)

Writing a file just makes a copy of the text — the

buffer’s contents are not disturbed, so you can go on

adding lines to it. This is an important poirid at all
times works on a copy of a file, not the file itself. No

change in the contents of a file takes place until you

give aw command. (Writing out the text onto a file

from time to time as it is being created is a good idea,
since if the system crashes or if you make some horri-

ble mistake, you will lose all the text in the buffer but
any text that was written onto a file is relatively safe.)
Leaving ed — the Quit command “q”

To terminate a session widd save the text you're
working on by writing it onto a file using the com-
mand, and then type the command

q

which stands foquit. The system will respond with
the prompt character$(or %). At this point your
buffer vanishes, with all its text, which is why you want

Exercise 1:
Enteredand create some text using

a

Write it out usingw. Then leaveed with the q
command, and print the file, to see that everything
worked. (To print a file, say

pr filemame
or
cat filenmame

in response to the prompt character. Try both.)

Reading text from a file — the Edit command
“g

A common way to get text into the buffer is to
read it from a file in the file system. This is what
you do to edit text that you saved with tlvecom-
mand in a previous session. Tédit commande
fetches the entire contents of a file into the buffer.
So if you had saved the three lines “Now is the
time”, etc., with aw command in an earlier ses-
sion, theedcommand

ejunk

would fetch the entire contents of the filek into
the buffer, and respond

68

which is the number of charactersjimk . If any-
thing was already in the buffer, it is deleted first.

If you use thee command to read a file into the
buffer, then you need not use a file name after a
subsequenty commandgedremembers the last file
name used in aa command, anav will write on
this file. Thus a good way to operate is

ed

efile

[editing session]
w

q

This way, you can simply say from time to time,
and be secure in the knowledge that if you got the
file name right at the beginning, you are writing
into the proper file each time.

You can find out at any time what file name
is remembering by typing thide commandf. In
this example, if you typed

f
to write it out before quitting. T

T Actually, ed will print ? if you try to quit with-
out writing. At that point, write if you want; if not,
anotherg will get you out regardless.

edwould reply

junk

Reading text from a file — the Read command
wpn

Sometimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by thead commandr. The

command
r junk

will read the filejunk into the buffer; it adds it to
the end of whatever is already in the buffer. So if
you do a read after an edit:

ejunk

r junk
the buffer will containtwo copies of the text (six
lines).

Now is the time
for all good men
to cometo the aid of their party.
Now is the time
for all good men
to cometo the aid of their party.

Like the w ande commandsy prints the number
of characters read in, after the reading operation is
complete.

Generally speaking,is much less used than

Exercise 2:

Experiment with thee command - try reading
and printing various files. You may get an error
?name where name is the name of a file; this
means that the file doesn't exist, typically because
you spelled the file name wrong, or perhaps that
you are not allowed to read or write it. Try alter-
nately reading and appending to see that they work
similarly. Verify that

edifilename
is exactly equivalent to

ed
e filename

What does
f fil emame
do?
Printing the contents of the buffer — the Print
command “p”

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print command

p
The way this is done is as follows. Specify the

lines where you want printing to begin and where
you want it to end, separated by a comma, and fol-
lowed by the lettep. Thus to print the first two
lines of the buffer, for example, (that is, lines 1
through 2) say

1,2p (starting line=1, ending line=2 p)
Ed will respond with

Now is thetime
for all good mem

Suppose you want to priwtl the lines in the
buffer. You could usé,3p as above ifyou knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are, so
what do you use for the ending line numbdz@
provides a shorthand symbol for “line number of
last line in buffer” — the dollar sigi$. Use it this
way:

1%

This will print all the lines in the buffer (line 1 to
last line.) If you want to stop the printing before it
is finished, push th®EL or Delete key;ed will

type
?
and wait for the next command.

To print thelast line of the buffer, you could
use

$3p
butedlets you abbreviate this to
$p
You can print any single line by typing the line
number followed by @. Thus
1p
produces the response
Now is the time

which is the first line of the buffer.

