
A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on theUNIX†
operating system is done with the text-editored. This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most users’ day-to-day needs. This includes
printing, appending, changing, deleting, moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands; and the use of special characters for
advanced editing.

November 2, 1997

†UNIX is a Trademark of Bell Laboratories.

-- --

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
Ed is a ‘‘text editor’’, that is, an interactive program

for creating and modifying ‘‘text’’, using directions
provided by a user at a terminal. The text is often a
document like this one, or a program or perhaps data
for a program.

This introduction is meant to simplify learninged.
The recommended way to learned is to read this docu-
ment, simultaneously usinged to follow the examples,
then to read the description in section I of theUNIX
Programmer’s Manual,all the while experimenting
with ed. (Solicitation of advice from experienced users
is also useful.)

Do the exercises! They cover material not com-
pletely discussed in the actual text. An appendix sum-
marizes the commands.

Disclaimer
This is an introduction and a tutorial. For this rea-

son, no attempt is made to cover more than a part of the
facilities thated offers (although this fraction includes
the most useful and frequently used parts). When you
have mastered the Tutorial, tryAdvanced Editing on
UNIX. Also, there is not enough space to explain basic
UNIX procedures. We will assume that you know how
to log on toUNIX, and that you have at least a vague
understanding of what a file is. For more on that, read
UNIX for Beginners.

You must also know what character to type as the
end-of-line on your particular terminal. This character
is theRETURNkey on most terminals. Throughout, we
will refer to this character, whatever it is, asRETURN.

Getting Started
We’ll assume that you have logged in to your sys-

tem and it has just printed the prompt character, usually
either a$ or a% . The easiest way to geted is to type

eedd ((ffoolllloowweedd bbyy aa rreettuurrnn))

You are now ready to go −ed is waiting for you to tell
it what to do.

Creating Text − the Append command ‘‘a’’
As your first problem, suppose you want to create

some text starting from scratch. Perhaps you are typing
the very first draft of a paper; clearly it will have to start
somewhere, and undergo modifications later. This sec-

tion will show how to get some text in, just to get
started. Later we’ll talk about how to change it.

When ed is first started, it is rather like working
with a blank piece of paper − there is no text or infor-
mation present. This must be supplied by the person
usinged; it is usually done by typing in the text, or by
reading it intoed from a file. We will start by typing in
some text, and return shortly to how to read files.

First a bit of terminology. Ined jargon, the text
being worked on is said to be ‘‘kept in a buffer.’’ Think
of the buffer as a work space, if you like, or simply as
the information that you are going to be editing. In
effect the buffer is like the piece of paper, on which we
will write things, then change some of them, and finally
file the whole thing away for another day.

The user tellsed what to do to his text by typing
instructions called ‘‘commands.’’ Most commands
consist of a single letter, which must be typed in lower
case. Each command is typed on a separate line.
(Sometimes the command is preceded by information
about what line or lines of text are to be affected − we
will discuss these shortly.)Ed makes no response to
most commands − there is no prompting or typing of
messages like ‘‘ready’’. (This silence is preferred by
experienced users, but sometimes a hangup for begin-
ners.)

The first command isappend,written as the letter

aa

all by itself. It means ‘‘append (or add) text lines to the
buffer, as I type them in.’’ Appending is rather like
writing fresh material on a piece of paper.

So to enter lines of text into the buffer, just type an
a followed by aRETURN, followed by the lines of text
you want, like this:

aa
NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..
..

The only way to stop appending is to type a line
that contains only a period. The ‘‘.’’ is used to telled
that you have finished appending. (Even experienced
users forget that terminating ‘‘.’’ sometimes. If ed
seems to be ignoring you, type an extra line with just
‘‘ .’’ on it. You may then find you’ve added some

-- --

- 2 -

garbage lines to your text, which you’ll have to take out
later.)

After the append command has been done, the
buffer will contain the three lines

NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

The ‘‘a’’ and ‘‘ .’’ aren’t there, because they are not text.
To add more text to what you already have, just

issue anothera command, and continue typing.

Error Messages − ‘‘?’’
If at any time you make an error in the commands

you type toed,it will tell you by typing

??

