ATel October 1964

(i

AT&T 3B2 Computer
UNIX™ System V Release 2.0
Editing Utilities Guide

Select Code Comcode
305-414 403778350

Copyright < 1984 AT&T Technologies, Inc.
All Rights Reserved
Printed in U.S.A.



TRADEMARKS

The following is a listing of the trademarks that are used in this manual:
o TEKTRONIX — Registered Trademark of Tektronix, Inc.
o TELETYPE — Registered Trademark of Teletype Corporation
o UNIX — Trademark of AT&T Bell Laboratories.

NOTICE

The information in this document is subject to change without notice. AT&T
Technologies assumes no responsibility for any errors that may appear in this
document.



NOTE

This Utilities Guide contains descriptive information and UNIX*
System manual pages for the commands included in one of the
utilities provided with your 3B2 Computer. Since this utilities is
provided with the 3B2 Computer, the manual pages have already
been filed in the 3B2 Computer UNIX System V User Reference
Manual. If you do not need duplicate copies of these manual pages,
they may be discarded.

A UTILITIES binder is provided with the 3B2 Computer for you to
keep the descriptive information from all the Utilities Guides
together. Remove the descriptive information from the soft cover,
place the provided tab separator in front of the title page, and file
this material in the UTILITIES binder. As previously mentioned, UNIX
System manual pages may be destroyed.

If you ordered extra copies of this Utilities Guide, they should be left
in the individual soft covers.

*  Trademark of AT&T Bell Laboratories






AT&T Issue 1

October 1984

(W

AT&T 3B2 Computer
UNIX™ System V Release 2.0
Editing Utilities
Software Information Bulletin

Select Code

Comcode
305-351

403778160

Copyright < 1984 AT&T Technologies, Inc.
All Rights Reserved
Printed in U.S.A.






NOTE

This Software Information Bulletin (SIB) should be filed in the 382
Computer Owner/Operator Manual. A tab separator, labeled

" SOFTWARE INFORMATION BULLETINS," has been placed at the
back of the Owner/Operator Manual in order to provide a
convenient place for filing SIB's. Place the tab separator provided
with this SIB in front of the title page and file this material behind
the SOFTWARE INFORMATION BULLETINS tab separator in the
Owner /Operator Manual.






EDITING
SOFTWARE INFORMATION BULLETIN

INTRODUCTION

This Software Information Bulletin provides important information
concerning the Editing Utilities. Please read this bulletin carefully
before attempting to install or use these utilities.

The AT&T 3B2 Computer Editing Utilities are for use by all users.
The Editing Utilities are part of the UNIX* System V Release 2.0
configuration provided with all 3B2 Computers.

IMPROVEMENTS SINCE PRIOR RELEASE

The Editing Utilities only contains edit, ex, and vi editors. The bfs
editor is now in the File and Management Utilities, and the sed
editor is part of the Essential Utilities.

SOFTWARE DEPENDENCIES

The Editing Utilities require that the Terminal Information Utilities
already be loaded on the 3B2 Computer.

*  Trademark of AT&T Bell Laboratories

Page 1



EDITING

NOTES ON USING UTILITIES

Command Access

To use these commands, you must be logged in on the system, have
the Terminal Information Utilities loaded, and have the Editing
Utilities loaded. However, to edit a particular file you must have
write permission for that file. For more information on read, write,
and execute permission for files, see the UNIX System V User Guide.

DOCUMENTATION

This Software Information Bulletin should be inserted in the 3B2
Computer Owner /Operator Manual.

The editing commands provided by the Editing Utilities are described
in the 3B2 Computer Editing Ultilities Guide.

RELEASE FORMAT

Storage Structure

The Editing Utilities (commands) are installed in the /usr/bin,
/usr/lib, and /usr/options directories. The file /usr/bin/vi is
linked to /usr/bin/ex and /usr/bin/edit.

System Requirements

The minimum equipment configuration required for the use of the
Editing Utilities is 0.5 megabytes of random access memory and a
10-megabyte hard disk.

To install the Editing Utilities software there must be 400 free blocks
in the /usr file system. Storage space is checked automatically as
part of the installation process. The installation process installs the
utilities only if adequate storage space is available.

Page 2



EDITING

The Editing Utilities for the 3B2 Computer are distributed on one
floppy disk. Refer to the 3B2 Computer Editing Utilities Guide for
further information on the commands.

Files Delivered

The Editing Utilities are delivered on a single floppy disk. The
directory structure and files are as follows.

DIRECTORY FILES
/usr/bin edit ex Vi
/usr/lib expreserve exrecover  exstrings

/usr/options | ed.name

UTILITIES INSTALL PROCEDURE

Use the standard software installation procedure described in the
3B2 Computer Owner /Operator Manual for the installation of the
Editing Utilities.

UTILITIES REMOVE PROCEDURE

Use the standard software remove procedure described in the 382
Computer Owner /Operator Manual for the removal of the Editing
Utilities.

Page 3



—




CONTENTS

INTRODUCTION
EDIT EDITOR

EX EDITOR
Chapter VISUAL EDITOR (vi)
Appendix. @ MANUAL PAGES

Chapter
Chapter
Chapter

A






Chapter 1

INTRODUCTION
PAGE
BSETIETAL om0 900 50658305 8 08 8 5 05056 08 R0 406 503 06 £ 519 90 0k i i 11
PRESITTITOTUEIAS ... 5o 5 505 0 0506 05 00 30507055 9 5 e 13
SPECIAL PURPOSE KEVS: 4 o5 s v 6085080 805 305 9350008 1 306 1081008 i o 14
HOW TO INTERPRET COMMANDS .. ... .....counmunernnannarnnenenaens 15

GUIDE ORGANIZATION . . .. ittt iiieieeeeet ettt eeeennnn 1-5






Chapter 1

INTRODUCTION

GENERAL

This guide describes the command format and use of the Editing
Utilities. The commands and procedures described in this guide are
for use by all users.

The UNIX* Operating System contains a file system which is used to
store user information. Modifying files by adding or deleting
information can only be done using UNIX System Editor Commands.
The editing utilities give the user an easy way to create, read, and
modify information in these files.

The edit, ex, and vi editors are based on a consistent set of text
editor commands. These commands serve as the fundamental
building blocks for increasing text editing proficiency.

*  Trademark of AT&T Bell Laboratories

[y
1
et



INTRODUCTION

The editing utilities allows the user to perform two types of editing.

o Basic editing allows the casual user to use basic commands to
perform text editing.

o Visual editing allows the user to view several lines of the file
at a time and use screen oriented display editing based on
basic editor commands.

The editing utilities consists of three text editors designed to meet
the needs of the novice user, while allowing the experienced user to
use more complex and powerful editing tools. These editors are
actually three versions of the ex editor.

The ex editor is an interactive editor which normally accesses only
one line of the file at a time. Many of the ex commands are similar
to the ed editor commands. The advantage of using the ex editor is
the large number of options available in it.

The edit editor is the simplified version of ex editor and is normally
used by novice users. Messages displayed on the screen after an
invalid command are more descriptive than with ex or vi. Edit
contains fewer commands and most beginners should pick it up
quickly. All commands which execute in the edit editor will also
execute in the ex editor.

The vi editor is actually the visual mode of editing within the ex
editor. Viis the most complex of the three editors, because there
are so many commands which perform the same function.
However, it is the easiest to use once you understand the basic
movement and editing commands. With the vi editor, you can view
several lines of the file at one time, and you can move the cursor to
any character in the file. Most ex commands can be invoked
separately from vi by first entering a : and then the ex command.
To execute the command, depress the carriage return. Experienced
users often mix their use of ex command mode and vi command
mode to speed the work they are doing.

1-2



INTRODUCTION

RESTRICTIONS

The limits of the editors are as follows:

e 1024 characters per line

e 256 characters per global command list

e 128 characters per file name

e 100 characters per shell escape command
e 63 characters in a string valued option

e 30 characters in a tag name

o 128 characters in the previous inserted or deleted text in
(open) or (visual) mode

¢ 250000 lines in a file.

If you try to use these editors on a file and you receive a message
stating that the file is too large, you can either split the file into
smaller files or use a different editor. To split the file, you can use
the split or csplit commands contained in the Directory and File
Management Utilities. If you want to use another editor, you can
use the bfs editor (big file scanner) contained in the Directory and
File Management Utilities, or the sed (stream) editor contained in
the Essential Utilities.

1-3



INTRODUCTION

SPECIAL PURPOSE KEYS

There are several special purpose keys that are used by the vi
editor. These keys are very important and will be used throughout
the document. Their descriptions are as follows:

1-4

ESCAPE

CR

DELETE

This key is sometimes labeled <ESC> or <ALT>. ltis
normally located in the upper left corner of your
keyboard. When you are in the editor, depressing the
<ESC> key causes the editor to ring the bell indicating
that it is in an inactive state. On smart terminals
where it is possible, the editor will quietly flash the
screen rather than ring the bell. Partially formed
commands are canceled with the <ESC> key. When
you insert text in the file, text insertion is ended with
the <ESC> key. This is a fairly harmiess key to use,
so you can depress it whenever you are not certain
what state the editor is in.

The <CR> key refers to the RETURN key and is used
to start execution of certain commands. It is normally
located on the right side of the keyboard.

This key is sometimes labeled <DEL>, <RUBOUT>, or
<BREAK>. It generates an interrupt, which tells the
editor to stop what it is doing. This is a forceful way of
making the editor return to the inactive state if you do
not know or like what is going on.

CONTROL This key is often labeled <CTRL>. It is used with

other keys to perform a number of various functions.
It will be represented in this document by the <CTRL>
symbol. The associated key will be represented by an
uppercase letter. To execute a control function, both
keys must be depressed at the same time. An
example of how a control function will be represented
is as follows:

<CTRL D>

The function illustrated will cause the screen to scroll
down when in the vi editor.



INTRODUCTION

HOW TO INTERPRET COMMANDS

The following conventions are used to show your terminal input and
the system output in screens and command lines.

-
This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

GUIDE ORGANIZATION

This guide is structured so you can easily find desired information
without having to read the entire text. The remainder of this
document is organized as follows:

e Chapter 2, “EDIT EDITOR, "' provides instructions on how to
use the edit editor.

e Chapter 3, “‘EX EDITOR, " provides instructions on how to use
the ex editor.

e Chapter 4, “VI EDITOR, " provides instructions on how to use
the visual (vi) editor.

o Appendix, “MANUAL PAGES," provides the UNIX System
manual pages for each editor.

1-5






Chapter 2

EDIT EDITOR

PAGE

INTRODUCTION . ..ovns s msossesd sisdis S8 @ s/ 3 s giwswamsmanmsneesn 2-1
CURRENT LINE DEFINITION . . . ...ttt ittt it eaeeeeeaannnns 2-2
GETTING STARTED . ... .. oc oo éo 850 eaas sssimsiodasssesisesosssoenss 2-3
CreatingaNewF File......... ... . i iiiiiiiinnnnnns 2-3
ENtering TexXt . .oocv v v s s oo mnmin sim oo mim aimsoswenesssdsininis 2-4
Leaving thelnputMode .......... ... ... i iiiiiiiiinnnnn. 2-4
Writing the Buffer Intothe File.................... ... ovininnn 2-5
Quitting the Editor ......... ... ... iiiiiiiiiiiiennnnnnnns 2-6
Editingan Existing File . . . ... ... ... . i 2-7
DISPLAYING LINESINTHE FILE . . . . . ...ttt iiiiinennnaaeens 2-8
MOVING AROUND IN THE FILE. . . . ...ttt ittt it ianeenanenen 2-9
Basic MovementCommands. . . ... ..ottt 2-9
Forward and Backward SearchCommands........................ 2-10
Repeating Searches. . ...........oittiiiiiiniennennnnnns 2-11
Global Searches. . .. .....cccieerereunnassosssnnnnscananssssss 2-11
Special Search Characters .................. o iiiitiiniinnnn. 2-12
MAKING CORRECTIONS TOTHEFILE ....... .. . ..t 2-14
Appending Text. ........uiiiiniiiieiiiiinnnennnns 2-14
INSErtiNg TeXE . i uswswomcos oo msmnssssas e ors o emeimeiensnsees 2-15
Changing Text. : . ..ccosnsosssssssssnsamansassesensioeiemewes 2-15
Deleting Text. ......ccitiiiiiiinneeteiinneeeeecanneaseeannnns 2-16
Substituting Text ... ....... ittt iiiiiiiiiiiinneeaeeeannnns 2-17
Special Substitution Characters . ............. ... ...t 2-18
Global Substitutes . . . ......ccciiiiiinmenrirnsnnaaacancnsasssse 2-19
CopYINE TeXt. .. cicieinnncosusncnsmesossnssnsonssssensnsnasss 2-20
Moving Text . ...ttt iiiiittitttitneeenenanns 2-21

FILE MANIPULATION . ... ... iiiiiiiitttiteeenennnnnnnnnnnnneens 2-22
Writing the Buffer to Another File ................... ... ... ..., 2-22
Reading Another File Intothe Buffer ............................ 2-23
Obtaining Information About the Buffer.......................... 2-23

ISSUING “"UNIX"” SYSTEM COMMANDS ......... ...t iiiiiiiiinnn. 2-24



RECOVERING LOST TEXT

Undoing theLastCommand . . ....... ...t

Recovering Lost Files . ... ... ... ittt iiiiiinnnnns



Chapter 2

EDIT EDITOR

INTRODUCTION

This chapter describes the edit editor used on the 3B2 Computer.
Edit is a simplified version of the ex editor, and it is recommended
for new or casual users. Messages displayed on the screen after an
invalid command are more descriptive than with the other editors.

When using the edit editor, all commands must be entered on a

command line. The command line is identified by a colon **:"" on a
line by itself. Commands entered on the command line can affect
the line you are on in the file (current line), a specified set of lines,

or the entire file.

Most edit editor command names are English words, which can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For
example, since substitute is abbreviated by s, set is abbreviated by
se.

2-1



EDIT EDITOR

The edit editor does not directly modify the file being edited.
Instead, it works on a copy of the file stored in a temporary memory
location called the buffer. The edited file is not changed until you
write the changes from the buffer to the edited file.

This editor description assumes that you know how to logon to the
computer. If you do not, refer to the 3B2 Computer
Owner /Operator Manual.

For additional information on the edit editor, see the Manual Pages
in the Appendix.

