
Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effective use of
theUNIX†

facilities for preparing and editing text. It provides explanations and examples of
•special characters, line addressing and global commands in the editored;
•commands for ‘‘cut and paste’’ operations on files and parts of files, including themv, cp, cat andrm commands,
and ther , w, m andt commands of the editor;
•editing scripts and editor-based programs likegrep andsed.
Although the treatment is aimed at non-programmers, new users with any background should find helpful hints on
how to get their jobs done more easily.

November 2, 1997

†UNIX is a Trademark of Bell Laboratories.

-- --

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
provides remarkably effective tools for text edit-
ing, that by itself is no guarantee that everyone will
automatically make the most effective use of them.
In particular, people who are not computer special-
ists — typists, secretaries, casual users — often
use the system less effectively than they might.
This document is intended as a sequel toA Tuto-
rial Introduction to the UNIX Text Editor[1], pro-
viding explanations and examples of how to edit
with less effort. (You should also be familiar with
the material inUNIX For Beginners[2].) Further
information on all commands discussed here can
be found inThe UNIX Programmer’s Manual[3].
Examples are based on observations of users and
the difficulties they encounter. Topics covered
include special characters in searches and substi-
tute commands, line addressing, the global com-
mands, and line moving and copying. There are
also brief discussions of effective use of related
tools, like those for file manipulation, and those
based oned, like grep andsed.
A word of caution. There is only one way to learn
to use something, and that is touseit. Reading a
description is no substitute for trying something.
A paper like this one should give you ideas about
what to try, but until you actually try something,
you will not learn it.

2. SPECIAL CHARACTERS
The editored is the primary interface to the sys-
tem for many people, so it is worthwhile to know
how to get the most out ofed for the least effort.
The next few sections will discuss shortcuts and
labor-saving devices. Not all of these will be
instantly useful to any one person, of course, but a
few will be, and the others should give you ideas to
store away for future use. And as always, until
you try these things, they will remain theoretical
knowledge, not something you have confidence in.

AlthoughUNIX†

†UNIX is a Trademark of Bell Laboratories.

The List command ‘l’
ed provides two commands for printing the con-
tents of the lines you’re editing. Most people are
familiar with p, in combinations like

1,$p

to print all the lines you’re editing, or

s/abc/def/p

to change ‘abc’ to ‘def’ on the current line. Less
familiar is thelist commandl (the letter ‘l ’), which
gives slightly more information thanp. In particu-
lar, l makes visible characters that are normally
invisible, such as tabs and backspaces. If you list a
line that contains some of these,l will print each
tab as−> and each backspace as−<. This makes it
much easier to correct the sort of typing mistake
that inserts extra spaces adjacent to tabs, or inserts
a backspace followed by a space.
The l command also ‘folds’ long lines for printing
— any line that exceeds 72 characters is printed on
multiple lines; each printed line except the last is
terminated by a backslash\\, so you can tell it was
folded. This is useful for printing long lines on
short terminals.
Occasionally thel command will print in a line a
string of numbers preceded by a backslash, such as
\\07 or \\16. These combinations are used to make
visible characters that normally don’t print, like
form feed or vertical tab or bell. Each such combi-
nation is a single character. When you see such
characters, be wary — they may have surprising
meanings when printed on some terminals. Often
their presence means that your finger slipped while
you were typing; you almost never want them.

The Substitute Command ‘s’
Most of the next few sections will be taken up
with a discussion of the substitute commands.
Since this is the command for changing the con-
tents of individual lines, it probably has the most
complexity of anyed command, and the most
potential for effective use.
As the simplest place to begin, recall the meaning
of a trailingg after a substitute command. With

s/this/that/

−− −−

- 2 -

and

s/this/that/g

the first one replaces thefirst ‘this’ on the line with
‘that’. If there is more than one ‘this’ on the line,
the second form with the trailingg changesall of
them.
Either form of thes command can be followed by
p or l to ‘print’ or ‘list’ (as described in the previ-
ous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.
Of course, anys command can be preceded by
one or two ‘line numbers’ to specify that the sub-
stitution is to take place on a group of lines. Thus

1,$s/mispell/misspell/

changes thefirst occurrence of ‘mispell’ to ‘mis-
spell’ on every line of the file. But

1,$s/mispell/misspell/g

changeseveryoccurrence in every line (and this is
more likely to be what you wanted in this particu-
lar case).
You should also notice that if you add ap or l to
the end of any of these substitute commands, only
the last line that got changed will be printed, not
all the lines. We will talk later about how to print
all the lines that were modified.

The Undo Command ‘u’
Occasionally you will make a substitution in a
line, only to realize too late that it was a ghastly
mistake. The ‘undo’ commandu lets you ‘undo’
the last substitution: the last line that was substi-
tuted can be restored to its previous state by typing
the command

u

The Metacharacter ‘.’
As you have undoubtedly noticed when you use
ed, certain characters have unexpected meanings
when they occur in the left side of a substitute
command, or in a search for a particular line. In
the next several sections, we will talk about these
special characters, which are often called
‘metacharacters’.
The first one is the period ‘.’. On the left side of a

substitute command, or in a search with ‘/.../’, ‘.’
stands foranysingle character. Thus the search

/x.y/

finds any line where ‘x’ and ‘y’ occur separated by

a single character, as in

x+y
x−y
x y
x.y

and so on. (We will use to stand for a space
whenever we need to make it visible.)
Since ‘.’ matches a single character, that gives you
a way to deal with funny characters printed byl.
Suppose you have a line that, when printed with
the l command, appears as