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file − the Write command ‘‘w’’
It’s likely that you’ll want to save your text for later

use. To write out the contents of the buffer onto a file,
use thewrite command

ww

followed by the filename you want to write on. This
will copy the buffer’s contents onto the specified file
(destroying any previous information on the file). To
save the text on a file namedjunk , for example, type

ww jjuunnkk

Leave a space betweenw and the file name.Ed will
respond by printing the number of characters it wrote
out. In this case,edwould respond with

6688

(Remember that blanks and the return character at the
end of each line are included in the character count.)
Writing a file just makes a copy of the text − the
buffer’s contents are not disturbed, so you can go on
adding lines to it. This is an important point.Ed at all
times works on a copy of a file, not the file itself. No
change in the contents of a file takes place until you
give a w command. (Writing out the text onto a file
from time to time as it is being created is a good idea,
since if the system crashes or if you make some horri-
ble mistake, you will lose all the text in the buffer but
any text that was written onto a file is relatively safe.)

Leaving ed − the Quit command ‘‘q’’
To terminate a session withed, sav e the text you’re

working on by writing it onto a file using thew com-
mand, and then type the command

qq

which stands forquit. The system will respond with
the prompt character ($ or %). At this point your
buffer vanishes, with all its text, which is why you want

Exercise 1:
Enteredand create some text using

aa
.. tteexxtt
.

Write it out usingw. Then leaveed with the q
command, and print the file, to see that everything
worked. (To print a file, say

pprr fifilleennaammee

or

ccaatt fifilleennaammee

in response to the prompt character. Try both.)

Reading text from a file − the Edit command
‘‘e’’

A common way to get text into the buffer is to
read it from a file in the file system. This is what
you do to edit text that you saved with thew com-
mand in a previous session. Theedit commande
fetches the entire contents of a file into the buffer.
So if you had saved the three lines ‘‘Now is the
time’’, etc., with aw command in an earlier ses-
sion, theedcommand

ee jjuunnkk

would fetch the entire contents of the filejunk into
the buffer, and respond

6688

which is the number of characters injunk . If any-
thing was already in the buffer, it is deleted first.

If you use thee command to read a file into the
buffer, then you need not use a file name after a
subsequentw command;edremembers the last file
name used in ane command, andw will write on
this file. Thus a good way to operate is

eedd
ee fifillee
[[eeddiittiinngg sseessssiioonn]]
ww
qq

This way, you can simply sayw from time to time,
and be secure in the knowledge that if you got the
file name right at the beginning, you are writing
into the proper file each time.

You can find out at any time what file nameed
is remembering by typing thefile commandf. In
this example, if you typed

ff
to write it out before quitting.†

† Actually, ed will print ? if you try to quit with-
out writing. At that point, write if you want; if not,
anotherq will get you out regardless.

−−−− −−−−

-- 33 --

edwould reply

jjuunnkk

Reading text from a file − the Read command
‘‘r’’

Sometimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by theread commandr . The
command

rr jjuunnkk

will read the filejunk into the buffer; it adds it to
the end of whatever is already in the buffer. So if
you do a read after an edit:

ee jjuunnkk
rr jjuunnkk

the buffer will containtwo copies of the text (six
lines).

NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..
NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

Like the w and e commands,r prints the number
of characters read in, after the reading operation is
complete.

Generally speaking,r is much less used thane.

Exercise 2:
Experiment with thee command − try reading

and printing various files. You may get an error
?name, where name is the name of a file; this
means that the file doesn’t exist, typically because
you spelled the file name wrong, or perhaps that
you are not allowed to read or write it. Try alter-
nately reading and appending to see that they work
similarly. Verify that

eedd fifilleennaammee

is exactly equivalent to

eedd
ee fifilleennaammee

What does

ff fifilleennaammee

do?

Printing the contents of the buffer − the Print
command ‘‘p’’

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print command

pp

The way this is done is as follows. Specify the

lines where you want printing to begin and where
you want it to end, separated by a comma, and fol-
lowed by the letterp. Thus to print the first two
lines of the buffer, for example, (that is, lines 1
through 2) say

11,,22pp ((ssttaarrttiinngg lliinnee==11,, eennddiinngg lliinnee==22 pp))

Edwill respond with

NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn

Suppose you want to printall the lines in the
buffer. You could use1,3p as above ifyou knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are, so
what do you use for the ending line number?Ed
provides a shorthand symbol for ‘‘line number of
last line in buffer’’ − the dollar sign$. Use it this
way:

11,,$$pp

This will print all the lines in the buffer (line 1 to
last line.) If you want to stop the printing before it
is finished, push theDEL or Delete key;ed will
type

??

and wait for the next command.
To print thelast line of the buffer, you could

use

$$,,$$pp

buted lets you abbreviate this to

$$pp

You can print any single line by typing the line
number followed by ap. Thus

11pp

produces the response

NNoo ww iiss tthhee ttiimmee

which is the first line of the buffer.
In fact,ed lets you abbreviate even further: you

can print any single line by typingjust the line
number − no need to type the letterp. So if you
say

$$

edwill print the last line of the buffer.
You can also use$ in combinations like

$$−−11,,$$pp

which prints the last two lines of the buffer. This
helps when you want to see how far you got in typ-
ing.

-- --

- 4 -

Exercise 3:
As before, create some text using thea com-

mand and experiment with thep command. You
will find, for example, that you can’t print line 0 or
a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by saying

33,,11pp

don’t work.

The current line − ‘‘Dot’’ or ‘‘.’’
Suppose your buffer still contains the six lines

as above, that you have just typed

11,,33pp

andedhas printed the three lines for you. Try typ-
ing just

pp ((nnoo lliinnee nnuummbbeerrss))

This will print

ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

which is the third line of the buffer. In fact it is the
last (most recent) line that you have done anything
with. (You just printed it!) You can repeat thisp
command without line numbers, and it will con-
tinue to print line 3.

The reason is thatedmaintains a record of the
last line that you did anything to (in this case, line
3, which you just printed) so that it can be used
instead of an explicit line number. This most
recent line is referred to by the shorthand symbol

.. ((pprroonnoouunncceedd ‘‘‘‘ddoott’’’’))..

Dot is a line number in the same way that$ is; it
means exactly ‘‘the current line’’, or loosely, ‘‘the
line you most recently did something to.’’ You can
use it in several ways − one possibility is to say

..,,$$pp

This will print all the lines from (including) the
current line to the end of the buffer. In our exam-
ple these are lines 3 through 6.

Some commands change the value of dot,
while others do not. Thep command sets dot to
the number of the last line printed; the last com-
mand will set both. and$ to 6.

Dot is most useful when used in combinations
like this one:

..++11 ((oorr eeqquuiivvaalleennttllyy,, ..++11pp))

This means ‘‘print the next line’’ and is a handy
way to step slowly through a buffer. You can also
say

..−−11 ((oorr ..−−11pp))

which means ‘‘print the linebefore the current
line.’’ This enables you to go backwards if you
wish. Another useful one is something like

..−−33,,..−−11pp

which prints the previous three lines.
Don’t forget that all of these change the value

of dot. You can find out what dot is at any time by
typing

..==

Edwill respond by printing the value of dot.
Let’s summarize some things about thep com-

mand and dot. Essentiallyp can be preceded by 0,
1, or 2 line numbers. If there is no line number
given, it prints the ‘‘current line’’, the line that dot
refers to. If there is one line number given (with or
without the letterp), it prints that line (and dot is
set there); and if there are two line numbers, it
prints all the lines in that range (and sets dot to the
last line printed.) If two line numbers are specified
the first can’t be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line − it’s equivalent to.+1p. Try it. Try
typing a −; you will find that it’s equivalent to
.−1p.

Deleting lines: the ‘‘d’’ command
Suppose you want to get rid of the three extra

lines in the buffer. This is done by thedeletecom-
mand

dd

Except thatd deletes lines instead of printing
them, its action is similar to that ofp. The lines to
be deleted are specified ford exactly as they are
for p:

starting line, ending linedd

Thus the command

44,,$$dd

deletes lines 4 through the end. There are now
three lines left, as you can check by using

11,,$$pp

And notice that$ now is line 3! Dot is set to the
next line after the last line deleted, unless the last
line deleted is the last line in the buffer. In that
case, dot is set to$.

Exercise 4:
Experiment witha, e, r , w, p andd until you

are sure that you know what they do, and until you
understand how dot,$, and line numbers are used.

If you are adventurous, try using line numbers
with a, r andw as well. You will find thata will
append linesafter the line number that you specify
(rather than after dot); thatr reads a file inafter the
line number you specify (not necessarily at the end
of the buffer); and thatw will write out exactly the
lines you specify, not necessarily the whole buffer.