CURRENT LINE DEFINITION

The term *‘current line" is referred to throughout this chapter. The
current line is the line in the file you are presently on. Each time you
move to a different line in the file, that line becomes the current
line. Whenever a command is given, the current line is used as a
reference point. Any command which is not directed at any specific
line is executed against the current line.

2-2



EDIT EDITOR

GETTING STARTED

The edit editor can be used to create a new file or to modify an
existing file. To execute edit you must be logged onto the
computer. After the $ or # prompt is displayed, you can begin
working with the edit editor.

Creating a New File

To create a new file, you will need to type edit followed by a space
and then the name of the file you wish to create. Execute the
command by depressing the carriage return <CR>. For example:

$ edit filename<CR>
"filename" [New file]

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will
need to reenter the command correctly.

If you entered the edit command without a filename, the editor will
still create a new file. However, when you decide to write the file
into memory you will be prompted for a filename. See ““Writing the
Buffer Into the File.”

e

When the edit command is executed, a colon *:"" is displayed. The
colon identifies the command line and indicates that the edit editor
is ready to accept your input commands.

2-3



EDIT EDITOR

Entering Text

The edit editor commands have two forms: a word which describes
what the command does and an abbreviation of the word. You can
use either form. Many beginners find the full command name easier
to remember, but after some practice use the abbreviation. The
command to input text is append, which may be abbreviated a.
Enter append after the colon on the command line and then depress
the carriage return.

:append<CR> or :a<CR>

Edit is now in the text input mode (append mode). The colon is no
longer displayed on the command line, and this is your signal that
you may begin entering lines of text. Anything that you type on your
terminal, except a period on a line by itself, is entered into the
buffer. If the message:

Not an editor command

is displayed, check to see what you entered incorrectly and then
enter the command again.

Note: The computer considers a blank space to be a
character. Be careful not to input blanks into lines of text
unless you mean for them to be there.

Leaving the Input Mode

To leave the input mode, simply enter a period ‘"."”” on a line by itself
and depress the carriage return. This is the signal that you want to
stop inputting text. After receiving a period on a line by itself, edit
will reenter the command mode and display the command line

Ly
°

prompt 2",

The text just entered is now stored only in the buffer. If you wish,
you can make changes to the text. Making changes is discussed
throughout the remainder of this chapter.

24



EDIT EDITOR

Writing the Buffer Into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the actual
file. This is the only way to save new text from one editing session
to another. To write the contents of the buffer to the file, use the
write command (abbreviated w).

:write<CR> or :w<CR>

Edit will then copy the buffer into the file. If the file does not yet
exist, a new file will be created and a message will be given
indicating that it is a new file. The newly created file will be given
the name specified when you entered the editor, in this case
“filename’’. To confirm that the file has been successfully written,
the editor will repeat the filename and give the number of lines and
the total number of characters in the file. The buffer remains
unchanged, so you can make further changes if you want to.

Edit must have a filename to use before it can write a file.
Therefore, if you did not indicate the name of the file when you
began the editing session, edit will issue the message:

No current filename
when you give the write command. If this happens, simply reenter
the write command and specify the filename. In this case you would
enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file named “‘filename’’.

2-5



EDIT EDITOR

Quitting the Editor

When you have finished editing the file and you are ready to return
to the UNIX System, enter the quit command (abbreviated q).

:quit<CR> or :q<CR>
This returns you to the UNIX System unless you forget to write the
buffer to the file. The system will issue a message reminding you to

write the file. A quick way to write and quit the edit editor is with
the single command:

:wg<CR>

If for some reason you do not want to save the changes, enter the
command:

:q!<CR>

This will quit edit and leave the file unchanged from the last write
command.

2-6



EDIT EDITOR

Editing an Existing File

To edit the contents of an existing file named ‘‘filel’’, you begin by
issuing the command:

$ edit filel<CR>
"fjlel" 150 lines, 4285 characters

This places a copy of the file in a buffer, and displays how many
lines and characters are in the file. A colon *“:"" will then be
displayed, which is the command line.

Note: If you do not give a filename, edit will create a new file
instead of editing the file you want.

After the file description and the colon *:"" are displayed, enter a 1
on the command line followed by a carriage return. This will make
the first line in the file the current line. The actual editing process is
described throughout the remainder of this chapter.

The procedure for saving changes to the buffer is described in
“Writing the Buffer Into the File.”” The procedure for quitting the
editor is described in “‘Quitting the Editor.”

2-7



EDIT EDITOR

DISPLAYING LINES IN THE FILE

When editing a file, you should always display the current line before
making changes. This is very important since most commands are
executed on the current line. After making any changes, display the
lines again to make sure you are happy with the changes. If you do
not like the changes, you can use the undo command described in
“RECOVERING LOST TEXT."”

To display a line, all you need to do is depress the carriage return.
This will display the current line in the editor. Each time you
depress the carriage return, the next line is displayed, and it
becomes the current line.

If you want to display the entire contents of the buffer, enter the
command:

:1,$print<CR> or :1,$p<CR>

The ““1" stands for line 1 of the buffer, the ““$"" is a special symbol
designating the last line of the buffer, and the ‘“‘p'’ is the command
to print from line 1 to the end of the buffer. After displaying the
buffer, the last line becomes the current line.

Occasionally, characters which do not appear on your terminal
screen are contained in a line of text. These characters are
normally called “‘control characters’ because the control key was
depressed when they were entered. To display all the characters in
a line, including control characters, you can use the list command
instead of the print command. For example:

:5,201ist<CR> or :5,201<CR>
will display any character contained in that line regardless of what

type it is. The list command executes exactly the same way the
print command does.

2-8



EDIT EDITOR

MOVING AROUND IN THE FILE

Basic Movement Commands

Edit accepts ‘-’ and ‘‘+'" as movement commands. As you would
expect, - moves the current line backward and + moves the current
line forward. With these commands you can move to adjacent lines
in the buffer.

You can move more than one line at a time by using numbers with
the + and - commands. For example:

:=5<CR>

moves the current line backward 5 lines from its current position
and displays the line. Likewise,

:+25<CR>
moves the current line forward 25 lines from its current position and
displays the line. This makes it much easier to move to the line you
want to work on. Another useful command is:

: $<CR>

which moves the current line to the last line in the buffer and
displays the line.

Each line in the file has a line number associated with it, although
they are not displayed. Edit allows you to move across large areas
of the buffer by entering the line number and a carriage return. For
example:

:43<CR>

makes 43 the current line and displays the line.

2-9



EDIT EDITOR

Forward and Backward Search Commands

If you are not sure where a line you want to change is, but you know
an exact pattern of characters on the line, you can search for that
pattern. The pattern must be on one line. The command line
interprets the character '/ as meaning ‘‘search for this pattern.”
The search command *‘/"" searches from your present position
forward through the buffer for the first occurrence of the pattern.
For example, if you know the pattern ‘‘learning to use edit’ is
somewhere in the buffer, you can find it by executing the command:

:/learning to use edit/p<CR>

This will make the line containing this pattern the current line and
display the line. If you leave the ‘‘p"’ off the command, edit will still
search for the pattern and make it the current line, but will not
display the line. Always include the p as part of the search

command in case the pattern is used more than once in the buffer.

If you execute a search, but edit cannot find the pattern, the
message:

Pattern not found

will be displayed. This means the pattern you searched for is not in
the buffer and the current line does not change. Check to see if you
correctly entered the search command or if it included any
characters with special meanings. (See Special Search Characters.)

The character "“?"" also executes a search when used on the
command line. It works the same as the '/’ search character,
except that it searches from your present position in the buffer
backward.

2-10



EDIT EDITOR

Repeating Searches

Quite often when searching for a pattern, the first occurrence is not
the one for which you are actually looking. You could repeat the
search command, but there is a much easier way. The editor
remembers the last search pattern entered. If you enter the
command:

: [/ <CR>

a forward search will look for the remembered pattern. The
backward search command ?? will also repeat searches. The
repeated search does not have to be the same type as the original
search.

Global Searches

The edit editor also allows you to perform global searches on the
file. A global search is used to find all the occurrences of a specified
pattern in a file. This type of search is useful when scanning for a
pattern that occurs in several places. The two types of global
searches that can be executed use the g and v commands.

The global search which uses the g command locates all the lines
which contain a specified pattern. An example would be:

:g/sample pattern/p<CR>

which will search for and display all lines containing the words
““sample pattern’. The current line will be the last line displayed.

The global search which uses the v command locates all lines which
do not contain a specified pattern. An example would be:

:v/sample pattern/p<CR>
which will search for and display all lines which do not contain the

words ‘‘sample pattern’’. The current line will be the last line
displayed.



EDIT EDITOR

Special Search Characters

Several characters have special meaning when used in specifying
searches. These characters will work with all types of searches.
They can be used to: match repetitive strings of characters, turn off
special meanings of characters, or denote the placement of
characters in the line. These characters and their use are explained
below:

The period matches any single character except the newline
(carriage return) character. For example, if a line in your
file contains the words “‘edit editor’’, or a pattern with any
other character between “‘edit edit’”” and “'r'’, you could find
the line by entering the command:

:/edit edit.r/<CR>

& The asterisk matches any repeated characters except the
first ., \, [, or ~in that group. For example, if a line in your
file contains the pattern *‘the xxxx editor’’, you could search
for the line by entering the command:

:/the x* editor/<CR>

[ Brackets are used to enclose a variable set of characters.
For example, if a line in your file contains the
patterns‘‘file2", “'file3"" and ‘‘file4"" you could search for the
first occurrence of these patterns by entering the
command:

:/file[2-4]/<CR>

$ The dollar sign is interpreted by the editor to mean
“end of the line"". It is used to identify patterns which
occur at the end of a line. For example, if a line in your file
ends in the pattern‘‘last character'’’, you could find the line
by entering the command:

:/last character$/<CR>

The circumflex (caret) works like ““‘$"" except it looks for the
pattern at the beginning of the line. For example, if a line in

2-12



EDIT EDITOR

your file begins with the pattern *‘First character’, and you
could find the line by entering the command:

:/ First character/<CR>

\ The backslash is used to cancel the meaning of the special
characters. It should be placed immediately before the
character it is to nullify. For example, if a line in your file
contains the pattern “This is a $"’, you could search for it
by entering the command:

:/This is a \$/<CR>

The character $ will be searched for instead of interpreting
it as meaning ‘‘end of the line".

To search for the actual characters ., *, \, [, ], $, or , you must
precede the characters with a backslash. You can also combine
these special characters in one search command. For example, .*
can be used to search for any string of characters.

2-13



EDIT EDITOR

MAKING CORRECTIONS TO THE FILE

There are several edit commands you can use to make corrections
to a file. These commands are: append, input, delete, substitute,
change, move, and copy.

Appending Text

The append command (abbreviated a) is used to input text in the
buffer after the current line. It places edit in the text input mode.
While in this mode, the colon prompt on the command line is not
displayed. Anything you type, except a period on a line by itself, will
be entered on lines of text in the buffer. To leave the text input
mode, simply enter a period “*.”" on a line by itself and depress the
carriage return. Edit will then return to the command mode and

Y2

display the command line prompt “‘:"".

As previously discussed in “‘GETTING STARTED," the append
command can be used to input text when the buffer is empty. The
append command can also be used to input text anywhere in an
existing file. The following steps outline how to append text to the
current line:

1. Move to the place in the buffer where you want to append
text. This can be done using movement commands or a
search command. The line you select becomes the current
line.

2. Enter the command:
:append<CR> or :a<CR>

The colon prompt will no longer be displayed on the command
line.

3. Enter any text you like using as many lines as you like.



EDIT EDITOR

4. To leave the text input mode and return to the command
mode, enter a period ‘.”" on a line by itself and depress the
carriage return.

5. The command line prompt *‘:"" will reappear. This indicates
that you may enter another edit command.

Inserting Text

The insert command (abbreviated i) works similarly to the append
command. The only difference is that text is inserted before instead
of after the current line. To insert text in the buffer, enter:

:insert<CR> or :i<CR>

on the command line. You may now begin inserting text. To return
to the command mode, simply enter a period *“.”" on a line by itself
and depress the carriage return. The command prompt will be
displayed on the screen.

Changing Text

There may be instances when you want to delete one or more lines
and insert new text in their place. This can be accomplished easily
with the change command (abbreviated ¢). The change command
instructs edit to delete specified lines and then switch to text input
mode in order to accept text to replace the lines. The number of
lines you insert does not have to match the number deleted. For
example, if you want to change the current line, enter:

:change<CR> or :c<CR>
The colon prompt will no longer be displayed. You may begin
inserting as many lines of text as you want. To return to the

command mode, enter a period ‘.’ on a line by itself and depress
the carriage return.

2-15



EDIT EDITOR

If you want to replace lines 25 through 34 with some new text, you
would enter:

:25,34c<CR>

Edit will respond with:
10 lines changed

The colon prompt will no longer be displayed. The procedure for
entering text and for returning to the command mode is the same
as for changing one line. By default, if five or fewer lines are
changed, edit will not display the number of lines being changed.
(See report option given in Chapter 4.)

Deleting Text

The delete command (abbreviated d) is one of the easiest
commands to execute. This command can also be disastrous if you
are not careful when using it. To delete the current line, all you
have to do is enter:

:delete<CR> or :d<CR>

This will delete the line and display the next line which becomes the
current line.

[l

Note: You can use the undo command *‘u’’ to retrieve
deleted lines as long as you have not executed any other
commands which changed the buffer. (See ‘‘Recovering
Lost Text."")

If you know the line number of a line you want to delete, you can
enter the line number followed by delete or d. For example:

:15d<CR>

will delete line 15. You can also delete a range of lines by using
commands such as 2,3d to delete lines 2 and 3, or 2,8d which will
delete lines 2 through 8.

2-16



EDIT EDITOR

When one or more lines are deleted, the numbers of all following
lines are changed. When deleting different groups of lines from a
file, it is easier to start with the higher line numbers and work
toward the lower line numbers.

If you do not know the line number, you can search for the line and
then delete it. Searching for text is discussed in *‘Forward and
Backward Search Commands."”

Substituting Text

To change any characters on an existing line without replacing the
whole line, you can use the substitute command (abbreviated s).
The substitute command searches for a specified pattern and then
changes the pattern accordingly. The substitute command normally
executes on the current line.

Note: The global option can be used with the substitute
command, but you must be very careful. (See “‘Global
Substitutes.”")