In fact,edlets you abbreviate even further: you
can print any single line by typinmst the line
number — no need to type the letfer So if you
say

$

edwill print the last line of the buffer.
You can also us# in combinations like

$-19p

which prints the last two lines of the buffer. This
helps when you want to see how far you got in typ-

ing.

Exercise 3:

As before, create some text using theom-
mand and experiment with tlpecommand. You
will find, for example, that you can't print line 0 or
a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by saying

3.1p

don't work.

The current line - “Dot” or “.”
Suppose your buffer still contains the six lines
as above, that you have just typed

13p

andedhas printed the three lines for you. Try typ-
ing just

p (no line numbers)
This will print
to cometo the @id of their party.

which is the third line of the buffer. In fact it is the
last (most recent) line that you have done anything
with. (You just printed it!) You can repeat this
command without line numbers, and it will con-
tinue to print line 3.

The reason is thad maintains a record of the
last line that you did anything to (in this case, line
3, which you just printed) so that it can be used
instead of an explicit line number. This most
recent line is referred to by the shorthand symbol

(pronounced “dot™).

Dot is a line number in the same way thas; it
means exactly “the current line”, or loosely, “the
line you most recently did something to.” You can
use it in several ways — one possibility is to say

-$p

This will print all the lines from (including) the
current line to the end of the buffer. In our exam-
ple these are lines 3 through 6.

Some commands change the value of dot,
while others do not. Thp command sets dot to
the number of the last line printed; the last com-
mand will set both and$to 6.

Dot is most useful when used in combinations
like this one:

.+1 (or eguivalently, .+1p)

This means “print the next line” and is a handy
way to step slowly through a buffer. You can also
say

.~1 (or.-1p)

which means “print the linebefore the current
line.” This enables you to go backwards if you
wish. Another useful one is something like

—3,.-1p

which prints the previous three lines.

Don't forget that all of these change the value
of dot. You can find out what dot is at any time by
typing

Ed will respond by printing the value of dot.

Let's summarize some things about fheom-
mand and dot. Essentialfycan be preceded by 0,
1, or 2 line numbers. If there is no line number
given, it prints the “current line”, the line that dot
refers to. If there is one line number given (with or
without the lettem), it prints that line (and dot is
set there); and if there are two line numbers, it
prints all the lines in that range (and sets dot to the
last line printed.) If two line numbers are specified
the first can't be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it's equivalent ta-1p. Try it. Try
typing a—; you will find that it's equivalent to
~1p.

Deleting lines: the “d” command

Suppose you want to get rid of the three extra
lines in the buffer. This is done by tdeletecom-
mand

d

Except thatd deletes lines instead of printing
them, its action is similar to that pf The lines to
be deleted are specified fdrexactly as they are
for p:

starting line, ending linel
Thus the command
4%

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1%

And notice that$ now is line 3! Dot is set to the
next line after the last line deleted, unless the last
line deleted is the last line in the buffer. In that
case, dot is set %

Exercise 4:

Experiment witha, e, r, w, p andd until you
are sure that you know what they do, and until you
understand how do$, and line numbers are used.

If you are adventurous, try using line numbers
with a, r andw as well. You will find thata will
append linesfter the line number that you specify
(rather than after dot); thatreads a file irafterthe
line number you specify (not necessarily at the end
of the buffer); and thaw will write out exactly the
lines you specify, not necessarily the whole buffer.

These variations are sometimes handy. For
instance you can insert a file at the beginning of a
buffer by saying

Or filemame

and you can enter lines at the beginning of the
buffer by saying

Oa
LW text. ..

Notice thatw is verydifferent from

Modifying text: the Substitute command “s”

We are now ready to try one of the most
important of all commands - the substitute com-
mand

S

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example, for correct-
ing spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

- the e has been left ofthe You can uses to fix
this up as follows:

1skhfthel

This says: “in line 1, substitute for the characters
th the characterthe” To verify that it works ed
will not print the result automatically) say

p
and get

Now is thetime

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since thp command printed that line.
Dot is always set this way with tlseommand.

The general way to use the substitute com-
mand is

starting-line, ending-lineslchange thi&o thid

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, imall the lines betweestarting-

line andending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those,for
except that dot is set to the last line changed. (But
there is a trap for the unwary: if no substitution
took place, dot isot changed. This causes an

error? as a warning.)
Thus you can say

1 $s/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are con-
sistent misspellers!)