.... th\\07is

and you want to get rid of the \\07 (which repre-
sents the bell character, by the way).
The most obvious solution is to try

s/\\07//

but this will fail. (Try it.) The brute force solution,
which most people would now take, is to re-type
the entire line. This is guaranteed, and is actually
quite a reasonable tactic if the line in question isn’t
too big, but for a very long line, re-typing is a bore.
This is where the metacharacter ‘.’ comes in
handy. Since ‘\\07’ really represents a single char-
acter, if we say

s/th.is/this/

the job is done. The ‘.’ matches the mysterious
character between the ‘h’ and the ‘i’,whatever it
is.
Bear in mind that since ‘.’ matches any single

character, the command

s/./,/

converts the first character on a line into a ‘,’,
which very often is not what you intended.
As is true of many characters ined, the ‘.’ has

several meanings, depending on its context. This
line shows all three:

.s/././

The first ‘.’ is a line number, the number of the
line we are editing, which is called ‘line dot’. (We
will discuss line dot more in Section 3.) The sec-
ond ‘.’ is a metacharacter that matches any single
character on that line. The third ‘.’ is the only one
that really is an honest literal period. On theright
side of a substitution, ‘.’ is not special. If you
apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

-- --

- 3 -

The Backslash ‘\\’
Since a period means ‘any character’, the question
naturally arises of what to do when you really want
a period. For example, how do you convert the
line

Now is the time.

into

Now is the time?

The backslash ‘\\’ does the job. A backslash turns
off any special meaning that the next character
might have; in particular, ‘\\.’ converts the ‘.’ from
a ‘match anything’ into a period, so you can use it
to replace the period in

Now is the time.

like this:

s/\\./?/

The pair of characters ‘\\.’ is considered byed to be
a single real period.
The backslash can also be used when searching
for lines that contain a special character. Suppose
you are looking for a line that contains

.PP

The search

/.PP/

isn’t adequate, for it will find a line like

THE APPLICATION OF ...

because the ‘.’ matches the letter ‘A’. But if you
say

/\\.PP/

you will find only lines that contain ‘.PP’.
The backslash can also be used to turn off special
meanings for characters other than ‘.’. For exam-
ple, consider finding a line that contains a back-
slash. The search

/\\/

won’t work, because the ‘\\’ isn’t a literal ‘\\’, but
instead means that the second ‘/’ no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal back-
slash. Thus

/\\\\/

does work. Similarly, you can search for a forward
slash ‘/’ with

/\\//

The backslash turns off the meaning of the imme-
diately following ‘/’ so that it doesn’t terminate the
/.../ construction prematurely.

As an exercise, before reading further, find two
substitute commands each of which will convert
the line

\\x\\.\\y

into the line

\\x\\y

Here are several solutions; verify that each works
as advertised.

s/\\\\\\.//
s/x../x/
s/..y/y/

A couple of miscellaneous notes about back-
slashes and special characters. First, you can use
any character to delimit the pieces of ans com-
mand: there is nothing sacred about slashes. (But
you must use slashes for context searching.) For
instance, in a line that contains a lot of slashes
already, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter — to delete
all the slashes, type

s:/::g

Second, if # and @ are your character erase and
line kill characters, you have to type \\# and \\@;
this is true whether you’re talking toed or any
other program.
When you are adding text witha or i or c, back-

slash is not special, and you should only put in one
backslash for each one you really want.

The Dollar Sign ‘$’
The next metacharacter, the ‘$’, stands for ‘the
end of the line’. As its most obvious use, suppose
you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the $ like this:

s/$/ time/

to get

Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime

As another example, replace the second comma in
the following line with a period without altering
the first:

Now is the time, for all good men,

The command needed is

s/,$/./

−− −−

- 4 -

The $ sign here provides context to make specific
which comma we mean. Without it, of course, the
s command would operate on the first comma to
produce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

s/.$/?/

Like ‘ .’, the ‘$’ has multiple meanings depending
on context. In the line

$s/$/$/

the first ‘$’ refers to the last line of the file, the sec-
ond refers to the end of that line, and the third is a
literal dollar sign, to be added to that line.

The Circumflex ‘ˆ’
The circumflex (or hat or caret) ‘ˆ’ stands for the
beginning of the line. For example, suppose you
are looking for a line that begins with ‘the’. If you
simply say

/the/

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/ˆthe/

you narrow the context, and thus arrive at the
desired one more easily.
The other use of ‘ˆ’ is of course to enable you to
insert something at the beginning of a line:

s/ˆ/ /

places a space at the beginning of the current line.
Metacharacters can be combined. To search for a
line that containsonly the characters

.PP

you can use the command

/ˆ\\.PP$/

The Star ‘∗’
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are
some indeterminate number of spaces between the
x and they. Suppose the job is to replace all the
spaces betweenx andy by a single space. The line
is too long to retype, and there are too many spaces

to count. What now?
This is where the metacharacter ‘∗’ comes in
handy. A character followed by a star stands for as
many consecutive occurrences of that character as
possible. To refer to all the spaces at once, say

s/x ∗y/x y/

The construction ‘∗’ means ‘as many spaces as
possible’. Thus‘x ∗y’ means ‘an x, as many
spaces as possible, then a y’.
The star can be used with any character, not just
space. If the original example was instead

text x−−−−−−−−y text

then all ‘−’ signs can be replaced by a single space
with the command

s/x−∗y/x y/

Finally, suppose that the line was

text x..................y text

Can you see what trap lies in wait for the unwary?
If you blindly type

s/x.∗y/x y/

what will happen? The answer, naturally, is that it
depends. If there are no other x’s or y’s on the
line, then everything works, but it’s blind luck, not
good management. Remember that ‘.’ matches
any single character? Then ‘.∗’ matches as many
single characters as possible, and unless you’re
careful, it can eat up a lot more of the line than you
expected. If the line was, for example, like this:

text x text x................y text y text

then saying

s/x.∗y/x y/

will take everything from thefirst ‘x’ to the last
‘y’, which, in this example, is undoubtedly more
than you wanted.
The solution, of course, is to turn off the special
meaning of ‘.’ with ‘\\.’:

s/x\\.∗y/x y/

Now everything works, for ‘\\.∗’ means ‘as many
periodsas possible’.
There are times when the pattern ‘.∗’ is exactly
what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use ‘.∗’ to eat up everything after the ‘for’:

s/ for.∗/./

There are a couple of additional pitfalls associated
with ‘∗’ that you should be aware of. Most notable