Using the substitute command can sometimes be confusing to a
novice user. However, if you think about the parts of the command,
it is really very easy. The format of the command is:

:s [ old-pattern/ new-pattern/p

The *'s’’ is the substitute command. The ‘‘/old-pattern/"’ tells edit
to search the current line for the pattern. The ‘‘new-pattern/" tells
edit what to substitute for ‘‘old-pattern’’, and *'p’’ tells edit to
display the new form of the current line. For example, if the current
line is ‘‘Substituting is very confusing.” and we want to change it to
““Substituting is very easy."’, we would use the command:

:s/confusing/easy/p<CR>

2-17



EDIT EDITOR

If you want to delete the word “‘very’” from the new sentence, you
could use the substitute command and not put a pattern where the
new pattern should be.

:s/very //p<CR>

Your new sentence would be "*Substituting is easy.’” Notice that a
blank space was also removed because edit considers it a character.

Special Substitution Characters

All the special search characters given in ‘‘Special Search
Characters’ are also special characters in the search portion of
substitution commands. However, there are two characters which
have special meaning when used in the replacement portion of
substitute commands. These characters are & and ~.

& The ampersand (&) character is used to save you from
having to repeat the search portion of the substitute
command when you are only adding characters. For
example, if a line in your file contains the pattern
““The game is tonight”" and you wanted to change it to
“The game is tonight at eight"" you could use the following
substitute command:

:s/The game is tonight/& at eight/p<CR>
The tilde (7) character works similar to the ampersand (&)

character, except that it also repeats previous substitution
commands.

To turn off the special meaning of the & and the ~ in the substitution
command, it must be preceded by a backslash (\). These special
characters will work with all types of substitution commands.

2-18



EDIT EDITOR

Global Substitutes

A global substitute is similar to a regular substitute, except that
instead of only working on the current line it works on every line in
the buffer. Before trying to understand global substitutes, be sure
you understand regular substitutes. (See ‘“‘Substituting Text."")

You must be very careful when using global substitutes. There may
be an occasion when you want to use a global substitute, but the
pattern you want to search for may not be unique. If you think a
line you want left alone might change, first perform a global search
and display all the lines. You may be able to find a pattern that is
unique only to what you want changed. The format of a global
substitute is as follows:

: g/old-pattern/s [ old-pattern/ new-pattern/gp

In this example, the ‘‘g/old-pattern/' instructs edit to search for
every occurrence of ‘‘old-pattern’’. The ‘‘s/old-pattern/new-
pattern/’’ instructs edit to substitute ‘‘new-pattern’’ for every
occurrence of ‘“‘old-pattern’’. The ''g’’ after the substitute command
instructs edit to execute the substitution for every occurrence on
each line in case “‘old-pattern’ is on a line more than one time. The

“p"’ tells edit to display all the lines where substitutions were made.

Note: The ‘‘g’’ at the end of the command should be
omitted if you only want the first occurrence of the pattern
on each line to change.

When using a global substitute command where the pattern you
search for is the same as the pattern you want to change, you can
use an abbreviated version of the command. For example, the
command:

:g/old-pattern/s/ [ new-pattern/gp

will execute the same as the previous example. This saves you from
having to input the pattern (old-pattern) in twice.

2-19



EDIT EDITOR

Edit also allows you to execute a global substitute within a range of
lines. For example:

:85,75g/old-pattern/s [ [ new-pattern/ gp<CR>

would only perform the substitutions from line 35 to line 75. All
other lines would not be affected. This option allows you a much
greater flexibility when using global substitutes.

If you decide you do not like what happened when you used the
global substitute you have two choices. You can either try the undo
command or you can quit the editor without writing the buffer into
the file. (See ""RECOVERING LOST TEXT.")

If you are not sure whether or not you want to keep the changes,
you can write the buffer to a new file, and then either use the undo
command or quit without writing. This way you can review both files
before deciding which one to keep. (See “‘Writing the Buffer to
Another File.”")

Copying Text

Edit allows you to make a copy of specified lines in the buffer and
insert them where you want by using the copy command. The
original lines will remain unchanged. The copy command has the
same format as the move command. For example:

:14,19copy<CR> or :14,19c0o<CR>
would make a copy of lines 14 through 19 and place it at the end of
the buffer. The original lines 14 through 19 will stay the same.

When the command has finished executing, the lines are
automatically renumbered.

Note: The abbreviation for the copy command is co. The ¢
command is to change lines of text.

2-20



EDIT EDITOR

Moving Text

Edit allows you to move lines of text from one location to another in
the buffer by using the move command (abbreviated m). You are
allowed to move as many lines as you want. For example,

:2m15<CR>

would move line 2 to the position after line 15, and then renumber
the lines. If you wanted to move a block of text, you could use the
command:

:2,20m25<CR>

which would move lines 2 through 20 to the position after line 25.

When using the move command, you can specify the end of the
buffer by using the $ character instead of the line number. This is
often much easier than looking to see what is the last line number.
Two examples of using the $ in a move command are:

:15,$m10<CR> and :1,20m$<CR>

The first example would move lines 15 through the end of the buffer
to the position after line 10.

The second example would move lines 1 through 20 to the end of
the buffer.

2-21



EDIT EDITOR

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of
the buffer to a new file. This allows you to keep copies of the buffer
in various states of change. To write the whole buffer to another
file, simply use the write command and the name of the file. For
example:

:write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the
editor will display the message:

"filename" File exists - use "w! filename" to overwrite

When this occurs, you can either use a different filename, or use the
w! command to overwrite the file. If you overwrite the file, the
information being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must
specify the beginning and ending lines you want to write. For
example,

:85,%w save<CR>

will write lines 85 through the end of the buffer to the file named
save. The write command does not change the buffer.

2-22



EDIT EDITOR

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents
of another file into the buffer without destroying the text already
there. To use the read command, first move to the line where you
want the file appended. Then enter the read command using the
following format:

:read filename<CR> or :r filename<CR>

Edit will append a copy of the file after the current line, and issue a
message stating the name of the file, the number of lines, and the
number of characters that were inserted.

Obtaining Information About the Buffer

Edit maintains a record of the current information about the buffer.
To access this information, enter the file command (abbreviated f).
Edit displays the filename, your current position, and the number of
lines in the buffer. If the contents of the buffer have been changed
since the last time the file was written, the editor will tell you that
the file has been modified. It also displays what per cent of the way
you are through the buffer. For example, enter the command:

: £<CR>
The computer will respond with a message such as:

"filename" [Modified] line 15 of 75 --20%--

Note: After you save the changes by writing the buffer to
the file, the buffer will no longer be considered modified.

2-23



. EDIT EDITOR

ISSUING “"UNIX’" SYSTEM COMMANDS

Edit allows you to execute a single UNIX System command by
entering a command of the form:

: 'emd<CR>

where ““cmd’’ represents the command you want to execute. The
system will then execute the command. When finished, edit displays

i1y
.

an ! and then reissues the command line prompt ‘‘:"". You can then
continue editing or enter another UNIX System command.

If you need to execute more than one UNIX System command, enter
the command:

:sh<CR>

When you are finished executing UNIX System commands, enter
<CTRL d>. The editor will then display the message:

[Hit return to continue]
After depressing the carriage return, the editor will display the

command line prompt.

Caution: Be sure to write the buffer into the file before
escaping to the UNIX System. The editor will normally save
the buffer, but it will issue a message to remind you.

2-24



EDIT EDITOR

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) has the ability to reverse the
effects of the last command executed which changed the buffer.
This enables you to restore the buffer after making an editing
mistake. To execute the undo command enter:

:undo<CR> or :u<CR>

The undo command only works on commands such as append,
insert, delete, change, move, copy, and substitute. You can also
undo an undo if you decide to keep the change. Commands which
do not affect the buffer such as: write, edit, and print cannot be
undone.

Recovering Lost Files

If the system crashes, you can recover the contents of the buffer by
using the recover command. The recover command cannot be
abbreviated. You will normally receive mail the next time you login
giving you the name of the file which has been saved for you. You
should then change to the directory containing the file being edited
when the system crashed. Then access the file by entering:

:edit filename<CR>

replacing ‘‘filename’’ with the name of the lost file. Once in the
editor, enter:

:recover filename<CR>

Recover is sometimes unable to save the entire contents of the
buffer, so always check the contents of the saved buffer before
writing it back to the original file.

If something goes wrong with the editor when you are using it, do
not leave the editor. You may be able to save your work by using
the preserve command (abbreviated pre). This saves the buffer as if
the system had crashed.

2-25



EDIT EDITOR

If you are writing the buffer into the file and you get the message:
Quota exceeded

you have tried to use more disk space than you are allotted. When
this happens, it is likely that only part of the buffer was written into
the file. When this happens you should escape to the UNIX System
using the sh command and remove some files you do not need.
Then, try writing the file again. If this is not possible, enter the
command:

:preserve<CR>

and then get help from the person who is administrating the system.
Do not quit the editor or your buffer will be lost.

After using the preserve command and then finding the cause of
your problem, you can use the recover command again.

2-26



Chapter 3

EX EDITOR

PAGE

INTRODUCTION . ...ttt ittt teaaennannenaanannnnns 3-1
CURRENT LINE DEFINITION . . . .. oottt ittt iiiiei e e it 3-2
GETTING STARTED . v« o655 5 516 i 551 o w10 101 6 00 o 01 5 100 200 0 im0 = miies oo, o o, s 8918 8 § 8 3-3
CreatingaMNew File..........cooitiiiiiiiiiiiiiiiiiiiinn, 33
Entering Text .. ...ttt inennannnnnnn 3-4
Leaving the lnput Mode . .......... ... i, 3-4
Writing the Buffer intothe File.................. ..o, 3-5
Quittingthe Editor ...... ... ..ottt 3-6
Editing an Existing File . . . . ... ... it 3-7
DISPLAYING LINESIN THE FILE . . . . ..t iieeeeeeees 3-8
MOVING AROUNDIN THE FILE. . . .. ... eei e 3-8
MAKING CORRECTIONS TOTHEFILE .......... 0ttt 3-8
FILE MANIPULATION ... .cciccisciosios@nsiossisissiosissassaenansssnsan on e 3-8
Writing the Buffer to Another File ............... ..., 3-8
Reading Another File Into the Buffer ................. ... oot 3-9
Obtaining Information Aboutthe Buffer.......................... 3-9
Read-Only Mode .........cuinimiininiinntinenneenncnneeneenns 3-10
Editing More ThanOne File ..............iiuiitiiitinnnnnns 3-10
Editing Multiple Files and Using Named Buffers ................... 3-11
ISSUING "UNIX" SYSTEM COMMANDS . ...... ... iiiiiiiiiiianreenn 3-12
RECOVERING LOST TEXT ...ttt iiiittiiiiiinenennennaaaeneeaensesas 3-12
Undoing the LastCommand .. ........ ...ttt 3-12
RecoveringLost Files ......... ... .. i, 3-12
Recovering from Hang-upsand Crashes . . . ....................... 3-13
Errorsandinterrupts ...........cciiiiiiiiiiiinercennceeennnns 3-14
COMMENT LINES ...ttt iiiiiiiitittttaeaanesannsnnnnnnns 3-14
MULTIPLE COMMANDS PERLINE ........ ... 00t 3-14
OPTION DESCRIPTION . .. ...ttt iiieeeeeanaaaneaeanns 3-15

Ex Command LineOptions ............oiiiiiiiiiiieeennnns 3-15






Chapter 3

EX EDITOR

INTRODUCTION

This chapter describes the ex editor used on the 3B2 Computer. Ex
provides the advanced user a wide range of commands and options,
but can also be used by new or casual users who only need a simple
editor.

When using the ex editor, all commands must be entered on a

command line. The command line is identified by a colon **:"" on a
line by itself. Commands entered on the command line can affect
the line you are on in the file (current line), a specified set of lines,

or the entire file.

Most ex editor command names are English words, which can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For
example, since substitute is abbreviated by s, set is abbreviated by
se.

3-1



EX EDITOR

The ex editor does not directly modify the file being edited. Instead,
it works on a copy of the file stored in a temporary memory location
called the buffer. The edited file is not changed until you write the
changes from the buffer to the edited file.

This editor description assumes that you know how to logon to the
computer. If you do not, refer to the 3B2 Computer
Owner /Operator Manual.

For additional information on the ex editor, see the UNIX System V
manual pages in the Appendix.

CURRENT LINE DEFINITION

The term “‘current line” is referred to throughout this chapter. The
current line is the line in the file you are presently on. Each time
you move to a different line in the file, that line becomes the current
line. Whenever a command is given, the current line is used as a
reference point. Any command which is not directed at any specific
line is executed against the current line. You should always know
which line is the current line, or you could make a real mess of the
file.

3-2



EX EDITOR

GETTING STARTED

The ex editor can be used to create a new file or to modify an
existing file. To execute ex, you must be logged onto the computer.
After the $ or # prompt is displayed, you can begin working with the
ex editor.

Creating a New File

To create a new file, you will need to type ex followed by a space
and then the name of the file you wish to create. Execute the
command by depressing the carriage return <CR>. For example:

$ ex filename<CR>
"filename" [New file]

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will
need to reenter the command correctly.

If you entered the ex command without a filename, the editor will
still create a new file. However, when you decide to write the file
into memory you will be prompted for a filename. See “‘Writing the
Buffer Into the File.”

When the ex command is executed, a colon ‘‘:"" is displayed. The
colon identifies the command line and indicates that the ex editor is
ready to accept your input commands.

3-3



EX EDITOR

Entering Text

Most ex commands have two forms: a word which describes what
the command does and an abbreviation of the word. You can use
either form. Many beginners find the full command name easier to
remember, but after some practice use the abbreviation. The
command to input text is append, which may be abbreviated a.
Enter append after the colon on the command line and then depress
the carriage return.

:append<CR> or :a<CR>

The ex editor is now in the text input mode (append mode). The
colon is no longer displayed on the command line, and this is your
signal that you may begin entering lines of text. Anything that you
type on your terminal, except a period on a line by itself, is entered
into the buffer. If the error message:

Not an editor command

is displayed, check to see what you entered incorrectly and then
enter the command again.

Note: The computer considers a blank space to be a
character. Be careful not to input blanks into lines of text
unless you mean for them to be there.