If no line numbers are given, tleecommand
assumes we mean “make the substitution on line
dot”, so it changes things only on the current line.
This leads to the very common sequence

slsomething/something elselp

which makes some correction on the current line,
and then prints it, to make sure it worked out right.
If it didn’t, you can try again. (Notice that there is
ap on the same line as tlsecommand. With few
exceptionsp can follow any command; no other
multi-command lines are legal.)

It's also legal to say

sf...

which means “change the first string of characters
to “nothing, i.e., removethem. This is useful for
deleting extra words in a line or removing extra
letters from words. For instance, if you had

Nowxx is the time
you can say

sixx//p
to get

Now is the time

Notice that// (two adjacent slashes) means “no
characters”, not a blank. Theiig a difference!
(See below for another meaning/bj

Exercise 5:

Experiment with the substitute command. See
what happens if you substitute for some word on a
line with several occurrences of that word. For
example, do this:

a
the other side af the coin
sithelon thelp
You will get
on the ather side af the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by addinga(for “global”) to the s
command, like this:

o...0. . .lgp

Try other characters instead of slashes to delimit
the two sets of characters in theommand - any-

thing should work except blanks or tabs.
(If you get funny results using any of the char-
acters

L $ [0\ &

read the section on “Special Characters”.)

Context searching = “/ ... /"

With the substitute command mastered, you
can nove on toanother highly important idea efi
- context searching.

Suppose you have the original three line text in
the buffer:

Now is the time
for all good men
to cometo the @id of their party.

Suppose you want to find the line that contains
their so you can change it the Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the wortheir is on. But if the
buffer contained several hundred lines, and youd
been making changes, deleting and rearranging
lines, and so on, you would no longer really know
what this line number would be. Context search-
ing is simply a method of specifying the desired
line, regardless of what its number is, by specify-
ing some context on it.

The way to say “search for a line that contains
this particular string of characters” is to type

/string of characters we want to fihd
For example, thedcommand
Itheir/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence of
the characters between slashes (“their”). It also
sets dot to that line and prints the line for verifica-
tion:

to come to the aid of their party.

“Next occurrence” means thagd starts looking

for the string at line+1, searches to the end of the
buffer, then continues at line 1 and searches to line
dot. (Thatis, the search “wraps around” fr@o

1.) It scans all the lines in the buffer until it either
finds the desired line or gets back to dot again. If
the given string of characters can't be found in any
line, edtypes the error message

?

Otherwise it prints the line it found.
You can do both the search for the desired line
anda substitution all at once, like this:

Itheir/sltheir/thelp
which will yield
to cometo the aid of the party.

There were three parts to that last command: con-
text search for the desired line, make the substitu-
tion, print the line.

The expression/their/ is a context search
expression. In their simplest form, all context
search expressions are like this — a string of char-
acters surrounded by slashes. Context searches are
interchangeable with line nhumbers, so they can be
used by themselves to find and print a desired line,
or as line numbers for some other command,dike
They were used both ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to cometo the aid of their party.

Then theedline numbers

/Now/+1
/good/
[party/-1

are all context search expressions, and they all
refer to the same line (line 2). To make a change
in line 2, you could say

/Now/+1slgood/bad/
or

/good/sigood/bad/
or

/party/-1sigood/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/ /Jparty/p
or
/Now/,/Now/+2p

or by any number of similar combinations. The
first one of these might be better if you don’t know
how many lines are involved. (Of course, if there
were only three lines in the buffer, you'd use

1%

but not if there were several hundred.)

The basic rule is: a context search expression
is the same as line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the same
string of characters, and scan through it using the
same context search.

Try using context searches as line numbers for
the substitute, print and delete commands. (They
can also be used withw, anda.)

Try context searching usingtext? instead of
/text/. This scans lines in the buffer in reverse
order rather than normal. This is sometimes useful
if you go too far while looking for some string of
characters - it's an easy way to back up.

(If you get funny results with any of the char-
acters

L. [OV &

read the section on “Special Characters”.)