-- --

- 5 -

These variations are sometimes handy. For
instance you can insert a file at the beginning of a
buffer by saying

00rr fifilleennaammee

and you can enter lines at the beginning of the
buffer by saying

00aa
..text..
..

Notice that.w is verydifferent from

..
ww

Modifying text: the Substitute command ‘‘s’’
We are now ready to try one of the most

important of all commands − the substitute com-
mand

ss

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example, for correct-
ing spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

NNoo ww iiss tthh ttiimmee

− the e has been left offthe. You can uses to fix
this up as follows:

11ss//tthh//tthhee//

This says: ‘‘in line 1, substitute for the characters
th the charactersthe.’’ To verify that it works (ed
will not print the result automatically) say

pp

and get

NNoo ww iiss tthhee ttiimmee

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since thep command printed that line.
Dot is always set this way with thes command.

The general way to use the substitute com-
mand is

starting-line, ending-liness//change this//to this//

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, inall the lines betweenstarting-
line andending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those forp,
except that dot is set to the last line changed. (But
there is a trap for the unwary: if no substitution
took place, dot isnot changed. This causes an

error? as a warning.)
Thus you can say

11,,$$ss//ssppeelliinngg//ssppeelllliinngg//

and correct the first spelling mistake on each line
in the text. (This is useful for people who are con-
sistent misspellers!)

If no line numbers are given, thes command
assumes we mean ‘‘make the substitution on line
dot’’, so it changes things only on the current line.
This leads to the very common sequence

ss//ssoommeetthhiinngg//ssoommeetthhiinngg eellssee//pp

which makes some correction on the current line,
and then prints it, to make sure it worked out right.
If it didn’t, you can try again. (Notice that there is
a p on the same line as thes command. With few
exceptions,p can follow any command; no other
multi-command lines are legal.)

It’s also legal to say

ss// ////

which means ‘‘change the first string of characters
to ‘‘nothing’’, i.e., remove them. This is useful for
deleting extra words in a line or removing extra
letters from words. For instance, if you had

NNoo wwxxxx iiss tthhee ttiimmee

you can say

ss//xxxx////pp

to get

NNoo ww iiss tthhee ttiimmee

Notice that // (two adjacent slashes) means ‘‘no
characters’’, not a blank. Thereis a difference!
(See below for another meaning of//.)

Exercise 5:
Experiment with the substitute command. See

what happens if you substitute for some word on a
line with several occurrences of that word. For
example, do this:

aa
tthhee ootthheerr ssiiddee ooff tthhee ccooiinn
..
ss//tthhee//oonn tthhee//pp

You will get

oonn tthhee ootthheerr ssiiddee ooff tthhee ccooiinn

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding ag (for ‘‘global’’) to the s
command, like this:

ss// // //ggpp

Try other characters instead of slashes to delimit
the two sets of characters in thes command − any-

-- --

- 6 -

thing should work except blanks or tabs.
(If you get funny results using any of the char-

acters

ˆ̂ .. $$ [[∗∗ \\ &&

read the section on ‘‘Special Characters’’.)

Context searching − ‘‘/ . . . /’’
With the substitute command mastered, you

can move on toanother highly important idea ofed
− context searching.

Suppose you have the original three line text in
the buffer:

NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

Suppose you want to find the line that contains
their so you can change it tothe. Now with only
three lines in the buffer, it’s pretty easy to keep
track of what line the wordtheir is on. But if the
buffer contained several hundred lines, and you’d
been making changes, deleting and rearranging
lines, and so on, you would no longer really know
what this line number would be. Context search-
ing is simply a method of specifying the desired
line, regardless of what its number is, by specify-
ing some context on it.

The way to say ‘‘search for a line that contains
this particular string of characters’’ is to type

//string of characters we want to find//

For example, theedcommand

//tthheeiirr//

is a context search which is sufficient to find the
desired line − it will locate the next occurrence of
the characters between slashes (‘‘their’’). It also
sets dot to that line and prints the line for verifica-
tion:

ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

‘‘Next occurrence’’ means thated starts looking
for the string at line.+1, searches to the end of the
buffer, then continues at line 1 and searches to line
dot. (That is, the search ‘‘wraps around’’ from$ to
1.) It scans all the lines in the buffer until it either
finds the desired line or gets back to dot again. If
the given string of characters can’t be found in any
line, edtypes the error message

??