Leaving the Input Mode

To leave the input mode, simply enter a period ““.” on a line by itself
and depress the carriage return. This is the signal that you want to
stop inputting text. After receiving a period on a line by itself, ex will
reenter the command mode and display the command line prompt

The text just entered is now stored only in the buffer. If you wish,
you can make changes to the text. Making changes is discussed
throughout the remainder of this chapter.

3-4



EX EDITOR

Writing the Buffer into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the actual
file. This is the only way to save new text from one editing session
to another. To write the contents of the buffer to the file, use the
write command (abbreviated w).

:write<CR> or :w<CR>

Ex will then copy the buffer into the file. If the file does not yet
exist, a new file will be created and a message will be given
indicating that it is a new file. The newly created file will be given
the name specified when you entered the editor, in this case
““filename’’. To confirm that the file has been successfully written,
the editor will repeat the filename, and give the number of lines and
the total number of characters in the file. The buffer remains
unchanged, so you can make further changes if you want to.

Ex must have a filename to use before it can write a file. Therefore,
if you did not indicate the name of the file when you began the
editing session, ex will issue the message:

No current filename

when you give the write command. If this happens, simply reenter
the write command and specify the filename. In this case you would
enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file named ‘‘filename’’.

3-5



EX EDITOR

Quitting the Editor

When you have finished editing the file and you are ready to return
to the UNIX System, enter the quit command (abbreviated q).

:quit<CR> or :q<CR>
This returns you to the UNIX System unless you forget to write the
buffer to the file. When this happens, you will receive a message
reminding you to write the file. A quick way to write and quit the ex
editor is with the single command:

:wg<CR>

If for some reason you do not want to save the changes, enter the
command:

:q! <CR>

This will quit ex and leave the file unchanged from the last write
command.

3-6



EX EDITOR

Editing an Existing File

To edit the contents of an existing file named *‘filel”’, you begin by
issuing the command:

$ ex filel<CR>
"filel" 150 lines, 4285 characters

This places a copy of the file in a buffer, and displays how many

lines and characters are in the file. A colon *':"" will then be
displayed, which is the command line.

Note: If you do not give a filename, ex will create a new file
instead of editing the file you want.

After the file description and the colon *':"" are displayed, enter a 1
on the command line followed by a carriage return. This will make
the first line in the file the current line. The actual editing process is
described throughout the remainder of this chapter.

The procedure for saving changes to the buffer is described in
“Writing the Buffer Into the File.”” The procedure for quitting the
editor is described in “‘Quitting the Editor."”

3-7



EX EDITOR

DISPLAYING LINES IN THE FILE

The procedures for displaying lines of a file when using the ex editor
are the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MOVING AROUND IN THE FILE

The procedures for moving around in a file when using the ex editor
are the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MAKING CORRECTIONS TO THE FILE

The procedures for making corrections to a file when using the ex
editor are the same as for the edit editor. Refer to the procedures
given in Chapter 2.

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of
the buffer to a new file. This allows you to keep copies of the buffer
in various states of change. To write the whole buffer to another
file, use the write command and the name of the file. For example:

:write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the
editor will display the message:

"filename" File exists - use "w! filename" to overwrite

When this occurs, you can either use a different filename, or use the
w! command to overwrite the file. If you overwrite the file, the
information being overwritten is no longer accessible.

3-8



EX EDITOR

If you only want to write part of the buffer to another file, you must
specify the beginning and ending lines you want to write. For
example:

:85,%w save<CR>

will write lines 85 through the end of the buffer to the file named
save. The write command does not change the buffer.

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents
of another file into the buffer without destroying the text already
there. To use the read command, first move to the line where you
want the file appended. Then enter the read command using the
following format:

:read filename<CR> or :r filename<CR>

Ex will append a copy of the file after the current line, and issue a
message stating the name of the file, the number of lines, and the
number of characters that were inserted.

Obtaining Information About the Buffer

Ex maintains a record of the current information about the buffer.
To access this information, enter the file command (abbreviated f).
Ex displays the filename, your current position, and the number of
lines in the buffer. If the contents of the buffer have been changed
since the last time the file was written, the editor will tell you that
the file has been modified. It also displays what per cent of the way
you are through the buffer. For example, enter the command:

: £<CR>
The computer will respond with a message such as:

"filename" [Modified] line 15 of 75 --20%--

3-9



EX EDITOR

Note: After you save the changes by writing the buffer to
the file, the buffer will no longer be considered modified.

Read-Only Mode

If you want to look at a file you have no intention of modifying, you
can execute ex in the read-only mode. This mode protects you from
accidentally overwriting the file. The read-only option can be set by
using the -R command line option, by the view command line
invocation, or by setting the read-only option. It can be cleared by
setting the noreadonly mode. (See “OPTION DESCRIPTION.") It is
possible to write, even while in the read-only mode, by writing to a
different file or by using the :w! command.

Editing More Than One File

The ex editor is normally used to edit the contents of a single file,
whose name is recorded in the current file. However, if you want to
access another file without quitting ex, you can use the e command.
For example:

:e file2<CR>

where “file2" is the name of the second file. This allows you easy
access to both files. The current file is always the one currently
being edited. The alternate file is the other file you have access to.

When you want to change to the alternate file, use the e command
with the filename. Each time you use the e command to change
files, the file you name becomes the current file and the file you
leave becomes the alternate file.

When using the e command within the editor, normal shell expansion
conventions such as “f*1" for ‘‘filel’”’ may be used. In addition, the
character % can be used in place of the current filename, and the
character # in place of the alternate filename. For example:

e #<CR>

will cause the alternate file to become the current file, and the

3-10



EX EDITOR

current file will become the alternate file. This makes it easy to deal
alternately with two files and eliminates the need for retyping the
filename.

Editing Multiple Files and Using Named Buffers

When you have several files that you want to edit without actually
leaving and reentering the ex editor, you can list these files in your
ex command. After receiving the command line prompt **:"', you can
edit filel as described in this chapter. The remaining arguments are
placed with the first file in the argument list. To display the current
argument list, enter the args command on the command line. To
edit the next file in the argument list, enter the next command on
the command line. The following example shows how to enter three
files with the ex command, how to display the argument list, and

how to change to the next file to be edited.

—
$ ex filel file2 file3<CR>

3 files to edit

"filel" xxx lines, xxxx characters
:args<CR>

[filel] file2 file3

:next<CR>

"file2" xxx lines, xxxxXx characters

The argument list can be changed by specifying a list of filenames
with the next command. These names are expanded with the
resulting list of names becoming the new argument list, and ex edits
the first file on the list.

For saving blocks of text while editing, and especially when editing
more than one file, ex has a group of named buffers. These are
similar to the normal buffer, except that only a limited number of
operations are available on them. The buffers have names a
through z. It is also possible to refer to A through Z; the uppercase
buffers are the same as the lowercase, but commands append to
named buffers rather than replacing if uppercase names are used.

3-11



EX EDITOR

ISSUING ""UNIX"” SYSTEM COMMANDS

The procedure for issuing UNIX System commands from the ex
editor is exactly the same as for the edit editor. Refer to the
procedure given in Chapter 2.

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) has the ability to reverse the
effects of the last command executed which changed the buffer.
This enables you to restore the buffer after making an editing
mistake. To execute the undo command enter:

:undo<CR> or :u<CR>

The undo command only works on commands such as; append,
insert, delete, change, move, copy, and substitute. You can also
undo an undo if you decide to keep the change. Commands which
do not affect the buffer such as: write, edit, and print cannot be
undone.

Recovering Lost Files

If the system crashes, you can recover the contents of the buffer by
using the recover command. The recover command cannot be
abbreviated. You will normally receive mail the next time you login
giving you the name of the file which has been saved for you. You
should then change to the directory containing the file being edited
when the system crashed. Then, access the file by entering:

:ex filename<CR>

replacing ‘‘filename’’ with the name of the lost file. Once in the
editor, enter:

:recover filename<CR>

Recover is sometimes unable to save the entire contents of the
3-12



EX EDITOR

buffer, so always check the contents of the saved buffer before
writing it back to the original file.

If something goes wrong with the editor when you are using it, do
not leave the editor. You may be able to save your work by using
the preserve command (abbreviated pre). This saves the buffer as if
the system had crashed.

If you are writing the buffer into the file and you get the message:
Quota exceeded

you have tried to use more disk space than you are allotted. When
this happens, it is likely that only part of the buffer was written into
the file. When this happens, you should escape to the UNIX System
using the sh command and remove some files you do not need.
Then, try writing the file again. [f this is not possible, enter the
command:

:preserve<CR>

and then get help from the person who is administrating the system.
Do not quit the editor or your buffer will be lost.

After using the preserve command and then finding the cause of
your problem, you can use the recover command again.

Recovering from Hang-ups and Crashes

If a hang-up signal is received and the buffer has been modified
since it was last written, or if the system crashes, either the editor
(in the first case) or the system (after it reboots in the second case)
will attempt to preserve the buffer. The next time you log in you
should be able to recover the work you were doing, losing at most a
few lines. To recover a file you can use the -r option. For example:
If you were editing the file ‘‘filename’’, you should change to the
directory where you were when the crash occurred, and give the
command:

:ex -r filename<CR>

3-13



EX EDITOR

After checking that the retrieved file is good, you can write it over
the previous contents of the file.

You will normally get mail from the system telling you when a file
has been saved. The command ex -r will print a list of the files
which have been saved for you. In the case of a hang-up, the file
will not appear in the list, although it can be recovered.

Errors and Interrupts

When errors occur, ex rings the terminal bell (or flashes the terminal
screen) and prints an error message. [f the primary input is from a
file, editor processing will terminate. If an interrupt signal is
received, ex will display the message:

Interrupt

and returns to its command level. If the primary input is a file, ex
will exit.

COMMENT LINES

It is possible to give editor commands which are ignored. This is
useful when making complex editor scripts for which comments are
desired. The comment character is the double quote ". Any
command line beginning with " is ignored. Comments beginning
with " may also be placed at the end of commands except in cases
where they could be confused as part of the text (shell escapes,
substitute commands, and map commands).

MULTIPLE COMMANDS PER LINE

More than one command may be placed on a line by separating
each pair of commands with a | character. However, global
commands, comments, and the shell escape (!) must be the last
command on a line, as they are not terminated by al.

3-14



EX EDITOR

OPTION DESCRIPTION

The options that you can set when using the ex editor are basically
the same as for the vi editor. For a listing and a description of these
options, see Chapter 4.

Ex Command Line Options

Instead of just entering the standard ex editor, you can use a
number of options which are sometimes helpful. An example of a
command line showing the proper format for using options is shown
below.

ex [-1[-v][-t tag][-r][-wn][-R][+command] filename

These options are given in the following list, along with a short
description of their function.

- The - command line option suppresses all interactive-user
feedback and it is useful in processing editor scripts in
command files.

-v  The -v option is equivalent to using vi rather than ex.

-t The -t option is equivalent to an initial tag command, editing
files containing tag and positioning the editor at its
definition.

-r  The -r option is used in recovering after an editor or system
crash, retrieving the last saved version of the named file, or,
if no file is specified, typing a list of saved files.

-w  The -w option sets the default window size to n and is useful
on dial-ups to start in small windows.

-R  The -R option sets the read-only option at the start.

+command
An argument of the form +command indicates that the
editor should begin by executing the specified command. If
+command is omitted, ex will make the last line of the first
file the current line.

3-15



EX EDITOR

filename
The filenarme arguments indicate the file to be edited. More
than one filename can be given if several files are to be
edited. See “FILE MANIPULATION" for further information
on editing multiple files.



Chapter 4

VISUAL EDITOR (vi)

PAGE

INTRODUCTION ... .. ciiiiitiiiittitenaneeenanananssonseasnseees 4-1
Relations Between viand ex Editors . ........... .. ... o o il 4-2
GETTING STARTED ... . w05 sis s s 616 sia s o awa s ea o st s o s wie w s 010 a0 0 0 e oo 4-3
Defining Your Terminal .............. 00ttt 4-3
Setting Up Your Terminal Configuration ......................... 4-3
CreatingaNew File........ ... i iiiiiiiiiiiiiinnnnnnns 4-4
Entering Text . ........tiiiiiiiiiiiininriiiiinnneneeenns 4-5
Leaving the Text Insertion Mode. . ............. ..., 4-5
Writing the Buffer Intothe File................. ..o 4-5
Quittingthe Editor ......... .. i 4-6
Editingan Existing File . . . .. ... .. it 4-7
Reading an Existing File . . ......... ... . i, 4-8
MOVING AROUND IN THE FILE . . . . ...ttt it ittt iaeanaennn 4-9
Scrolling and Paging Through the Screen ........................ 4-10
Cursor MOVEMIENES . o s vseesesomeiainmenyannencosssnossesese 4-11
Searching Through theFile ............ ... ... ... .. .. uunn 4-14
Repeating Searches. . ........ ...ttt enaeneennns 4-15
Special Search Characters .............coitiiinneenerinrnnenns 4-15

Go To, Find, and Previous Context Commands. .................... 4-17
MAKING SIMPLE CHANGES ... ... . it iiiiiitiniiiiinaeneneeeeens 4-18
INPURING TEXE ¢ ¢ cwis sssmsmemsimsssmesesnsmsssssnonsnseeessn e 4-18
Removing Text . ......cititiitieeeennnnnnennecnnonnenceceas 4-20
Changing Text. . ... iiiiininniiinnieeeneennnneeenennnen 4-21
COPYING TEXT . . v voe oo oo mie ot s 506 505 5068 608 508 @5 9 8 50 @08 008 31 ¥ 98 oy 5 8" 8 9g s e 4-23
The Conceptof Yankand Put............ ... ... e, 4-23
Copying ObjJects . ........iitiiuineneniieniinerenennonnenns 4-25
MOVING TEXT o 5 2 500 w5 w05 v w90 so0sy 5560 5 6 5 18 5ot # 505 o 1 8 1 1ms # (w1 0 o5 3 om0 & i 30 3, i i o 4-28
GLOBAL COMMANDS .. oo o35 505 60 s/msis s s awsis s eesesenennasanosss 4-30
Global Searches. . .:::isissssscccsssssviasssvivsaamsmensesnsne 4-30
Global SUBSHIULES « . o055 55 5650 s 5595 G565 889808 91888088 e s s 5o wie biw 4-31