-- --

- 5 -

is the fact that ‘as many as possible’ meanszeroor
more. The fact that zero is a legitimate possibility
is sometimes rather surprising. For example, if our
line contained

text xy text x y text

and we said

s/x ∗y/x y/

thefirst ‘xy’ matches this pattern, for it consists of
an ‘x’, zero spaces, and a ‘y’. The result is that the
substitute acts on the first ‘xy’, and does not touch
the later one that actually contains some interven-
ing spaces.
The way around this, if it matters, is to specify a
pattern like

/x ∗y/

which says ‘an x, a space, then as many more
spaces as possible, then a y’, in other words, one or
more spaces.
The other startling behavior of ‘∗’ is again related
to the fact that zero is a legitimate number of
occurrences of something followed by a star. The
command

s/x∗/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a legal
number of matches, and there are no x’s at the
beginning of the line (so that gets converted into a
‘y’), nor between the ‘a’ and the ‘b’ (so that gets
converted into a ‘y’), nor ... and so on. Make sure
you really want zero matches; if not, in this case
write

s/xx∗/y/g

‘xx∗’ is one or more x’s.

The Brackets ‘[]’
Suppose that you want to delete any numbers that
appear at the beginning of all lines of a file. You
might first think of trying a series of commands
like

1,$s/ˆ1∗//
1,$s/ˆ2∗//
1,$s/ˆ3∗//

and so on, but this is clearly going to take forever
if the numbers are at all long. Unless you want to
repeat the commands over and over until finally all
numbers are gone, you must get all the digits on
one pass. This is the purpose of the brackets [and

].
The construction

[0123456789]

matches any single digit — the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘[0123456789]∗’
matches zero or more digits (an entire number), so

1,$s/ˆ[0123456789]∗//

deletes all digits from the beginning of all lines.
Any characters can appear within a character
class, and just to confuse the issue there are essen-
tially no special characters inside the brackets;
ev en the backslash doesn’t hav e a special meaning.
To search for special characters, for example, you
can say

/[.\\$ˆ[]/

Within [...], the ‘[’ is not special. To get a ‘]’ into
a character class, make it the first character.
It’s a nuisance to have to spell out the digits, so
you can abbreviate them as [0−9]; similarly, [a−z]
stands for the lower case letters, and [A−Z] for
upper case.
As a final frill on character classes, you can spec-
ify a class that means ‘none of the following char-
acters’. This is done by beginning the class with a
‘ˆ’:

[ˆ0−9]

stands for ‘any characterexcepta digit’. Thus you
might find the first line that doesn’t begin with a
tab or space by a search like

/ˆ[ˆ(space)(tab)]/

Within a character class, the circumflex has a spe-
cial meaning only if it occurs at the beginning.
Just to convince yourself, verify that

/ˆ[ˆˆ]/

finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’
The ampersand ‘&’ is used primarily to save typ-
ing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the ‘the’. The
‘&’ is used to eliminate the repetition. On the
right side of a substitute, the ampersand means
‘whatever was just matched’, so you can say

s/the/& best/

−− −−

- 6 -

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is just
‘the’, but if it is something truly long or awful, or
if it is something like ‘.∗’ which matches a lot of
text, you can save some tedious typing. There is
also much less chance of making a typing error in
the replacement text. For example, to parenthesize
a line, regardless of its length,

s/.∗/(&)/

The ampersand can occur more than once on the
right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.∗/&? &!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the backslash
is used to turn off the special meaning:

s/ampersand/\\&/

converts the word into the symbol. Notice that ‘&’
is not special on the left side of a substitute, only
on theright side.

Substituting Newlines
ed provides a facility for splitting a single line
into two or more shorter lines by ‘substituting in a
newline’. As the simplest example, suppose a line
has gotten unmanageably long because of editing
(or merely because it was unwisely typed). If it
looks like

text xy text

you can break it between the ‘x’ and the ‘y’ like
this:

s/xy/x\\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\\’ turns
off special meanings, it seems relatively intuitive
that a ‘\\’ at the end of a line would make the new-
line there no longer special.
You can in fact make a single line into several
lines with this same mechanism. As a large exam-
ple, consider underlining the word ‘very’ in a long
line by splitting ‘very’ onto a separate line, and
preceding it by theroff or nroff formatting com-
mand ‘.ul’.

text a very big text

The command

s/ very /\\
.ul\\
very\\
/

converts the line into four shorter lines, preceding
the word ‘very’ by the line ‘.ul’, and eliminating
the spaces around the ‘very’, all at the same time.
When a newline is substituted in, dot is left point-
ing at the last line created.