Otherwise it prints the line it found.
You can do both the search for the desired line

anda substitution all at once, like this:

//tthheeiirr//ss//tthheeiirr//tthhee//pp

which will yield

ttoo ccoommee ttoo tthhee aaiidd ooff tthhee ppaarrttyy..

There were three parts to that last command: con-
text search for the desired line, make the substitu-
tion, print the line.

The expression/their/ is a context search
expression. In their simplest form, all context
search expressions are like this − a string of char-
acters surrounded by slashes. Context searches are
interchangeable with line numbers, so they can be
used by themselves to find and print a desired line,
or as line numbers for some other command, likes.
They were used both ways in the examples above.

Suppose the buffer contains the three familiar
lines

NNoo ww iiss tthhee ttiimmee
ffoorr aallll ggoooodd mmeenn
ttoo ccoommee ttoo tthhee aaiidd ooff tthheeiirr ppaarrttyy..

Then theed line numbers

//NNoo ww//++11
//ggoooodd//
//ppaarrttyy//−−11

are all context search expressions, and they all
refer to the same line (line 2). To make a change
in line 2, you could say

//NNoo ww//++11ss//ggoooodd//bbaadd//

or

//ggoooodd//ss//ggoooodd//bbaadd//

or

//ppaarrttyy//−−11ss//ggoooodd//bbaadd//

The choice is dictated only by convenience. You
could print all three lines by, for instance

//NNoo ww//,,//ppaarrttyy//pp

or

//NNoo ww//,,//NNooww//++22pp

or by any number of similar combinations. The
first one of these might be better if you don’t know
how many lines are involved. (Of course, if there
were only three lines in the buffer, you’d use

11,,$$pp

but not if there were several hundred.)
The basic rule is: a context search expression

is the same asa line number, so it can be used
wherever a line number is needed.

Exercise 6:
Experiment with context searching. Try a

body of text with several occurrences of the same
string of characters, and scan through it using the
same context search.

Try using context searches as line numbers for
the substitute, print and delete commands. (They
can also be used withr , w, anda.)

-- --

- 7 -

Try context searching using?text? instead of
/text/. This scans lines in the buffer in reverse
order rather than normal. This is sometimes useful
if you go too far while looking for some string of
characters − it’s an easy way to back up.

(If you get funny results with any of the char-
acters

ˆ̂ .. $$ [[∗∗ \\ &&

read the section on ‘‘Special Characters’’.)
Ed provides a shorthand for repeating a con-

text search for the same string. For example, the
ed line number

//ssttrriinngg//

will find the next occurrence ofstring. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by typ-
ing merely

////

This shorthand stands for ‘‘the most recently used
context search expression.’’ It can also be used as
the first string of the substitute command, as in

//ssttrriinngg11//ss////ssttrriinngg22//

which will find the next occurrence ofstring1 and
replace it bystring2. This can save a lot of typing.
Similarly

????

means ‘‘scan backwards for the same expression.’’

Change and Insert − ‘‘c’’ and ‘‘i’’
This section discusses thechangecommand

cc

which is used to change or replace a group of one
or more lines, and theinsertcommand

ii

which is used for inserting a group of one or more
lines.

‘‘Change’’, written as

cc

is used to replace a number of lines with different
lines, which are typed in at the terminal. For
example, to change lines.+1 through$ to some-
thing else, type

..++11,,$$cc

..type the lines of text you want here..

..

The lines you type between thec command and the
. will take the place of the original lines between
start line and end line. This is most useful in
replacing a line or several lines which have errors
in them.

If only one line is specified in thec command,
then just that line is replaced. (You can type in as
many replacement lines as you like.) Notice the
use of. to end the input − this works just like the.
in the append command and must appear by itself
on a new line. If no line number is given, line dot
is replaced. The value of dot is set to the last line
you typed in.

‘‘Insert’’ is similar to append − for instance

//ssttrriinngg//ii
..type the lines to be inserted here..
..

will insert the given textbefore the next line that
contains ‘‘string’’. The text betweeni and . is
inserted beforethe specified line. If no line num-
ber is specified dot is used. Dot is set to the last
line inserted.