REPEATING ACTIONS WITH THE.COMMAND . ........ ... ...t 4-32



FILE MANIPULATION . .cisivsosvisenisnmasodamemiassmimsmsmsmaninsss 4-33

Writing the Buffer to Another File ............ ... ... ... ... ... 4-33
Reading Another File Intothe Buffer .................. ... ... ... 4-34
Reading the Output From "UNIX" System Commands Into the
Buffer  ccsosomsmsss st o smsmemsssmens @i esessis @ oe s eesssssese 4-35
Changing Filesinthe Editor .. ... ... ...ttt rnnnnnn 4-35
Editing Multiple Files and Using Named Buffers ................... 4-37
Read-Only Mode ......... .. iiiiiiiiiiiiiinennennnnnannnnns 4-38
Obtaining Information AbouttheBuffer.......................... 4-38
ISSUING "UNIX" SYSTEM COMMANDS . . .......00iiinttiinnnennnnnnnn 4-39
RECOVERING LOST TEXT ... iiitiittittieinntenennenneensennannenns 4-40
Undoing theLastCommand . ................ e, 4-40
Recovering Lost Lines . .. ... . i ittt 4-40
Recovering Lost Files .. ... ... ... . . i, 4-41
MARKING LINES . . ... i it i i ittt eeeeeeenn 4-42
WORD ABBREVIATIONS . ... ittt ittt ittt ettt ee e 4-43
ADJUSTING THE SCREEN . . . .. ..ottt ittt ettt et eeeann 4-43
LINE REPRESENTATION IN THE DISPLAY .. ... ..iitiii e, 4-44
Lifie NUMIDEOTS o oo os 5 s wra wiw a6 s 65190818 5686 5 55 5 85159 8005 556 ou i b m 4-44
List All Charactersonaline...........c.uiuiieinninnennennnnn.. 4-44
MACROS o5 5is 50 i 565 55 00555 6605 1505 68 1505 505 50 51655 i o om0 0 o1 w0 o 31 o i bl soios & 10 0 4-45
OPTIONS: © ;¢ s 0 50 505 505 57505 155 57 55 55 5055 8 595 i £ e » i o e oo st i s 4 o0t o 5t m 2ot o b4 o 4-47
Setting Options . ... ... .. .. i e .. 4-47
Listof Options. . ... ...ttt ittt it e e 4-49

CHARACTER FUNCTIONS SUMMARY . .......ovitiinninnnnnennnnnnn.n. 4-55



Chapter 4

VISUAL EDITOR (vi)

INTRODUCTION

This chapter describes the visual editor (vi)* used on the 3B2
Computer. Viis an interactive text editor that uses the screen of
your terminal as a window into the file you are editing. Any changes
you make to the file are reflected on the screen.

The vi editor does not directly modify the file you are editing.
Instead, it makes a copy of the file in a buffer and remembers the
file’'s name. You do not affect the contents of the original file unless
you write the changes made back into the original file.

Most vi commands move the cursor around in the buffer. A small
set of operators such as d for delete and ¢ for change alter the text
in the buffer. Some of these commands and operators are
combined to form operations such as ‘‘delete a word’' or ‘‘change a
paragraph.” the mnemonic assignment of commands to keys makes
the editor command set easy to remember and use.

The visual editor (vi) was developed by the Electrical Engineering and Computer
Science Department of the University of California, Berkeley Campus.

4-1



VISUAL EDITOR (vi)

There are normally several different vi editor commands you can use
to get the same results. If you are trying to use vi for the first time,
pick a few commands and use them until you no longer have to look
them up. Then gradually try using new commands. You will
eventually find more efficient ways of doing the same things. The
“CHARACTER FUNCTIONS SUMMARY"" at the end of this chapter
provides a complete list of vi commands.

This editor description assumes that you know how to logon to the
computer. If you do not, refer to the 3B2 Computer
Owner /Operator Manual.

For additional information on the vi editor, see the UNIX System
user manual pages in the Appendix.

Relations Between vi and ex Editors

The vi editor is actually one mode of editing within the ex editor.
When you are running vi, you can escape to the line-oriented editor
(ex) by giving the Q command. Most ex commands can be invoked
separately from vi by first entering a : and then the ex command.
To execute the command, depress the carriage return.

In rare instances, an internal error may occur in vi. In this case, you
will get a diagnostic and be left in the command mode of ex. You
can then save your work and quit, if you wish, by entering the
command:

:x<CR>

If you would rather re-enter vi, you can enter the command:
:vi<CR>

Experienced users often mix their use of ex command mode and vi

command mode to speed the work they are doing. The ex editor is
described in Chapter 3.

4-2



VISUAL EDITOR (vi)

GETTING STARTED

Defining Your Terminal

To use the vi editor, your 3B2 Computer needs to know what type of
terminal you are using. The file /etc/terminfo contains the
parameters of various terminals. Each type of terminal has a unique
code assigned to it. To access the information in /etc/terminfo,
you need to set the variable “TERM" to the code for your terminal
and then export the variable. For example, to tell the computer you
are using a TELETYPE* Model 5620 terminal, you would need to
enter the following commands:

$ TERM=5620<CR>
$ export TERMICR>
$

Setting Up Your Terminal Configuration

Vi will work on a large number of video display terminals, and new
terminal types can be added to a terminal description file. Before vi
can be used on some terminals, the terminal setup parameters will
need to be changed. The changes will vary depending on the
terminal. For example, the TELETYPE Model 5410 terminal has a
settable parameter called ““RCVD‘LF’" which should be set to
“INDEX"'. For instructions on how to change settable parameters,
see the manual supplied with the terminal.

Note: For more information on setting up your terminal, see
the 3B2 Owner /Operator Manual.

Registered trademark of Teletype Corporation

4-3



VISUAL EDITOR (vi)

Creating a New File

To create a new file, you will need to type vi followed by a space and
then the name of the file you wish to create. Execute the command
by depressing the carriage return <CR>. For example:

$ vi filename<CR>

will create a file named *‘filename’’, clear the screen, and place the
cursor at the top of the screen.

"filename" [New file]

Once the vi command is executed, proceed to “Entering Text."” If
you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used.
Re-enter the command correctly.

Another problem that can occur is if you gave the system an
incorrect terminal code (see GETTING STARTED). The editor may
make a mess out of your screen because vi sends control codes for
one kind of terminal to some other kind of terminal. In this case,
enter the command:

:q<CR>

This should get you back to the UNIX System shell. Make sure you
entered the correct terminal type and then try again.

4-4



VISUAL EDITOR (vi)

Entering Text

To begin inputting text in a file, you must enter the text insertion
mode. To do this you will need to enter either an a, an i, or an o
(not followed by a carriage return). Since these are vi commands,
they will not be displayed on the screen. After entering the text
insertion mode, any characters you type are entered into the buffer.

Note: The computer considers a blank space to be a
character. Be careful not to input blanks into lines of text
unless you mean for them to be there.

Leaving the Text Insertion Mode

To leave the text insertion mode, simply depress the <ESC> key.
The computer response should be to backspace one character. This
will return you to the command mode.

Returning to the command mode does not destroy the text in the
buffer. You must return to the command mode to perform any
other type of editor command.

Writing the Buffer Into the File

The buffer is only temporary storage for the file you are editing.
Once you have entered text in the buffer, you need to write the
buffer to the actual file. This is the only way to save new text from
one editing session to another. To write the contents of the buffer
to the file, use the write command (abbreviated w).

:write<CR> or :w<CR>

Vi will then copy the buffer into the file. If the file does not yet exist,
a new file will be created, and a message will be given indicating that
it is a new file. The newly created file will be given the name

" specified when you entered the editor, in this case ‘‘filename’. To
confirm that the file has been successfully written, the editor will
repeat the filename, and give the number of lines and the total
number of characters in the file. The buffer remains unchanged, so
you can make further changes if you want to.

4-5



VISUAL EDITOR (vi)

Note: The :w command should be used every few minutes if
you are happy with the changes you have made. This will
keep you from losing all of your changes if you mess up the
file or decide you do not like the changes you have made
since the last time you wrote the file.

Vi must have a filename to use before it can write a file. If you did
not indicate the name of the file when you began the editing session,
vi will not write the file when you give the write command. If this
happens, simply reissue the write command and specify the
filename. In this case you would enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file hamed ‘‘filename’’.

Quitting the Editor

When you have finished working in the file and you are ready to
return to the UNIX System, there are several methods you can use.
If you have already written the buffer to the file, enter the
command:

:q<CR>

To write the contents of the buffer back into the file you are editing
and then quit the editor, enter the command:

:wq<CR>, :x<CR>, or ZZ (without depressing <CR>)

If for some reason you do not want to save the changes, enter the
command:

:q!<CR>

This will quit vi and leave the file unchanged from the last write
command.

4-6



VISUAL EDITOR (vi)

Editing an Existing File

To edit the contents of an existing file named ‘‘filename’’, you begin
by issuing the command:

$ vi filename<CR>

This places a copy of the file in a buffer. The screen should clear
and the text of your file should appear on the screen. For example:

-
This is the first line in the file.

This is the second line in the file.

When a tilde (°) is displayed on a line by
itself, it normally means "end-of-the-file".

"filename" 4 lines, 161 characters

If the editor printed a ‘‘New file”” message, you either gave the
wrong filename or you are in the wrong directory. In this case you
should enter :q<CR> to get you out of the editor. Check which
directory you are in and try entering the command again.

If the editor makes a mess out of your screen, perhaps you gave the
system an incorrect terminal type. In this case, enter :q<CR> to
get you back to the command level interpreter. If the editor does
not respond, try sending an interrupt to it by depressing the <DEL>,
<BREAK>, or <RUBOUT> key on your terminal. Then try entering
:q<CR> again. Figure out what you did wrong and try again.

Once you have executed the vi command and you are in the buffer,
you may begin moving the cursor around and modifying the file.
Procedures for saving the changes to the buffer are described in
“Writing the Buffer Into the File.”” Procedures for quitting the editor
are described in ‘*Quitting the Editor."”

4-7



VISUAL EDITOR (vi)

Reading an Existing File

If you only want to use the editor to look at a file rather than to
make changes, use the command:

$ view filename<CR>
This will set the read-only option which will prevent you from
accidentally overwriting the file. Commands which move the cursor
or modify the file will execute. However, if you try to use the write
command, you will receive the message:

"filename" File is read only

If you decide that you do want to make a change, you can still write
the buffer to the file by entering the command:

:w!<CR>

4-8



VISUAL EDITOR (vi)

MOVING AROUND IN THE FILE

The vi editor has a number of commands for moving around in a file.
These commands allow you to: scroll through the file; search for a
string of characters; or move from page to page, line to line, or
character to character. Most of these commands can be preceded
by a number to make movement in the file easier. A simple example
would be to depress the 5 key and then the return key, which will
move the cursor down 5 lines in the file.

Note: Searching for a string of characters will not work
when preceded by a number.

While reading through this chapter, you will notice that commands
such as <CTRL D>, <CTRL L>, or <CTRL H> are used. This refers
to commands where it is necessary to depress the control key and
one other key at the same time. These are referred to as control
characters. This may cause some confusion at first, but should not
be a problem when you actually start using the vi editor.

Note: When using the vi editor, be careful not to leave the
caps lock key locked down. Capital letter commands are
different from lowercase letter commands and you could
accidentally mess up your file. If you do execute the wrong
command, you can either use the undo command or quit
without writing. (See ""RECOVERING LOST TEXT.")

4-9



VISUAL EDITOR (vi)

Scrolling and Paging Through the Screen

Scrolling and paging are two of the ways to move through a file.
The main difference is that it is easier to read through a file
while scrolling because the screen rolls up or down one line at a
time. Paging causes the screen to be blanked each time a new
page is displayed.

Scrolling

Scrolling allows you to continuously read through the file you are
editing. <CTRL D> allows you to scroll down through the file
until you release the keys. You can also scroll up through the
file by using the <CTRL U> command. Some terminals cannot
scroll up at all, in which case depressing <CTRL U> clears the
screen and refreshes it with a line farther back in the file at the
top.

If you want to see more of the file below where you are, you can
depress <CTRL E> to expose one more line at the bottom of the
screen, leaving the cursor where it is. The <CTRL Y> command
is similar to the <CTRL E> command, except that it exposes one
more line at the top of the screen.

Paging

Paging is a way to move forward or backward through a file a
page at a time. The <CTRL F> command will move forward a
page, keeping a couple of lines of continuity between screens so
that it is possible to read through a file. The <CTRL B>
command is similar to the <CTRL F> command, except that it
will move backward a page.



VISUAL EDITOR (vi)

Cursor Movements

Moving Within a Line

Some commands move the cursor one position at a time, and
others move the cursor a word at a time. Preceding numbers
may be used with all these commands. Keys that move the

cursor a word at a time will wrap around the end of the line to
the next line. These commands are described in the following

list:

<CTRL H>

backspace

spacebar

Moves the cursor to the beginning of the
previous word

Moves the cursor to the end of the next word
Moves the cursor one position to the left
Moves the cursor one position to the right

Moves the cursor to the beginning of the next
word

Moves the cursor to the beginning of the
previous word without stopping at punctuation
marks

Moves the cursor to the beginning of the next
word without stopping at punctuation marks

Control character which moves the cursor one
position to the left

Moves the cursor one position to the left

Moves the cursor one position to the right.



VISUAL EDITOR (vi)

Note: On some terminals, the arrow keys will also move
the cursor around on the screen. Most experienced
users of vi normally prefer the h, j, k, and | keys because
they are usually right beneath their fingers.

Moving To Different Lines

There are several commands you can use to move the cursor to
a different line on the screen. All these commands except H, L,
and M take preceding numbers and act upon them. These
commands are described in the following list:

j Moves the cursor down
k Moves the cursor up

RETURN Moves the cursor to the first position on the
next line

+ Moves the cursor to the first nonwhite position
on the next line

- Moves the cursor to the first nonwhite position
on the previous line

H Moves the cursor to the top line of the screen
M Moves the cursor to the middle of the screen
L Moves the cursor to the last line of the screen

<CTRL N> Control character which moves the cursor down
a line in the same column

<CTRL P> Control character which moves the cursor up a
line in the same column.

4-12



VISUAL EDITOR (vi)

Moving Through a File

When working with a file containing text, it is often easier to
work in terms of sentences, paragraphs, and sections. The
following list describes some useful commands for working with
text. Preceding humbers may be used with sentence and
paragraph commands.

( Moves the cursor to the beginning of the previous
sentence.

) Moves the cursor to the beginning of the next sentence.