Joining Lines
Lines may also be joined together, but this is done
with thej command instead ofs. Giv en the lines

Now is
the time

and supposing that dot is set to the first of them,
then the command

j

joins them together. No blanks are added, which is
why we carefully showed a blank at the beginning
of the second line.
All by itself, a j command joins line dot to line
dot+1, but any contiguous set of lines can be
joined. Just specify the starting and ending line
numbers. For example,

1,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \\(... \\)
(This section should be skipped on first reading.)
Recall that ‘&’ is a shorthand that stands for what-
ev er was matched by the left side of ans com-
mand. In much the same way you can capture sep-
arate pieces of what was matched; the only differ-
ence is that you have to specify on the left side just
what pieces you’re interested in.
Suppose, for instance, that you have a file of lines
that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)
The alternative is to ‘tag’ the pieces of the pattern
(in this case, the last name, and the initials), and
then rearrange the pieces. On the left side of a
substitution, if part of the pattern is enclosed
between \\(and \\), whatever matched that part is
remembered, and available for use on the right

-- --

- 7 -

side. On the right side, the symbol ‘\\1’ refers to
whatever matched the first \\(...\\) pair, ‘\\2’ to the
second \\(...\\), and so on.
The command

1,$s/ˆ\\([ˆ,]∗\\), ∗\\(.∗\\)/\\2 \\1/

although hard to read, does the job. The first \\(...\\)
matches the last name, which is any string up to
the comma; this is referred to on the right side with
‘\\1’. The second \\(...\\) is whatever follows the
comma and any spaces, and is referred to as ‘\\2’.
Of course, with any editing sequence this compli-
cated, it’s foolhardy to simply run it and hope.
The global commandsg andv discussed in section
4 provide a way for you to print exactly those lines
which were affected by the substitute command,
and thus verify that it did what you wanted in all
cases.

3. LINE ADDRESSING IN THE EDITOR
The next general area we will discuss is that of
line addressing ined, that is, how you specify what
lines are to be affected by editing commands. We
have already used constructions like

1,$s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single newline
(or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

?thing?

to scanbackwardsfor the previous occurrence of
‘thing’. This is especially handy when you realize
that the thing you want to operate on is back up the
page from where you are currently editing.
The slash and question mark are the only charac-
ters you can use to delimit a context search, though
you can use essentially any character in a substi-
tute command.

Address Arithmetic
The next step is to combine the line numbers like
‘ .’, ‘$’, ‘/.../’ and ‘?...?’ with ‘+’ and ‘−’. Thus

$−1

is a command to print the next to last line of the
current file (that is, one line before line ‘$’). For
example, to recall how far you got in a previous
editing session,

$−5,$p

prints the last six lines. (Be sure you understand
why it’s six, not five.) If there aren’t six, of
course, you’ll get an error message.

As another example,

.−3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you a
bit of context. By the way, the ‘+’ can be omitted:

.−3,.3p

is absolutely identical in meaning.
Another area in which you can save typing effort
in specifying lines is to use ‘−’ and ‘+’ as line
numbers by themselves.

−

by itself is a command to move back up one line in
the file. In fact, you can string several minus signs
together to move back up that many lines:

−−−

moves up three lines, as does ‘−3’. Thus

−3,+3p

is also identical to the examples above.
Since ‘−’ is shorter than ‘.−1’, constructions like

−,.s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.
‘+’ and ‘−’ can be used in combination with
searches using ‘/.../’ and ‘?...?’, and with ‘$’. The
search

/thing/−−

finds the line containing ‘thing’, and positions you
two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don’t
have to re-type the search, for the construction

//

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can also
go backwards:

??

searches for the same thing, but in the reverse
direction.
Not only can you repeat the search, but you can
use ‘//’ as the left side of a substitute command, to
mean ‘the most recent pattern’.

/horrible thing/
.... ed prints line with ‘horrible thing’ ...

−− −−

- 8 -

s//good/p

To go backwards and change a line, say

??s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever got
matched:

//s//& &/p

finds the next occurrence of whatever you searched
for last, replaces it by two copies of itself, then
prints the line just to verify that it worked.

Default Line Numbers and the Value of Dot
One of the most effective ways to speed up your
editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a command
finishes. If you can edit without specifying unnec-
essary line numbers, you can save a lot of typing.
As the most obvious example, if you issue a
search command like

/thing/

you are left pointing at the next line that contains
‘thing’. Then no address is required with com-
mands likes to make a substitution on that line, or
p to print it, or l to list it, or d to delete it, ora to
append text after it, orc to change it, ori to insert
text before it.
What happens if there was no ‘thing’? Then you
are left right where you were — dot is unchanged.
This is also true if you were sitting on the only
‘thing’ when you issued the command. The same
rules hold for searches that use ‘?...?’; the only dif-
ference is the direction in which you search.
The delete commandd leaves dot pointing at the
line that followed the last deleted line. When line
‘$’ gets deleted, however, dot points at thenewline
‘$’.
The line-changing commandsa, c andi by default
all affect the current line — if you give no line
number with them,a appends text after the current
line, c changes the current line, andi inserts text
before the current line.
a, c, and i behave identically in one respect —
when you stop appending, changing or inserting,
dot points at the last line entered. This is exactly
what you want for typing and editing on the fly.
For example, you can say

a
... text ...
... botch ... (minor error)
.
s/botch/correct/ (fix botched line)
a
... more text ...

without specifying any line number for the substi-
tute command or for the second append command.
Or you can say

a
... text ...
... horrible botch ... (major error)
.
c (replace entire line)
... fixed up line ...