Ed provides a shorthand for repeating a con-
text search for the same string. For example, the
edline number

Istring/

will find the next occurrence ddtring. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by typ-
ing merely

I
This shorthand stands for “the most recently used
context search expression.” It can also be used as
the first string of the substitute command, as in
/stringl/sl/string2/

which will find the next occurrence sfringl and
replace it bystring2. This can save a lot of typing.
Similarly

means “scan backwards for the same expression.”

Change and Insert - “c” and “i”
This section discusses thkangecommand

Cc

which is used to change or replace a group of one
or more lines, and thasertcommand

i
which is used for inserting a group of one or more

lines.
“Change”, written as

Cc

is used to replace a number of lines with different
lines, which are typed in at the terminal. For
example, to change lines1 through$ to some-
thing else, type

41 %c
.. .type the lines of text you want here.

The lines you type between tbeommand and the

. will take the place of the original lines between
start line and end line. This is most useful in
replacing a line or several lines which have errors
in them.

If only one line is specified in thecommand,
then just that line is replaced. (You can type in as
many replacement lines as you like.) Notice the
use of. to end the input — this works just like the
in the append command and must appear by itself
on a new line. If no line number is given, line dot
is replaced. The value of dot is set to the last line
you typed in.

“Insert” is similar to append - for instance

[string/i
.. .type the lines to be inserted here.

will insert the given texbeforethe next line that
contains “string”. The text between and . is
inserted beforghe specified line. If no line num-
ber is specified dot is used. Dot is set to the last
line inserted.

Exercise 7:

“Change” is rather like a combination of
delete followed by insert. Experiment to verify
that

start, endd
i
A ()

is almost the same as

start, endc
R ()

These are noprecisely the same if line$ gets

deleted. Check this out. What is dot?
Experiment witha andi, to see that they are

similar, but not the same. You will observe that

line-numbera
..oWtext. ..

appendsfterthe given line, while

line-numbeii
.. text. ..

insertsbeforeit. Observe that if no line number is
given, i inserts before line dot, whila appends
after line dot.

Moving text around: the “m” command

The move commandm is used for cutting and
pasting - it lets you ove agroup of lines from
one place to another in the buffer. Suppose you
want to put the first three lines of the buffer at the
end instead. You could do it by saying:

1,3w temp

$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with them command:

1,3m$
The general case is
start line, end linam after this line

Notice that there is a third line to be specified - the
place where the moved stuff gets put. Of course
the lines to be moved can be specified by context
searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragrajph.
you could reverse the two paragraphs like this:
/Second/,/end of second/m/First/—1

Notice the—1: the moved text goeafter the line
mentioned. Dot gets set to the last line moved.

The global commands “g” and “v”

The global commandg is used to execute one
or more ed commands on all those lines in the
buffer that match some specified string. For exam-

ple
o/peling/p
prints all lines that contaipeling. More usefully,

o/pding/si/pelling/gp

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

1 %slpeling/pelling/gp

which only prints the last line substituted. Another
subtle difference is that thg command does not
give a? if peling is not found where the com-
mand will.

There may be several commands (including
¢, i, r, w, but notg); in that case, every line except
the last must end with a backslash

alxxx/.—1slalbc/defi\
+2slghi/jkIN
—2,.p
makes changes in the lines before and after each
line that containgxx, then prints all three lines.
Thev command is the same gsexcept that

the commands are executed on every line that does
notmatch the string following:

v/ /d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don'’t
work right when you used some characters like
0 $, and others in context searches and the substi-
tute command. The reason is rather complex,
although the cure is simple. Basicalbgl treats
these characters as special, with special meanings.
For instancein a context search or the first string
of the substitute command only,means “any
character,” not a period, so

Ix.yl

means “a line with arx, any characterand ay,
not just “a line with anx, a period, and §.” A
complete list of the special characters that can
cause trouble is the following:

L. 8$ [O

Warning: The backslash characteris special to

ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

sh\.\Obackslash dot star/

will change\.Ointo “backslash dot star”.

Here is a hurried synopsis of the other special
characters. First, the circumfléx signifies the
beginning of a line. Thus

["string/
finds string only if it is at the beginning of a line:
it will find

string
but not

the string...