Note: A sentence is defined toend ata., !, or ?,
which is followed by the end of the line or two
spaces. Any number of ), },", and ' closing
characters may appear after the ., |, or ?, and
before the spaces or end of line.

{ Moves the cursor to the beginning of the previous
paragraph.

} Moves the cursor to the beginning of the next paragraph.

Note: A paragraph begins after each empty line
and also at each paragraph macro specified in the
paragraphs option. The .bp request is also
considered to start a paragraph.

[[ Moves the cursor to the beginning of the previous section.
1] Moves the cursor to the beginning of the next section.
Note: Sections begin after each macro in the
section option and each line with a form feed

<CTRL L> in the first column. Section boundaries
are always line and paragraph boundaries.



VISUAL EDITOR (vi)

Searching Through the File

Another way to position yourself in the file is by having the
editor search for a specific string of characters on one line.

Type the character / followed by a string of characters for which
you want to search. To execute the search, depress the
carriage return. For example:

/character string<CR>
The editor will search from the current position toward the last
line in the buffer for the first occurrence of ‘‘character string”

on one line. The editor will also search backward if you use the
? character instead of the / character.

If the character string you search for is not present in the file,
the editor will display the message:

Pattern not found

on the last line of the screen and the cursor will return to its
initial position.

A search will normally wrap around the end of the file and
continue searching until the string is found or the position where
the search started is reached. The wrap-around scan feature
can be disabled by entering the command:

:set nowrapscan<CR> or :set nows<CR>

You can have the editor ignore whether letters are uppercase or
lowercase in searches by entering the command:

:set ignorecase<CR> or :set ic<CR>

The command :set noic<CR> turns this option off.



VISUAL EDITOR (vi)

Repeating Searches

If the first pattern found by the search command is not the one
you were searching for, you can search for the next occurrence
of the pattern by entering the command:

n

The n command works with forward and backward searches.

Another way to repeat a search without re-entering the entire
command is to enter the search command character (/) or (?)
followed by a carriage return. The direction of the search is
determined by the search character you enter.

Special Search Characters

Several characters have special meanings when used in
specifying searches. These characters will work with all types of
searches. They can be used to: match repetitive strings of
characters, turn off special meanings of characters, or denote
the placement of characters in the line. These characters and
their uses are explained below:

The period matches any single character except the
newline (carriage return) character. For example, if a
line in your file contains the words ‘“'vi editor’’, or a
pattern with any other character between *'vi edit’’ and
“r"’, you could find the line by entering the command:

:/vi edit.r/<CR>

& The asterisk matches any repeated characters except
the first ., \, [, or 7 in that group. For example, if a line
in your file contains the pattern ‘‘the xxxx editor’’, you
could search for the line by entering the command:

:/the x* editor/<CR>

(1 Brackets are used to enclose a variable set of
characters. For example, if you have a file containing

4-15



VISUAL EDITOR (vi)

the patterns‘‘file2", **file3"" or ‘‘file4”” you could search
for the first occurrence of these patterns by entering
the command:

:/file[2-4]/<CR>

$ The dollar sign is interpreted by the editor to mean
“end of the line”’. It is used to identify patterns which
occur at the end of a line. For example, if a line in your
file ends in the pattern*'last character’, you could find
the line by entering the command:

:/last character$/<CR>

The circumflex (caret) works like “‘$'" except it looks for
the pattern at the beginning of the line. For example, if
a line in your file begins with the pattern

“First character”, you could find the line by entering the
command:

:/AFirst character/<CR>

\ The backslash is used to cancel the meaning of the
special characters. It should be placed immediately
before the character it is to nullify. For example, if a
line in your file contains the pattern “This is a $"’, you
could search for it by entering the command:

:/This is a \$/<CR>

The character $ will be searched for instead of being
interpreted as meaning ‘“‘end of the line’".

To search for the actual characters ., *,\, [, ], $, or A, you must
precede the characters with a backslash. You can also combine
these special characters in one search command. For example,
.* can be used to search for any string of characters.

4-16



VISUAL EDITOR (vi)

Go To, Find, and Previous Context Commands

The go to (G) command allows you to move the cursor to a
specific line in the file by using line numbers. For example:

32G

will move the cursor to line 32 in the file. If a line number is not
used with the G command, the cursor will move to the last line
in the file.

The find (fx) command locates the next x character to the right
of the cursor in the current line. For example, to find the next
occurrence of the letter t you would enter the command:

ft

The ; command repeats the last find command for the next
instance of the same character. By using the f command and
then a sequence of ;’s, you can often get to a particular place in
a line much faster than with a sequence of word motions or
spaces. There is also an F command, which works like f, but
searches backward. The ; also repeats the F command.

The previous context ** (two back quotes) command allows you
to move back to the previous position in the file after a motion
command, such as /, ?, or G. This command is often more
convenient than using the G command or performing a search
because no advance preparation is required.

Note: If you are near the last line of the file, and the last
line is not at the bottom of the screen, the editor will
place a ~ character on each remaining line to indicate the
end of the file.

4-17



VISUAL EDITOR (vi)

MAKING SIMPLE CHANGES

Inputting Text

The vi editor uses append, insert, and open commands to input
text into a file. First, use the movement commands described
earlier to move the cursor to the position in the file where you
want to input text. Then depress the input command you want
to use (see list below). Now any characters you type are
entered into the buffer. If you are entering more than one line,
depress a carriage return whenever you want to start a new line.
You can also use the autowrap option discussed in ““OPTIONS."”
To stop inputting text, depress the <ESC> key. All the
commands for inserting text are described in the following list:

a Appends everything you type after the current position
of the cursor

A Appends everything you type to the end of the line

i Inserts everything you type before the current position
of the cursor

I Inserts everything you type before the first nonblank on
the line (inserts before the first character on the line)

o Opens a new line below the position of the cursor

(0] Opens a new line above the position of the cursor.

Erasing Inserted Text

While inserting text, you can use the <CTRL H> or # character
to backspace over (erase) the last character typed. To erase
the text you have input on the current line, depress the @,
<CTRL X>, or <CTRL U> characters. The <CTRL W> will erase
a whole word and leave you after the space following the
previous word. It is useful for quickly backing up in an insert.



VISUAL EDITOR (vi)

While inserting text, the following conditions should be noted:

e When you backspace during an insertion, the characters
you backspace over are not erased. The cursor moves
backward and the characters remain on the display. This
is often useful if you are planning to type in something
similar. The characters disappear when you depress
<ESC>. If you want to get rid of the characters
immediately, depress <ESC> and then a again.

e You cannot erase characters which you did not insert, and
you cannot backspace around the end of a line. If you
need to back up to the previous line to make a correction,
depress the <ESC> key, move the cursor back to the
previous line, and then make whatever corrections you
want.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to
have lines broken near the right-hand margin automatically. You
can cause this to happen by entering the command:

:set wm=10<CR>

This causes all the lines to be broken at a space at least ten
columns from the right-hand edge of the screen. The number
10 can be replaced by any number you wish to use.

Joining Lines

If the editor breaks a line and you wish to put it back together,
you can tell it to join the lines with the J command. You can
give the J command a count of the number of lines to be joined
(such as 3J to join 3 lines). The editor supplies white space, if
appropriate, at the juncture of the joined lines and leaves the
cursor at this white space. If you do not want white space, you
can kill it with the x command.

4-19



VISUAL EDITOR (vi)

Removing Text

The vi editor allows you to remove text from a file with several
versions of the delete command. The commands listed below
let you remove any object that the editor recognizes
(characters, words, lines, sentences, and paragraphs.) You do
not need to use the <CR> or <ESC> keys with these
commands. To delete more than one object at a time, you can
use numbers with these commands. For example, 5dd removes
five lines of text.

dd
dw
db
d)

d(

d}

d{

Delete the current line.

Delete the current word.

Delete the preceding word.

Delete the rest of the current sentence.

Delete the previous sentence if you are at the beginning
of the current sentence, or delete the current sentence
up to your present position if you are not at the
beginning of the current sentence.

Delete the rest of the current paragraph.

Delete the previous paragraph if you are at the
beginning of the current paragraph, or delete the
current paragraph up to your current position if you are

not at the beginning of the current paragraph.

Delete the rest of the text on the current line and leave
the cursor on a blank line.

Delete the current character.

Delete the character before the cursor.

Note: To recover text that was accidentally deleted, see
“*Recovering Lost Text."”

4-20



VISUAL EDITOR (vi)

Changing Text

The vi editor allows you to use several different commands to
change text in a file. With the commands listed below you can
change any object that the visual editor recognizes (characters,
words, lines, sentences, and paragraphs). All these commands,
except r, are terminated by depressing the <ESC> key.
Numbers can be used with these commands to determine how
many of the objects to change. For example, the command 2cw
removes two words and then changes to the input mode so new
words can be inserted.

cC

cw

¢

Change a whole line.

Change the specified word to the following word.
Change the rest of the current sentence.

Change the previous sentence if you are at the
beginning of the current sentence, or change the
current sentence up to your current position if you are
not at the beginning of the current sentence.

Change the rest of the current paragraph.

Change the previous paragraph if you are at the
beginning of the current paragraph, or change the
current paragraph up to your present position if you are
not at the beginning of the current paragraph.
Changes the rest of the current line.

Replace a character.

Replace the following characters.

Replace a character with a string.

Replace the current line with a new line.

4-21



VISUAL EDITOR (vi)

When you type a change command, the end of the text to be
changed is marked with the $ character to indicate that a
change is now anticipated up to the $ character. You are now
placed in the insert mode so that anything you type is entered
into the buffer. You terminate the insert mode by depressing
<ESC>. To summarize, change commands in the visual editor
delete text objects and then place you in the insert mode.

The simplest change that you can make is to change one
character. The r and the s commands can be used for this. If
the character is incorrect and is to be replaced by a single
character, correct the character by giving the rx command,
where x is the correct character. If the character is to be
replaced by a string of characters, give the s(string)<ESC>
command which substitutes a string of characters for the
incorrect character. The s command can be preceded with a
count of the number of characters to be replaced.

You can also give a command like cL to change all the lines up
to and including the last line on the screen, or ¢3L to change
through the third line from the bottom line. Using the ¢/string
command allows you to change characters from the current
position to the first occurrence of the search string.

Note: To recover text that was accidentally changed,
see ‘‘Recovering Lost Text.”

4-22



VISUAL EDITOR (vi)

COPYING TEXT

The Concept of Yank and Put

Vi provides a method of making a copy of text and placing this
copy in another location in the file. This method is called ‘‘yank
and put.” The y operator yanks a copy of any specified object
(word, line, sentence, or paragraph) into a specially reserved
space called a register. The text can then be put back in the file
from the register with the commands p and P; the p command
puts the text after or below the cursor while P puts the text
before or above the cursor.

If the text you yank forms a part of a line or is an object such as
a sentence that partially spans more than one line, then when
you put the text back it will be placed after the cursor (or before
the cursor if you use P). If the yanked text forms whole lines,
whole lines will be put back without changing the current line.

The Y command is used to make a copy of a line. The cursor
can then be moved to any character on another line, and the p
used to place the yanked line following the current line. The P
command places the copied line above the current line. The YP
command makes a copy of the current line and places it before
the current line. The cursor is placed on the first character of
this copy. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line and
place it after the current line. You can give Y a count of lines to
yank and thus duplicate several lines.

4-23



VISUAL EDITOR (vi)

Vi has a single unnamed register where the last yanked text is
saved. Each time a yank command is performed that uses the
unnamed register, the previous yank command is lost. To
prevent the loss of this text, the editor has a set of named
registers [(a) through (z)] that can be used to save copies of
text. The general format of the yank command using named
registers is

" xyobject
where x is the name of the register [(a) through (2)] into which

an object is copied. The following procedure copies a line into a
new location in a file.

1. Enter the command:

" ayy

This yanks a line from where the cursor is into the named
register a.

2. Move the cursor to the eventual resting place of this line.
3. Enter the command:
"ap or"aP

This puts the line at the new location.

4-24



VISUAL EDITOR (vi)

Copying Objects

The yank and put commands can be used to copy characters,
words, lines, sentences, or paragraphs. All of the object
commands can be preceded by a number, which allows you to
copy more than one of the objects. This is especially useful
when copying characters. Each of the following objects should
be experimented with so you understand what happens during a
yank and put.

Characters can be copied by typing the yank command and then
typing one of the following object commands:

spacebar Yanks one character in forward direction.
backspace Yanks one character in backward direction.
h Yanks one character in backward direction.
l Yanks one character in forward direction.

fx Yanks all characters from cursor up to xin
forward direction.

Fx Yanks all characters from cursor up to xin
backward direction.

tx Yanks all characters from cursor up to and
including x in forward direction.

Tx Yanks all characters from cursor up to and
including x in backward direction.

4-25



VISUAL EDITOR (vi)

Words can be copied by typing the yank command and then
typing one of the following objects:

Yanks one word in forward direction (punctuation
counts as word).

Yanks one word in forward direction (punctuation
does not count as word).

Yanks one word in backward direction (punctuation
counts as word).

Yanks one word in backward direction (punctuation
does not count as word).

Yanks one word in forward direction up to last
character in word (punctuation counts as word).

Lines can be copied (in addition to yy and Y) by typing the yank
command and then typing one of the following objects:

$

<CR>

4-26

Yanks one line from cursor to end of line.

Yanks one line plus line cursor is on in forward
direction.

Yanks one line plus line cursor is on in forward
direction.

Yanks one line plus line cursor is on in forward
direction.

Yanks one line plus line cursor is on in backward
direction.

Yanks one line plus line cursor is on in backward
direction.

Yanks line cursor:is on through top line on screen.



VISUAL EDITOR (vi)

Yanks line cursor is on through middle line on screen.
Yanks line cursor is on through bottom line on screen.
Yanks line cursor is on through last line in file. If a
number precedes G, yanks through that line in

forward or reverse direction.

Yanks from where cursor is up to ‘‘searched for’’
string in forward direction.

Yanks from where cursor is through *‘searched for’’
string in backward direction.

Sentences can be copied by typing the yank command and then
typing one of the following objects:

Yanks from cursor to end of sentence in forward
direction.

Yanks from cursor to beginning of sentence in reverse
direction.

Paragraphs can be copied by typing the yank command and
then typing one of the following objects:

Yanks from cursor to end of paragraph in forward
direction.

Yanks from cursor to beginning of paragraph in
reverse direction.