You should experiment to determine what hap-
pens if you addno lines witha, c or i.
The r command will read a file into the text being
edited, either at the end if you give no address, or
after the specified line if you do. In either case,
dot points at the last line read in. Remember that
you can even say0r to read a file in at the begin-
ning of the text. (You can also say0a or 1i to start
adding text at the beginning.)
The w command writes out the entire file. If you
precede the command by one line number, that line
is written, while if you precede it by two line num-
bers, that range of lines is written. Thew com-
mand doesnot change dot: the current line remains
the same, regardless of what lines are written.
This is true even if you say something like

/ˆ\\.AB/,/ˆ\\.AE/w abstract

which involves a context search.
Since thew command is so easy to use, you
should save what you are editing regularly as you
go along just in case the system crashes, or in case
you do something foolish, like clobbering what
you’re editing.
The least intuitive behavior, in a sense, is that of
thes command. The rule is simple — you are left
sitting on the last line that got changed. If there
were no changes, then dot is unchanged.
To illustrate, suppose that there are three lines in
the buffer, and you are sitting on the middle one:

x1
x2
x3

Then the command

−,+s/x/y/p

prints the third line, which is the last one changed.
But if the three lines had been

x1
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would be
to change and print only the first line, and that is
where dot would be set.

-- --

- 9 -

Semicolon ‘;’
Searches with ‘/.../’ and ‘?...?’ start at the current
line and move forward or backward respectively
until they either find the pattern or get back to the
current line. Sometimes this is not what is wanted.
Suppose, for example, that the buffer contains lines
like this:

.

.

.
ab
.
.
.
bc
.
.

Starting at line 1, one would expect that the com-
mand

/a/,/b/p

prints all the lines from the ‘ab’ to the ‘bc’ inclu-
sive. Actually this is not what happens.Both
searches (for ‘a’ and for ‘b’) start from the same
point, and thus they both find the line that contains
‘ab’. The result is to print a single line. Worse, if
there had been a line with a ‘b’ in it before the ‘ab’
line, then the print command would be in error,
since the second line number would be less than
the first, and it is illegal to try to print lines in
reverse order.
This is because the comma separator for line num-
bers doesn’t set dot as each address is processed;
each search starts from the same place. Ined, the
semicolon ‘;’ can be used just like comma, with
the single difference that use of a semicolon forces
dot to be set at that point as the line numbers are
being evaluated. In effect, the semicolon ‘moves’
dot. Thus in our example above, the command

/a/;/b/p

prints the range of lines from ‘ab’ to ‘bc’, because
after the ‘a’ is found, dot is set to that line, and
then ‘b’ is searched for, starting beyond that line.
This property is most often useful in a very simple
situation. Suppose you want to find thesecond
occurrence of ‘thing’. You could say

/thing/
//

but this prints the first occurrence as well as the
second, and is a nuisance when you know very
well that it is only the second one you’re interested
in. The solution is to say

/thing/;//

This says to find the first occurrence of ‘thing’, set
dot to that line, then find the second and print only

that.
Closely related is searching for the second previ-
ous occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direction
is left as an exercise.
Finally, bear in mind that if you want to find the
first occurrence of something in a file, starting at
an arbitrary place within the file, it is not sufficient
to say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But it
is possible to say

0;/thing/

(one of the few places where 0 is a legal line num-
ber), for this starts the search at line 1.

Interrupting the Editor
As a final note on what dot gets set to, you should
be aware that if you hit the interrupt or delete or
rubout or break key whileed is doing a command,
things are put back together again and your state is
restored as much as possible to what it was before
the command began. Naturally, some changes are
irrevocable — if you are reading or writing a file
or making substitutions or deleting lines, these will
be stopped in some clean but unpredictable state in
the middle (which is why it is not usually wise to
stop them). Dot may or may not be changed.
Printing is more clear cut. Dot is not changed
until the printing is done. Thus if you print until
you see an interesting line, then hit delete, you are
not sitting on that line or even near it. Dot is left
where it was when thep command was started.

4. GLOBAL COMMANDS
The global commandsg andv are used to perform
one or more editing commands on all lines that
either contain (g) or don’t contain (v) a specified
pattern.
As the simplest example, the command

g/UNIX/p

prints all lines that contain the word ‘UNIX’. The
pattern that goes between the slashes can be any-
thing that could be used in a line search or in a
substitute command; exactly the same rules and
limitations apply.
As another example, then,

g/ˆ\\./p

prints all the formatting commands in a file (lines
that begin with ‘.’).
The v command is identical tog, except that it
operates on those line that donot contain an occur-
rence of the pattern. (Don’t look too hard for

-- --

- 10 -

mnemonic significance to the letter ‘v’.) So

v/ˆ\\./p

prints all the lines that don’t begin with ‘.’ — the
actual text lines.
The command that followsg or v can be anything:

g/ˆ\\./d

deletes all lines that begin with ‘.’, and

g/ˆ$/d

deletes all empty lines.
Probably the most useful command that can fol-
low a global is the substitute command, for this
can be used to make a change and print each
affected line for verification. For example, we
could change the word ‘Unix’ to ‘UNIX’ every-
where, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//’ in the substitute command
to mean ‘the previous pattern’, in this case, ‘Unix’.
Thep command is done on every line that matches
the pattern, not just those on which a substitution
took place.
The global command operates by making two
passes over the file. On the first pass, all lines that
match the pattern are marked. On the second pass,
each marked line in turn is examined, dot is set to
that line, and the command executed. This means
that it is possible for the command that follows ag
or v to use addresses, set dot, and so on, quite
freely.

g/ˆ\\.PP/+

prints the line that follows each ‘.PP’ command
(the signal for a new paragraph in some formatting
packages). Remember that ‘+’ means ‘one line
past dot’. And

g/topic/?ˆ\\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’ (a
section heading) and prints the line that follows
that, thus showing the section headings under
which ‘topic’ is mentioned. Finally,

g/ˆ\\.EQ/+,/ˆ\\.EN/−p

prints all the lines that lie between lines beginning
with ‘.EQ’ and ‘.EN’ formatting commands.
The g and v commands can also be preceded by

line numbers, in which case the lines searched are
only those in the range specified.