The dollar-sigri is just the opposite of the circum-
flex; it means the end of a line:

[string®

will only find an occurrence dftring that is at the
end of some line. This implies, of course, that

I"string®

will find only a line that contains justring, and
r.$l

finds a line containing exactly one character.

The character., as we mentioned above,
matches anything;

Ix.yl
matches any of

X+y
x-y
Xy

X.y

This is useful in conjunction wittl] which is a
repetition characterall is a shorthand for “any
number ofa’s,” so .0Omatches any number of any-
things. This is used like this:

sl.OIstuff/
which changes an entire line, or
sI.O/

which deletes all characters in the line up to and
including the last comma. (Sincél finds the
longest possible match, this goes up to the last
comma.)

[is used with] to form “character classes”;
for example,

/[0123456789)/

matches any single digit — any one of the charac-
ters inside the braces will cause a match. This can
be abbreviated tfH-9].

Finally, the& is another shorthand character -
it is used only on the right-hand part of a substitute
command where it means “whatever was matched
on the left-hand side”. It is used to save typing.
Suppose the current line contained

Now is thetime

and you wanted to put parentheses around it. You
could just retype the line, but this is tedious. Or
you could say

I
SN/

using your knowledge of and$. But the easiest
way uses thé&:

.08/

This says “match the whole line, and replace it by
itself surrounded by parentheses.” T&ecan be
used several times in a line; consider using

sl.O&? &/
to produce
Now is the time? Now is the timel!

You don't have to match the whole line, of
course: if the buffer contains

the end of the world
you could type
Iworld/sll& iis at hand/
to produce
the end of the world is at hand

Observe this expression carefully, for it illustrates
how to take advantage @&fd to save typing. The
string/world/ found the desired line; the shorthand

/l found the same word in the line; and thesaves
you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and has
no special meaning elsewhere. You can turn off
the special meaning &f by preceding it with &

slampersand/\&/

will convert the word “ampersand” into the literal
symbol& in the current line.

Summary of Commands and Line Numbers

The general form oéd commands is the com-
mand name, perhaps preceded by one or two line
numbers, and, in the case®fr, andw, followed
by a file name. Only one command is allowed per
line, but ap command may follow any other com-
mand (except foe, r, w andq).
a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Appending
continues until is typed on a new line. Dot is set
to the last line appended.
c¢: Change the specified lines to the new text which
follows. The new lines are terminated by.,aas
with a. If no lines are specified, replace line dot.
Dot is set to last line changed.
d: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted
line, unlesss is deleted, in which case dot is set to
$.
e Edit new file. Any previous contents of the
buffer are thrown away, so issuevdeforehand.
f: Print remembered filename. If a name folldws
the remembered name will be set to it.
g: The command

g/---/commands

will execute the commands on those lines that con-
tain ---, which can be any context search expres-
sion.

i Insert lines before specified line (or dot) until a
is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
afterm. Dot is set to the last line moved.

p: Print specified lines. If none specified, print line
dot. A single line number is equivalent koe-
numberp. A single return printst+1, the next line.

g: Quited Wipes out all text in buffer if you give

it twice in a row without first giving & command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command

slstring1/string2/

substitutes the charactessringl into string2 in
the specified lines. If no lines are specified, make

the substitution in line dot. Dot is set to last line in
which a substitution took place, which means that
if no substitution took place, dot is not changed.
changes only the first occurrencestifingl on a
line; to change all of them, typegaafter the final
slash.

v: The command

v/---/commands

executescommands on those lines thatlo not
contain---.

w: Write out buffer onto a file. Dot is not changed.
.=: Print value of dot. £ by itself prints the value
of $.)

I: The line

lcommand-line

causescommand-line to be executed as @NIX
command.

/-----I: Context search. Search for next line which
contains this string of characters. Print it. Dot is
set to the line where string was found. Search
starts at+1, wraps around fror§ to 1, and contin-
ues to dot, if necessary.

P-mne- ?. Context search in reverse direction. Start
search at-1, scan to 1, wrap around $0

-10 -