4-27



VISUAL EDITOR (vi)

MOVING TEXT

The blocks of text that can be moved around in the file are:
characters, words, lines, sentences, and paragraphs. To move
blocks of text from one location to another, use the following
procedure:

1. Delete (or change) the information you need to move with
one command. It will be saved in an area designated as a
register.

2. Move the cursor to the location you wish to insert the text
just deleted and put it back in the file with the commands p
or P. The p command puts the text after or below the
cursor while P puts the text before or above the cursor. An
example of a delete and put command is:

xp

The x deletes the character the cursor is on; the cursor
moves to the next character to the right. The p puts the
deleted character back following the character the cursor is
on. The result is two characters have swapped positions.

If the text you delete forms a part of a line or is an object
such as a sentence that partially spans more than one line,
then when you put the text back it will be placed after the
cursor (or before if you use P). If the deleted text forms
whole lines, they will be put back as whole lines without
changing the current line.

4-28



VISUAL EDITOR (vi)

You may wish to place the text you are to move into a
specific location. The editor has a set of named registers
[(a) through (z)] that you can use to save copies of text. The
general format of the delete command using named
registers is

" xdelete object
or
" xchange object
where (x) is the name of the register [(a) through (z)] into

which an object is deleted. The following procedure moves
a line to a new location in a file.

1. Enter the command:
" add

This deletes the line the cursor is on into the named
register (a).

2. Move the cursor to the eventual resting place of this
line.

3. Enter the command:
"ap or" aP
This puts the line at the new location. You can also do
the same with a change operation. After the new text is

entered and the <ESC> key pressed, the deleted text
can be ‘‘put” at another location in the file.

4-29



VISUAL EDITOR (vi)

GLOBAL COMMANDS

Global Searches

When you need to locate all the occurrences of a specific
pattern on a line in your file, the global command (:g) and a
search command (/ or ?) can be used. The global search
command can be used in any of the following formats:

(1) :[m],[n]g/text
(2) :[m],[n]g/text/p
(3) :[m],[n]g/text/nu

The [m] represents the line number where the search will start.
The [n] represents the line number where the search will stop,
or $ which causes the search will continue to the end of your
file. If no numbers are entered, all lines in the file will be
searched.

e When (1) is entered, the cursor will move to the last
occurrence of “‘text’.

o When (2) is entered, all the lines containing ‘‘text’’ are
displayed on the screen.

e When (3) is entered, all the lines containing ‘‘text” are
displayed on the screen. Line numbers will be displayed
with each line. '

In global searches, a ? substituted for the / will have the same
affect. The special characters described in ‘‘Special Search
Characters’ can be used in global search commands.

4-30



VISUAL EDITOR (vi)

Global Substitutes

The global substitute command can be used when the same
change needs to be made in several places in the file. The
command can be executed against a range of lines or against
the whole file. The following formats can be used for global
substitutes:

(1) :[m],[n]g/text/s//newtext

(2) :[m],[n]g/text/s//newtext/p
(3) :[m],[n]g/text/s//newtext/c

The [m] represents the line number where the search will start.
The [n] represents the line number where the search will stop.

$ can be used to represent the end of your file. If no numbers

are entered, all lines in the file will be searched.

e When (1) is entered, ‘‘newtext’’ will be substituted for
“text’’ at the first occurrence on each line requested in
the command. The cursor will be placed at the last
occurrence of the changed ‘‘newtext’’.

¢ When (2) is entered, ‘‘newtext’’ will be substituted for
“text’’ at the first occurrence on each line requested in
the command. The lines containing all occurrences of
“newtext’’ substitutions are displayed on the screen.

e When (3) is entered, you are in a ‘‘prompt’’ mode. The
“prompt’’ mode will allow you to decide if you want to
make the substitution. The line with the first occurrence
of “text’” is displayed at the bottom of the screen. Each
of the characters in *‘text”” will be replaced by (caret). If
you type a y followed by a <CR>, “‘newtext’’ will be
substituted for “‘text” in the file. The next line containing
“text’’ will then be displayed with ’s replacing “text’. If
you decide not to make the substitution, type a <CR> and
the next line with “‘text” will be displayed. The line
displayed may appear as follows:

The of this sentence needs to be changed.

4-31



VISUAL EDITOR (vi)

The special characters described in ‘‘Special Search Characters’
can be used in the search part of the global substitution
command.

REPEATING ACTIONS WITH THE . COMMAND

Vi provides a timesaving command, called the “‘dot’’ command.
The *‘dot” command allows you to repeat the last command
that changed the buffer by placing the cursor at the location you
wish to repeat the command and entering a:

The actions that can be repeated using the . command are
append, insert, open, delete, change, and put. An example of
how to use the dot command would be to insert a line of text in
a file and then depress the <FSC> key. Then move the cursor
to a different location in the file and enter a . ““dot’’. Vi will
repeat the previous insert command and insert the line of text
here also.

If you want to place text at another location that is in a named
register after doing a put, you can save time by using the .
command. However, if you executed a put command that is
associated with an ““unnamed’’ register, the . command should
not be used. This is because the text in the unnamed register
may not be the same.

4-32



VISUAL EDITOR (vi)

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or
part of the buffer to a new file. This allows you to keep copies of
the buffer in various states of change. To write the whole buffer
to another file, simply use the write command and the name of
the file. For example:

:write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename,
the editor will display the message:

"filename" File exists - "w! filename" to overwrite

When this occurs, you can either use a different filename, or use
the w! command to overwrite the file. If you overwrite the file,
the information being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you
must specify the beginning and ending lines you want to write.
For example,

:85,%w save<CR>

will write lines 85 through the end of the buffer to the file named
save.

The write command does not change the buffer. The editor will
display the name of the file ‘‘save’” that you have copied into,
the number of lines, and the number of characters entered into
the file ““save’’. If no numbers are entered, the entire file you
are in will be copied to the filename entered.

4-33



VISUAL EDITOR (vi)

In some cases, it is necessary to append information onto the
end of a file which already exists. For example, if you wanted to
append several lines to the file ‘‘save’, you could use the
command:

:12,25w >>save<CR>

The editor will display the name of the file ‘“save’’, the number
of lines, and the number of characters added to the file.

Reading Another File Into the Buffer

While using vi, it may be necessary to copy another file into the
file you are editing. This can be accomplished using the :r
command. To copy a file into your file, enter the :, a line
number that you desire the new text to follow, the r, and the
name of the file you wish to copy. The format for this command

is:
:[n]read filename<CR> or :[n]r filename<CR>

[n] can be any line number in your file. If you enter a 0, the
copied file will be added before line 1 in your file. If you enter a
$, the copied file will be added to the end of your file.

When the file is added, the editor will display at the bottom of
the screen the name of the file you copied, the number of lines
in that file, and the number of characters it contains. If you do
not enter a number in the above command, the file to be copied
will be added following the line your cursor was on when you
entered the command. For example, if you wish to write a file
named ‘‘test’” to follow line 10 in your file, enter the command:

:10r test<CR>

4-34



VISUAL EDITOR (vi)

Reading the Output From ""UNIX"’ System
Commands Into the Buffer

There are two commands that you can use to put the output
from a UNIX System command into a file. The only difference
between the two commands is that one inserts the text between
lines and the other replaces the current line with the text.

To insert the output from a UNIX System command between two
lines, position the cursor where you want the text and execute
the command:

:r !emd<CR>

where “‘cmd’’ is the UNIX System command. The inserted text
will be displayed on the screen. This command will also allow
you to use a line number instead of positioning the cursor where
you want the text inserted.

If you want to replace a line in the buffer with the output of a
UNIX System command, position the cursor on that line and
execute the command:

! 1emd<CR>

where “‘cmd’’ is the UNIX System command. Only the current
line will be replaced by the inserted text. The inserted text will
be displayed on the screen.

Changing Files in the Editor

The vi editor is normally used to edit the contents of one file,
whose name is recorded as the current file. However, you can
edit a different file without leaving the editor by using the
command:

:e filename<CR>

where ‘“‘filename’’ is replaced by the name of the file to which
you want to change. This command allows you easy access to
both files, because vi does not have to be executed again.

4-35



VISUAL EDITOR (vi)

When you are accessing two files, the file you are editing is

always considered the current file, and the other file is |
considered the alternate file. When you want to change to the

alternate file, use the e command with the filename. Each time

you use the e command to change files, the file you name

becomes the current file and the file you leave becomes the

alternate file.

When using the e command within the editor, normal shell
expansion conventions, such as "'f*1" for “filel’’, may be used.
In addition, the character % can be used in place of the current
filename and the character # in place of the alternate filename.
For example:

e #<CR>

will cause the alternate file to become the current file and the
current file will become the alternate file. This makes it easy to
deal alternately with two files and eliminates the need for
retyping the filename.

If you have not written the current file, the editor will display the
message:

No write since last change (:edit! overrides)

and delay editing the other file. You can either give the :w
command to write the file or :e! filename if you want to discard
the changes to the current file and begin editing the next file.
To have the editor automatically save the changes, you should
include set autowrite in your EXINIT and use the :n command
instead of the :e command.

If you want to edit the same file (start over), give the :e!
command. These commands should be used very carefully
because once the changes are discarded they cannot be
recovered.

4-36



VISUAL EDITOR (vi)

Editing Multiple Files and Using Named Buffers
When you have several files that you want to edit without
actually leaving and re-entering the vi editor, you can list these
files in your vi command. For example, if you enter the
command:

$ vi filel file2 file3<CR>

the computer will respond with a message such as:

3 files to edit
"filel" xxx lines, xxxx characters

The current file “‘filel” can now be edited. The remaining

arguments are placed with the first file in the argument list. To

display the current argument list, enter the command:
:args<CR>

The computer will respond with the message:

[filel] file2 file3

The next file in the argument list may be edited by entering the
command:

:next<CR> or :n<CR>

If you have already written the buffer to the file, the computer
will respond with a message such as:

"file2" xxx lines xxxx characters

If you use the next command regularly, you may want to set the
autowrite option.

The argument list can be changed by specifying a list of
filenames with the next command. These names are expanded
with the resulting list of hames becoming the new argument list,
and vi edits the first file on the list.

4-37



VISUAL EDITOR (vi)

For saving blocks of text while editing, and especially when
editing more than one file, vi has a group of named buffers.
These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have
names a through z. It is also possible to refer to A through Z;
the uppercase buffers are the same as the lowercase, but
commands append to named buffers rather than replacing if
uppercase names are used.

Read-Only Mode

If you want to look at a file that you have no intention of
modifying, you can execute vi in the read-only mode. This mode
protects you from accidentally overwriting the file. The read-
only option can be set by using the -R command line option, by
the view command line invocation, or by setting the read-only
option. It can be cleared by setting the noreadonly mode. (See
“OPTIONS.") It is possible to write, even while in the read-only
mode, by writing to a different file or by using the :w! command.

Obtaining Information About the Buffer

You can determine the state of the file by using the <CTRL G>
command. The editor will show you the name of the file, the
number of the current line, the number of lines in the buffer, and
the percentage of the way through the buffer that the cursor is
located. A sample response would be:

"filename" [Modified] line 1048 of 3096 --33%--

Note: After you save the changes by writing the buffer
to the file, the buffer is no longer considered modified.

4-38



VISUAL EDITOR (vi)

ISSUING ""UNIX"" SYSTEM COMMANDS

Vi allows you to execute a single UNIX System command by
entering a command of the form

:'emd<CR>

where ‘““cmd’’ represents the command you want to execute.
Once the command has executed, the computer will issue the
message:

[Hit return to continue]

You can then depress the carriage return to continue editing or
enter the :! command to issue another UNIX System command.

If you need to execute more than one UNIX System command
enter:

:sh<CR>

The computer will respond with the shell prompt ($). When you
have finished executing UNIX System commands enter a
<CTRL d>. This will return you to the vi editor.

Caution: Be sure to write the buffer into the file before
escaping to the UNIX System. The editor will normally
save the buffer, but it will issue a message to remind
you.

4-39



VISUAL EDITOR (vi)

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) has the ability to reverse
the effects of the last command executed. Undo can often
rescue the buffer from a disastrous mistake. To execute the
undo command enter:

:undo<CR> or :u<CR>

The undo command only works on commands that change the
buffer such as append, insert, delete, change, move, copy, and
substitute. You can also undo an undo command if you decide
to keep the change. Commands such as write, edit, and print

cannot be undone.

The U command works like the u command, except that it
returns the current sentence to its original state.

Recovering Lost Lines

You might have a serious problem if you delete text and then
regret that it was deleted. The editor saves the last nine deleted
blocks of text in a set of numbered registers [1 through 9].

(Text consisting of a few words is not saved in these registers.)
You can get the nth previous deleted block of text back into your
file by the command:

" np

The " indicates that a register name is to follow, n is the number
of the register you wish to try, and p is the put command that
puts text in the register after the cursor. If this does not bring
back the text you wanted, type u to undo this command and
repeat the command using a different numbered register. You
can repeat this procedure until you find the correct deleted text.

4-40



VISUAL EDITOR (vi)

An easier way to search for the correct register can be to use
the . (dot) command to repeat the put command. In general,
the . command will repeat the last change. As a special case,
when the last command refers to a numbered text register, the .
command increments the number of the register before
repeating the put command. Thus, a sequence of the form

"lpu.u.u

will, if repeated long enough, show all the deleted text that was
saved. Omit the u commands and place all of the text in the
numbered registers at one location. Stop after any . command
to put just the then-recovered text at one location. The
command P can also be used rather than p to put the recovered
text before instead of after the cursor.

Recovering Lost Files

If the system crashes, you can recover most of the work you
were doing. You will normally receive mail the next time you
login giving you the name of the file which has been saved for
you. To recover the file, change to the directory where you
were when the system crashed and give a command of the
form:

$ ex -r filename<CR>
replacing ‘“‘filename’’ with the name of the file which you were

editing. This will recover your work close to the point where you
left off.

You can get a listing of the files which are saved for you by
giving the command:

$ ex -r<CR>
If there is more than one instance of a particular file saved, the
editor gives you the newest instance each time you recover it.

Therefore, you can get an older saved copy back by first
recovering the newer copies.

4-41



VISUAL EDITOR (vi)

For the ‘“‘recover lost file'’ command to work, vi must be
correctly installed and the mail program must exist to receive
mail. The invocation vi -r will not always list all saved files, but
they can be recovered even if they are not listed.