Exercise 7:
‘‘Change’’ is rather like a combination of

delete followed by insert. Experiment to verify
that

start, enddd
ii
. . . text . . .
..

is almost the same as

start, endcc
. . . text . . .
..

These are notprecisely the same if line$ gets
deleted. Check this out. What is dot?

Experiment witha and i, to see that they are
similar, but not the same. You will observe that

line-numberaa
..text..
..

appendsafter the given line, while

line-numberii
..text..
..

insertsbeforeit. Observe that if no line number is
given, i inserts before line dot, whilea appends
after line dot.

Moving text around: the ‘‘m’’ command
The move commandm is used for cutting and

pasting − it lets you move a group of lines from
one place to another in the buffer. Suppose you
want to put the first three lines of the buffer at the
end instead. You could do it by saying:

11,,33ww tteemmpp
$$rr tteemmpp
11,,33dd

−−−− −−−−

-- 88 --

(Do you see why?) but you can do it a lot easier
with them command:

11,,33mm$$

The general case is

start line, end linemm after this line

Notice that there is a third line to be specified − the
place where the moved stuff gets put. Of course
the lines to be moved can be specified by context
searches; if you had

FFiirrsstt ppaarraaggrraapphh
..
eenndd ooff fifirrsstt ppaarraaggrraapphh..
SSeeccoonndd ppaarraaggrraapphh
..
eenndd ooff sseeccoonndd ppaarraaggrraapphh..

you could reverse the two paragraphs like this:

//SSeeccoonndd//,,//eenndd ooff sseeccoonndd//mm//FFiirrsstt//−−11

Notice the−1: the moved text goesafter the line
mentioned. Dot gets set to the last line moved.

The global commands ‘‘g’’ and ‘‘v’’
The global commandg is used to execute one

or more ed commands on all those lines in the
buffer that match some specified string. For exam-
ple

gg//ppeelliinngg//pp

prints all lines that containpeling. More usefully,

gg//ppeelliinngg//ss////ppeelllliinngg//ggpp

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

11,,$$ss//ppeelliinngg//ppeelllliinngg//ggpp

which only prints the last line substituted. Another
subtle difference is that theg command does not
give a? if peling is not found where thes com-
mand will.

There may be several commands (includinga,
c, i, r , w, but notg); in that case, every line except
the last must end with a backslash\:

gg//xxxxxx//..−−11ss//aabbcc//ddeeff//\\
..++22ss//gghhii//jjkkll//\\
..−−22,,..pp

makes changes in the lines before and after each
line that containsxxx, then prints all three lines.

The v command is the same asg, except that
the commands are executed on every line that does
notmatch the string followingv:

vv// //dd

deletes every line that does not contain a blank.

Special Characters
You may have noticed that things just don’t

work right when you used some characters like.,
∗, $, and others in context searches and the substi-
tute command. The reason is rather complex,
although the cure is simple. Basically,ed treats
these characters as special, with special meanings.
For instance,in a context search or the first string
of the substitute command only,. means ‘‘any
character,’’ not a period, so

//xx..yy//

means ‘‘a line with anx, any character,and ay,’’
not just ‘‘a line with anx, a period, and ay.’’ A
complete list of the special characters that can
cause trouble is the following:

ˆ̂ .. $$ [[∗∗ \\

Warning: The backslash character\ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

ss//\\\\\\..\\∗∗//bbaacckkssllaasshh ddoott ssttaarr//

will change\.∗ into ‘‘backslash dot star’’.
Here is a hurried synopsis of the other special

characters. First, the circumflex̂ signifies the
beginning of a line. Thus

//ˆ̂ssttrriinngg//

finds string only if it is at the beginning of a line:
it will find

ssttrriinngg

but not

tthhee ssttrriinngg......

The dollar-sign$ is just the opposite of the circum-
flex; it means the end of a line:

//ssttrriinngg$$//

will only find an occurrence ofstring that is at the
end of some line. This implies, of course, that

//ˆ̂ssttrriinngg$$//

will find only a line that contains juststring, and

//ˆ̂..$$//

finds a line containing exactly one character.
The character., as we mentioned above,

matches anything;

//xx..yy//

matches any of

xx++yy
xx−−yy
xx yy

−−−− −−−−

-- 99 --

xx..yy

This is useful in conjunction with∗, which is a
repetition character;a∗ is a shorthand for ‘‘any
number ofa’s,’’ so .∗ matches any number of any-
things. This is used like this:

ss//..∗∗//ssttuuff ff//

which changes an entire line, or

ss//..∗∗,,////

which deletes all characters in the line up to and
including the last comma. (Since.∗ finds the
longest possible match, this goes up to the last
comma.)