Multi-line Global Commands
It is possible to do more than one command under
the control of a global command, although the syn-
tax for expressing the operation is not especially
natural or pleasant. As an example, suppose the

task is to change ‘x’ to ‘y’ and ‘a’ to ‘b’ on all
lines that contain ‘thing’. Then

g/thing/s/x/y/\\
s/a/b/

is sufficient. The ‘\\’ signals theg command that
the set of commands continues on the next line; it
terminates on the first line that does not end with
‘\\’. (As a minor blemish, you can’t use a substitute
command to insert a newline within ag com-
mand.)
You should watch out for this problem: the com-
mand

g/x/s//y/\\
s/a/b/

does not work as you expect. The remembered
pattern is the last pattern that was actually
executed, so sometimes it will be ‘x’ (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/x/s/x/y/\\
s/a/b/

It is also possible to executea, c and i commands
under a global command; as with other multi-line
constructions, all that is needed is to add a ‘\\’ at
the end of each line except the last. Thus to add a
‘.nf ’ and ‘.sp’ command before each ‘.EQ’ line,
type

g/ˆ\\.EQ/i\\
.nf\\
.sp

There is no need for a final line containing a ‘.’ to
terminate thei command, unless there are further
commands being done under the global. On the
other hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COM-
MANDS
One editing area in which non-programmers seem
not very confident is in what might be called ‘cut
and paste’ operations — changing the name of a
file, making a copy of a file somewhere else, mov-
ing a few lines from one place to another in a file,
inserting one file in the middle of another, splitting
a file into pieces, and splicing two or more files
together.
Yet most of these operations are actually quite
easy, if you keep your wits about you and go cau-
tiously. The next several sections talk about cut
and paste. We will begin with theUNIX commands
for moving entire files around, then discussed
commands for operating on pieces of files.

-- --

- 11 -

Changing the Name of a File
You hav e a file named ‘memo’ and you want it to
be called ‘paper’ instead. How is it done?
The UNIX program that renames files is calledmv
(for ‘move’); it ‘moves’ the file from one name to
another, like this:

mv memo paper

That’s all there is to it:mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can’t move a file to
itself —

mv x x

is illegal.

Making a Copy of a File
Sometimes what you want is a copy of a file — an
entirely fresh version. This might be because you
want to work on a file, and yet save a copy in case
something gets fouled up, or just because you’re
paranoid.
In any case, the way to do it is with thecp com-
mand. (cp stands for ‘copy’; the system is big on
short command names, which are appreciated by
heavy users, but sometimes a strain for novices.)
Suppose you have a file called ‘good’ and you
want to save a copy before you make some dra-
matic editing changes. Choose a name —
‘savegood’ might be acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it gets
overwritten.)
Now if you decide at some time that you want to
get back to the original state of ‘good’, you can say

mv savegood good

(if you’re not interested in ‘savegood’ any more),
or

cp savegood good

if you still want to retain a safe copy.
In summary,mv just renames a file;cp makes a
duplicate copy. Both of them clobber the ‘target’
file if it already exists, so you had better be sure
that’s what you want to dobeforeyou do it.

Removing a File
If you decide you are really done with a file for-
ev er, you can remove itwith therm command:

rm savegood

throws away (irrevocably) the file called
‘savegood’.

Putting Two or More Files Together
The next step is the familiar one of collecting two
or more files into one big one. This will be
needed, for example, when the author of a paper
decides that several sections need to be combined
into one. There are several ways to do it, of which
the cleanest, once you get used to it, is a program
called cat. (Not all programs have two-letter
names.) cat is short for ‘concatenate’, which is
exactly what we want to do.
Suppose the job is to combine the files ‘file1’ and
‘file2’ into a single file called ‘bigfile’. If you say

cat file

the contents of ‘file’ will get printed on your termi-
nal. If you say

cat file1 file2

the contents of ‘file1’ and then the contents of
‘file2’ will bothbe printed on your terminal, in that
order. Socat combines the files, all right, but it’s
not much help to print them on the terminal — we
want them in ‘bigfile’.
Fortunately, there is a way. You can tell the sys-
tem that instead of printing on your terminal, you
want the same information put in a file. The way
to do it is to add to the command line the character
> and the name of the file where you want the out-
put to go. Then you can say

cat file1 file2 >bigfile

and the job is done. (As withcp and mv, you’re
putting something into ‘bigfile’, and anything that
was already there is destroyed.)
This ability to ‘capture’ the output of a program is
one of the most useful aspects of the system. For-
tunately it’s not limited to thecat program — you
can use it withanyprogram that prints on your ter-
minal. We’ll see some more uses for it in a
moment.
Naturally, you can combine several files, not just
two:

cat file1 file2 file3 ... >bigfile

collects a whole bunch.
Question: is there any difference between

cp good savegood

and

cat good >savegood

−− −−

- 12 -

Answer: for most purposes, no. You might reason-
ably ask why there are two programs in that case,
sincecat is obviously all you need. The answer is
that cp will do some other things as well, which
you can investigate for yourself by reading the
manual. For now we’ll stick to simple usages.

Adding Something to the End of a File
Sometimes you want to add one file to the end of
another. We hav e enough building blocks now that
you can do it; in fact before reading further it
would be valuable if you figured out how. To be
specific, how would you usecp, mv and/orcat to
add the file ‘good1’ to the end of the file ‘good’?
You could try

cat good good1 >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good1 >good

doesn’t work. (Don’t practice with a good
‘good’!)
The easy way is to use a variant of>, called>>.
In fact, >> is identical to> except that instead of
clobbering the old file, it simply tacks stuff on at
the end. Thus you could say

cat good1 >>good

and ‘good1’ is added to the end of ‘good’. (And if
‘good’ didn’t exist, this makes a copy of ‘good1’
called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR
Now we move on tomanipulating pieces of files
— individual lines or groups of lines. This is
another area where new users seem unsure of
themselves.

Filenames
The first step is to ensure that you know theed
commands for reading and writing files. Of course
you can’t go very far without knowingr and w.
Equally useful, but less well known, is the ‘edit’
commande. Within ed, the command

e newfile

says ‘I want to edit a new file callednewfile,with-
out leaving the editor.’ Thee command discards
whatever you’re currently working on and starts
over onnewfile. It’s exactly the same as if you had
quit with theq command, then re-entereded with
a new file name, except that if you have a pattern
remembered, then a command like// will still
work.
If you enteredwith the command

ed file

ed remembers the name of the file, and any subse-
quente, r or w commands that don’t contain a file-
name will refer to this remembered file. Thus

ed file1
... (editing) ...
w (writes back in file1)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...
w (writes back on file2)

(and so on) does a series of edits on various files
without ever leavinged and without typing the
name of any file more than once. (As an aside, if
you examine the sequence of commands here, you
can see why many UNIX systems usee as a syn-
onym fored.)
You can find out the remembered file name at any
time with thef command; just typef without a file
name. You can also change the name of the
remembered file name withf; a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then usesf to
guarantee that a carelessw command won’t clob-
ber the original.

Inserting One File into Another
Suppose you have a file called ‘memo’, and you
want the file called ‘table’ to be inserted just after
the reference to Table 1. That is, in ‘memo’ some-
where is a line that says
Table 1 shows that ...
and the data contained in ‘table’ has to go there,
probably so it will be formatted properly bynroff
or troff . Now what?
This one is easy. Edit ‘memo’, find ‘Table 1’, and
add the file ‘table’ right there:

ed memo
/Table 1/
Table 1 shows that ... [response from ed]
.r table

The critical line is the last one. As we said earlier,
ther command reads a file; here you asked for it to
be read in right after line dot. Anr command
without any address adds lines at the end, so it is
the same as$r.

Writing out Part of a File
The other side of the coin is writing out part of the
document you’re editing. For example, maybe you
want to split out into a separate file that table from
the previous example, so it can be formatted and
tested separately. Suppose that in the file being
edited we have

.TS
...[lots of stuff]

−− −−

- 13 -

.TE

which is the way a table is set up for thetbl pro-
gram. To isolate the table in a separate file called
‘table’, first find the start of the table (the ‘.TS’
line), then write out the interesting part:

/ˆ\\.TS/
.TS [ed prints the line it found]
.,/ˆ\\.TE/w table

and the job is done. If you are confident, you can
do it all at once with

/ˆ\\.TS/;/ˆ\\.TE/w table

The point is that thew command can write out a
group of lines, instead of the whole file. In fact,
you can write out a single line if you like; just give
one line number instead of two. For example, if
you have just typed a horribly complicated line and
you know that it (or something like it) is going to
be needed later, then save it — don’t re-type it. In
the editor, say

a
...lots of stuff...
...horrible line...
.
.w temp
a
...more stuff...
.
.r temp
a
...more stuff...
.

This last example is worth studying, to be sure you
appreciate what’s going on.

Moving Lines Around
Suppose you want to move a paragraph from its
present position in a paper to the end. How would
you do it? As a concrete example, suppose each
paragraph in the paper begins with the formatting
command ‘.PP’. Think about it and write down
the details before reading on.
The brute force way (not necessarily bad) is to
write the paragraph onto a temporary file, delete it
from its current position, then read in the tempo-
rary file at the end. Assuming that you are sitting
on the ‘.PP’ command that begins the paragraph,
this is the sequence of commands:

.,/ˆ\\.PP/−w temp

.,//−d
$r temp

That is, from where you are now (‘.’) until one
line before the next ‘.PP’ (‘/ˆ\\.PP/−’) write onto
‘temp’. Then delete the same lines. Finally, read
‘temp’ at the end.

As we said, that’s the brute force way. The easier
way (often) is to use themovecommandm thated
provides — it lets you do the whole set of opera-
tions at one crack, without any temporary file.
Them command is like many othered commands
in that it takes up to two line numbers in front that
tell what lines are to be affected. It is alsofol-
lowed by a line number that tells where the lines
are to go. Thus

line1, line2 m line3

says to move all the lines between ‘line1’ and
‘line2’ after ‘line3’. Naturally, any of ‘line1’ etc.,
can be patterns between slashes, $ signs, or other
ways to specify lines.
Suppose again that you’re sitting at the first line of
the paragraph. Then you can say

.,/ˆ\\.PP/−m$

That’s all.
As another example of a frequent operation, you
can reverse the order of two adjacent lines by mov-
ing the first one to after the second. Suppose that
you are positioned at the first. Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the second
line,

m−−

does the interchange.
As you can see, them command is more succinct
and direct than writing, deleting and re-reading.
When is brute force better anyway? This is a mat-
ter of personal taste — do what you have most
confidence in. The main difficulty with them
command is that if you use patterns to specify both
the lines you are moving and the target, you have
to take care that you specify them properly, or you
may well not move the lines you thought you did.
The result of a botchedm command can be a
ghastly mess. Doing the job a step at a time makes
it easier for you to verify at each step that you
accomplished what you wanted to. It’s also a good
idea to issue aw command before doing anything
complicated; then if you goof, it’s easy to back up
to where you were.