[is used with] to form ‘‘character classes’’;
for example,

//[[00112233445566778899]]//

matches any single digit − any one of the charac-
ters inside the braces will cause a match. This can
be abbreviated to[0−9].

Finally, the& is another shorthand character −
it is used only on the right-hand part of a substitute
command where it means ‘‘whatever was matched
on the left-hand side’’. It is used to save typing.
Suppose the current line contained

NNoo ww iiss tthhee ttiimmee

and you wanted to put parentheses around it. You
could just retype the line, but this is tedious. Or
you could say

ss//ˆ̂//((//
ss//$$//))//

using your knowledge of̂ and$. But the easiest
way uses the& :

ss//..∗∗//((&&))//

This says ‘‘match the whole line, and replace it by
itself surrounded by parentheses.’’ The& can be
used several times in a line; consider using

ss//..∗∗//&&?? &&!!!!//

to produce

NNoo ww iiss tthhee ttiimmee?? NNooww iiss tthhee ttiimmee!!!!

You don’t hav e to match the whole line, of
course: if the buffer contains

tthhee eenndd ooff tthhee wwoorrlldd

you could type

//ww oorrlldd//ss////&& iiss aatt hhaanndd//

to produce

tthhee eenndd ooff tthhee wwoorrlldd iiss aatt hhaanndd

Observe this expression carefully, for it illustrates
how to take advantage ofed to save typing. The
string /world/ found the desired line; the shorthand

// found the same word in the line; and the& saves
you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and has
no special meaning elsewhere. You can turn off
the special meaning of& by preceding it with a\:

ss//aammppeerrssaanndd//\\&&//

will convert the word ‘‘ampersand’’ into the literal
symbol& in the current line.

Summary of Commands and Line Numbers
The general form ofedcommands is the com-

mand name, perhaps preceded by one or two line
numbers, and, in the case ofe, r , andw, followed
by a file name. Only one command is allowed per
line, but ap command may follow any other com-
mand (except fore, r , w andq).
a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Appending
continues until. is typed on a new line. Dot is set
to the last line appended.
c: Change the specified lines to the new text which
follows. The new lines are terminated by a., as
with a. If no lines are specified, replace line dot.
Dot is set to last line changed.
d: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted
line, unless$ is deleted, in which case dot is set to
$.
e: Edit new file. Any previous contents of the
buffer are thrown away, so issue aw beforehand.
f: Print remembered filename. If a name followsf
the remembered name will be set to it.
g: The command

gg//------//ccoommmmaannddss

will execute the commands on those lines that con-
tain ---, which can be any context search expres-
sion.
i: Insert lines before specified line (or dot) until a.
is typed on a new line. Dot is set to last line
inserted.
m: Move lines specified to after the line named
afterm. Dot is set to the last line moved.
p: Print specified lines. If none specified, print line
dot. A single line number is equivalent toline-
numberp. A single return prints.+1, the next line.
q: Quit ed. Wipes out all text in buffer if you give
it twice in a row without first giving aw command.
r : Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.
s: The command

ss//ssttrriinngg11//ssttrriinngg22//

substitutes the charactersstring1 into string2 in
the specified lines. If no lines are specified, make

-- --

- 10 -

the substitution in line dot. Dot is set to last line in
which a substitution took place, which means that
if no substitution took place, dot is not changed.s
changes only the first occurrence ofstring1 on a
line; to change all of them, type ag after the final
slash.
v: The command

vv//------//ccoommmmaannddss

executescommands on those lines thatdo not
contain---.
w: Write out buffer onto a file. Dot is not changed.
.=: Print value of dot. (= by itself prints the value
of $.)
!: The line

!!ccoommmmaanndd--lliinnee

causescommand-line to be executed as aUNIX
command.
/-----/: Context search. Search for next line which
contains this string of characters. Print it. Dot is
set to the line where string was found. Search
starts at.+1, wraps around from$ to 1, and contin-
ues to dot, if necessary.
?-----?: Context search in reverse direction. Start
search at.−1, scan to 1, wrap around to$.