Marks
ed provides a facility for marking a line with a
particular name so you can later reference it by
name regardless of its actual line number. This can
be handy for moving lines, and for keeping track
of them as they move. Themark command isk;
the command

kx

marks the current line with the name ‘x’. If a line

-- --

- 14 -

number precedes thek, that line is marked. (The
mark name must be a single lower case letter.)
Now you can refer to the marked line with the
address

′x

Marks are most useful for moving things around.
Find the first line of the block to be moved, and
mark it with ′a. Then find the last line and mark it
with ′b. Now position yourself at the place where
the stuff is to go and say

′a,′bm.

Bear in mind that only one line can have a particu-
lar mark name associated with it at any giv en time.

Copying Lines
We mentioned earlier the idea of saving a line that
was hard to type or used often, so as to cut down
on typing time. Of course this could be more than
one line; then the saving is presumably even
greater.
ed provides another command, calledt (for ‘trans-
fer’) for making a copy of a group of one or more
lines at any point. This is often easier than writing
and reading.
The t command is identical to them command,
except that instead of moving lines it simply dupli-
cates them at the place you named. Thus

1,t

duplicates the entire contents that you are editing.
A more common use fort is for creating a series of
lines that differ only slightly. For example, you
can say

a
.......... x (long line)
.
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

and so on.

The Temporary Escape ‘!’
Sometimes it is convenient to be able to temporar-
ily escape from the editor to do some otherUNIX

command, perhaps one of the file copy or move
commands discussed in section 5, without leaving
the editor. The ‘escape’ command! provides a
way to do this.
If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes,ed will signal you by print-
ing another!; at that point you can resume editing.

You can really doany UNIX command, including
anothered. (This is quite common, in fact.) In
this case, you can even do another!.

7. SUPPORTING TOOLS
There are several tools and techniques that go
along with the editor, all of which are relatively
easy once you know howed works, because they
are all based on the editor. In this section we will
give some fairly cursory examples of these tools,
more to indicate their existence than to provide a
complete tutorial. More information on each can
be found in [3].

Grep
Sometimes you want to find all occurrences of
some word or pattern in a set of files, to edit them
or perhaps just to verify their presence or absence.
It may be possible to edit each file separately and
look for the pattern of interest, but if there are
many files this can get very tedious, and if the files
are really big, it may be impossible because of lim-
its in ed.
The programgrep was inv ented to get around
these limitations. The search patterns that we have
described in the paper are often called ‘regular
expressions’, and ‘grep’ stands for

g/re/p

That describes exactly whatgrep does — it prints
ev ery line in a set of files that contains a particular
pattern. Thus

grep ′thing′ file1 file2 file3 ...

finds ‘thing’ wherever it occurs in any of the files
‘file1’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.
The pattern represented by ‘thing’ can be any pat-
tern you can use in the editor, sincegrep and ed
use exactly the same mechanism for pattern
searching. It is wisest always to enclose the pat-
tern in the single quotes′...′ if it contains any non-
alphabetic characters, since many such characters
also mean something special to theUNIX command
interpreter (the ‘shell’). If you don’t quote them,
the command interpreter will try to interpret them
beforegrep gets a chance.
There is also a way to find lines thatdon’t contain
a pattern:

grep −v ′thing′ file1 file2 ...

finds all lines that don’t contains ‘thing’. The−v
must occur in the position shown. Givengrep and
grep −v, it is possible to do things like selecting all
lines that contain some combination of patterns.
For example, to get all lines that contain ‘x’ but not
‘y’:

grep x file... | grep −v y

−− −−

- 15 -

(The notation | is a ‘pipe’, which causes the output
of the first command to be used as input to the sec-
ond command; see [2].)

Editing Scripts
If a fairly complicated set of editing operations is
to be done on a whole set of files, the easiest thing
to do is to make up a ‘script’, i.e., a file that con-
tains the operations you want to perform, then
apply this script to each file in turn.
For example, suppose you want to change every
‘Unix’ to ‘UNIX’ and every ‘Gcos’ to ‘GCOS’ in
a large number of files. Then put into the file
‘script’ the lines

g/Unix/s//UNIX/g
g/Gcos/s//GCOS/g
w
q

Now you can say

ed file1 <script
ed file2 <script
...

This causesed to take its commands from the pre-
pared script. Notice that the whole job has to be
planned in advance.
And of course by using theUNIX command inter-

preter, you can cycle through a set of files automat-
ically, with varying degrees of ease.

Sed
sed(‘stream editor’) is a version of the editor with
restricted capabilities but which is capable of pro-
cessing unlimited amounts of input. Basicallysed
copies its input to its output, applying one or more
editing commands to each line of input.
As an example, suppose that we want to do the
‘Unix’ to ‘UNIX’ part of the example given above,
but without rewriting the files. Then the command

sed ′s/Unix/UNIX/g′ file1 file2 ...

applies the command ‘s/Unix/UNIX/g’ to all lines
from ‘file1’, ‘file2’, etc., and copies all lines to the
output. The advantage of usingsed in such a case
is that it can be used with input too large fored to
handle. All the output can be collected in one
place, either in a file or perhaps piped into another
program.
If the editing transformation is so complicated that
more than one editing command is needed, com-
mands can be supplied from a file, or on the com-
mand line, with a slightly more complex syntax.
To take commands from a file, for example,

sed −f cmdfile input−files...

sedhas further capabilities, including conditional
testing and branching, which we cannot go into
here.

Acknowledgement
I am grateful to Ted Dolotta for his careful read-
ing and valuable suggestions.

References
[1]Brian W. Kernighan,A Tutorial Introduction to
the UNIX Text Editor,Bell Laboratories internal
memorandum.
[2]Brian W. Kernighan,UNIX For Beginners,Bell
Laboratories internal memorandum.
[3]Ken L. Thompson and Dennis M. Ritchie,The
UNIX Programmer’s Manual.Bell Laboratories.