MARKING LINES

The vi editor allows you to mark lines in the file with single letter
tags and return to these marks later by naming the tags. For
example, mark the current line with an a by entering the
command:

ma

Then, move the cursor to a different line using any commands
you like and enter the command:

‘a

The cursor will return to the place you marked. Marks last only
until you edit another file.

When using operators such as d and referring to marked lines, it
is often desirable to delete whole lines rather than deleting to
the exact position in the marked line. In this case, use the form
'x rather than ‘x. Used without an operator, "x will move to the
first nonwhite character of the marked line. " moves to the first
nonwhite character of the line containing the previous context
mark .

4-42



VISUAL EDITOR (vi)

WORD ABBREVIATIONS

Word abbreviation allows you to type a short word and have it
expanded into a longer word or words. The commands are:

:abbreviate (or :ab)
and
:unabbreviate (or :una)

and have the same syntax as :map. For example: .
:ab ecs Engineering and Computer Sciences<CR>

causes the word ‘‘ecs’’ to always be changed into the phrase
“Engineering and Computer Sciences.”” Word abbreviation is
different from macros in that only whole words are affected. If
“ecs’’ were typed as part of a larger word, it would be left alone.
Also, the partial word is echoed as it is typed. There is no need
for an abbreviation to be a single keystroke as it should be with
a macro.

ADJUSTING THE SCREEN

If the screen image is messed up because of a transmission
error to your terminal or because some program other than the
editor wrote to your terminal, you can use the <CTRL L>
command to refresh the screen.

If you want to place a certain line on the screen at the top,
middle, or bottom of the screen, you can position the cursor to
that line and use the z command followed by its argument. The
following list describes the three possible uses of the z
command:

zz Places the line at the top of the screen
Z. Places the line at the center of the screen

z- Places the line at the bottom of the screen.

4-43



VISUAL EDITOR (vi)

LINE REPRESENTATION IN THE DISPLAY

The editor folds long logical lines onto many physical lines in the
display. Commands which advance lines, advance logical lines
and will skip over all the segments of a line in one motion. The|
command moves the cursor to a specific column and may be
useful for getting near the middle of a long line to split it in half.
Try 80i on a line which is more than 80 columns long.

The editor puts only full lines on the display. If there is not
enough room on the display to fit a logical line, the editor leaves
the physical line empty, placing only an @ on the line as a place
holder. When you delete lines on a dumb terminal, the editor
will often clear just the lines to @ to save time (rather than
rewriting the rest of the screen). You can always maximize the
information on the screen by giving the <CTRL R> command.

Line Numbers

Vi allows you to place line numbers before each line on the
display. To set the line number option, enter the command:

:set nu<CR>
To remove the line number option, enter the command:

:set nonu<CR>

List All Characters on a Line

You can have tabs represented as "I and the ends of lines
indicated with $ by entering the command:

:set 1list<CR>

To remove the display of tabs and ends of lines enter the
command:

:set nolist<CR>

4-44



VISUAL EDITOR (vi)

Lines consisting of only the ~ character are displayed when the
last line of the file is in the middle of the screen. These
represent physical lines which are past the logical end of the file.

MACROS

The vi editor allows you to create macros so that when you
enter a single keystroke the editor will act as though you had
entered a longer sequence of keystrokes. You can do this if you
find yourself typing the same sequence of commands
(keystrokes) repeatedly.

There are two types of macros:

e One type is where you put the macro body in a buffer
register, such as x. You can then type @x to invoke the
macro. The @ may be followed by another @ to repeat
the last macro.

e You can use the map command from the vi editor
(typically in your EXINIT) with a command of the form:

:map /hs rhs<CR>

mapping /hs into rhs. There are restrictions: /hs should be
one keystroke (either one character or one function key).
It must be entered within 1 second (unless notimeout is
set, in which case you can type it as slowly as you wish,
and vi will wait for you to finish before it echoes anything).
The Ihs can be no longer than ten characters, the rhs no
longer than 100. To get a space, tab, or newline into /hs
or rhs you should escape them with a <CTRL v> (it may
be necessary to double the <CTRL v> if the map
command is given inside vi rather than in ex). Spaces and
tabs inside the rhs need not be escaped.

4-45



VISUAL EDITOR (vi)

To make the q key write and exit the editor, enter:
:map q :wqg<CTRL v><CTRL v><CR> <CR>

which means that whenever you type q, it will be as
though you had typed :wq<CR>. A <CTRL v>'is needed
because without it the <CR> would end the : command
rather than becoming part of the map definition. There
are two <CTRL v>'s because from within vi, two
<CTRL v>'s must be typed to get on. The first <CR> is
part of the rhs, the second terminates the : command.

Macros can be deleted with

:unmap /hs

If the /hs of a macro is #0 through #9, the particular function
key is mapped instead of the 2-character # sequence. So that
terminals without function keys can access such definitions, the
form #x will mean function key x on all terminals (and need not
be typed within 1 second). The character # can be changed by
using a macro in the usual way:

:map <CTRL v><CTRL v><CTRL i> #

to use tab, for example. This will not affect the map command,
which still uses #, but affects the invocation from visual mode.

The undo command will reverse all the changes made by a
macro call as a unit.

Placing an ! after the word map causes the mapping to apply to
text input mode rather than command mode. Thus, to arrange
for <CTRL t> to be the same as four spaces, type

:map <CTRL t><CTRL v>ppbp
where P is a blank. The <CTRL v> is necessary to prevent the

blanks from being taken as white space between the /hs and rhs.

4-46



VISUAL EDITOR (vi)

OPTIONS

Setting Options

There are three kinds of options: numeric, string, and toggle.
Numeric and string options are set by a statement of the form:

:set option=value<CR>

Toggle options can be set or not set by statements of one of the
forms:

:set option<CR>
and
:set nooption<CR>
These options can be placed in your EXINIT in your environment

or given while you are running vi by preceding them with a : and
following them with a <CR>.

You can get a list of all options that you have changed with the
command:

:set<CR>
or the value of a single option with the command:
:set option? <CR>

A list of all possible options and their values is generated by the
command:

:set all<CR>

4-47



VISUAL EDITOR (vi)

Set can be abbreviated se. Multiple options can be placed on
one line, for example:

:se ai aw nu<CR>

Options set by the set command last only while you stay in the
editor. Itis common to want to have certain options set
whenever you use the editor. This can be accomplished by
creating a list of ex commands that are to be run every time you
start ex, edit, or vi (all commands that start with : are ex
commands). A typical list includes a set command and possibly
a few map commands. Since it is advisable to get these
commands on one line, they can be separated with the !
character; for example:

set ai aw tersel map @ ddi map # x

which establishes the set command options autoindent,
autowrite, terse, makes @ delete a line (the first map), and
makes # delete a character (the second map). One way to have
the commands execute every time you enter the vi editor is to
put the line in the file .exrc in your home directory. Another way
to execute the commands automatically it to place the string in
the variable EXINIT in your environment. Using the shell, put
these lines in the file .profile in your home or working directory:

EXINIT=set ai aw tersel map @ dd! map # x
export EXINIT

Of course, the particulars of the line would depend on the
options you want to set.

4-48



VISUAL EDITOR (vi)

List of Options

The editor has a set of options which can be very useful. Some
of these options have been mentioned earlier. They are as
follows:

autoindent, ai (default: noautoindent)
Can be used to ease the preparation of structured program
text. At the beginning of each append, change, or insert
command or when a new line is opened or created by an
append, change, insert, or substitute operation, the editor
looks at the line being appended after, the first line
changed, or the line inserted before, and calculates the
amount of white space at the start of the line. Autoindent
then aligns the cursor at the level of indentation so
determined.

If the user then types in lines of text, the lines will continue
to be justified at the displayed indenting level. If more
white space is typed at the beginning of a line, the following
line will start aligned with the first nonwhite character of
the previous line. To back the cursor to the preceding
tabstop, type <CTRL d>. The tabstops (going backward)
are defined as multiples of the shiftwidth option. You
cannot backspace over the indent except by sending an
end-of-file with a <CTRL d>.

Specially processed in this mode is a line with no character
added to it, that turns into a completely blank line (the
white space provided for the autoindent is discarded).

Also, specially processed in this mode are lines beginning
with a and immediately followed by a <CTRL d>. This
causes the input to be repositioned at the beginning of the
line while retaining the previous indent for the next line.
Similarly, a 0 followed by a <CTRL d> repositions at the
beginning without retaining the previous indent.

The autoindent option does not happen in global
commands or when the input is not a terminal.

4-49



VISUAL EDITOR (vi)

autoprint,ap (default: autoprint)
Causes the current line to be printed after each delete,
copy, join, move, substitute, t, undo, or shift command.
This has the same effect as supplying a trailing p to each
such command. The autoprint is suppressed in globals, and
only applies to the last of many commands on a line.

autowrite,aw (default: noautowrite)
Causes the contents of the buffer to be written to the
current file if you have modified it and gives a next, rewind,
tab, or ! command, or a <CTRL 1> (switch files) or
<CTRL ]> (tag goto) command in visual.

Note: The command does not autowrite. In each
case, there is an equivalent way of switching when
the autowrite option is set to avoid the autowrite
(ex for next, rewind! for rewind, tag! for tag, shell
for I, and :e # and a :tal command from within
visual).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and
formfeed to be discarded from the input. A complaint is
registered the first time a backspace character is
discarded. The beautify option does not apply to command
input.

directory, dir (default: dir=/tmp)
Specifies the directory in which ex places its buffer file. If
this directory is not writable, then the editor will exit
abruptly when it fails to be able to create its buffer there.

edcompatible (default: noedcompatible)
Causes the presence or absence of g and ¢ suffixes on
substitute commands to be remembered and to be toggled -
by repeating the suffixes. The suffix r makes the
substitution similar to the ~ command instead of like the &
command.

4-50



VISUAL EDITOR (vi)

errorbells,eb (default: noerrorbells)
Error messages are preceded by a bell. Bell ringing in open
and visual mode on errors is not suppressed by setting
noeb. If possible, the editor always places the error
message in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

hardtabs, ht (default: hardtabs=8)
Gives the boundaries on which terminal hardware tabs are

set (or on which the system expands tabs).

ignorecase,ic  (default: noignorecase)
All uppercase characters in the text are mapped to
lowercase in regular expression matching. In addition, all
uppercase characters in regular expressions are mapped to
lowercase except in character class specifications.

list (default: nolist)
All printed lines will be displayed showing hidden characters
such as tabs and end-of-lines.

magic (default: magic)
If nomagic is set, the number of regular expression
metacharacters is greatly reduced with only and $ having
special effects. In addition, the metacharacters ~ and & of
the replacement pattern are treated as normal characters.
All the normal metacharacters may be made magic when
nomagic is set by preceding them with a \.

mesg (default: mesg)
Causes write permission to be turned off to the terminal

while in visual mode, if nomesg is set.

number,nu  (default: nonumber)
Causes all output lines to be printed with line numbers. In
addition, each input line will be prompted for by supplying
the line number it will have.

open (default: open)

If noopen, the commands open and visual are not
permitted.

4-51



VISUAL EDITOR (vi)

optimize, opt (default: optimize)
Throughput of text is expedited by setting the terminal not
to do automatic carriage returns when printing more than
one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with
leading white space is printed.

paragraphs, para (default: para=IPLPPPQPP Llpplpipbp)
Specifies the paragraphs for the { and } operations in open
and visual mode. The pairs of characters in the option’s
value are the names of the macros that start paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (z).

readonly (default: noreadonly)
Sets the editor so you cannot accidentally change the file.

redraw (default: noredraw)
The editor simulates (using great amounts of output) an
intelligent terminal on a dumb terminal (for example, during
insertions in visual, the characters to the right of the
cursor position are refreshed as each input character is
typed). This option is useful only at very high speeds.

remap (default: remap)
If on, macros are repeatedly tried until they are unchanged.
For example, if 0 is mapped to O, and O is mapped to I;
then if remap is set, o will map to I; but if noremap is set, it
will map to O.

report (default: report=5)
Specifies a threshold for feedback from commands. Any
command that modifies more than the specified number of
lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual, that
have potentially more far-reaching scope, the net change in
the number of lines in the buffer is presented at the end of
the command, subject to this same threshold. Thus,
notification is suppressed during a global command on the
individual commands performed.

4-52



VISUAL EDITOR (vi)

scroll  (default: scroll=%2 window)
Determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in command
mode, and determines the number of lines printed by a
command mode z command (double the value of scroll).

sections (default: sections=NHSHH HUnhsh)
Specifies the section macros for the [[ and ]] operations in
open and visual modes. The pairs of characters in the
option’'s value are the names of the macros that start
paragraphs.

shell, sh (default: shell=/bin/sh)
Gives the path name of the shell forked for the shell escape
command ! and by the shell command. The default is
taken from SHELL in the environment, if present.

shiftwidth, sw (default: shiftwidth=38)
Gives the width a software tabstop used in reverse tabbing
with <CTRL d> when using autoindent to append text and
by the shift commands. :

showmatch, sm (default: noshowmatch)
In open and visual mode when a ) or } is typed, it moves
the cursor to the matching ( or { for one second if this
matching character is on the screen.

slowopen, slow (terminal dependent)
Affects the display algorithm used in visual mode, holding
off display updating during input of new text to improve
throughput when the terminal in use is both slow and
unintelligent.

tabstop, ts  (default: tabstop=8)
The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

taglength, tl (default: taglength=0)
Tags are not significant beyond this many characters. A
value of zero (the default) means that all characters are
significant.

4-53



VISUAL EDITOR (vi)

tags (default: tags=tags /usr/lib/tags)
A path of files to be used as tag files for the tag command.
A requested tag is searched for in the specified files,
sequentially. By default, files called tags are searched for
in the current directory and in /usr/lib (a master file for
the entire system).

term (from environment TERM)
The terminal type of the output device.

terse (default: noterse)
Shorter error diagnostics are produced for the experienced
user.

timeout (default: notimeout)
Set a time limit for the execution of an editor command.

ttytype=
Terminal type defined to system for visual mode. Can be
defined before entering visual editor by TERM=type.

warn (default: warn)
Warn if there has been *“[No write since last change]”
before a! command escape.

window  (default: window=speed dependent)
The number of lines in a text window in the visual
command. The default is eight at slow speeds (600 baud
or less), 16 at medium speed (1200 baud), and the full
screen (minus one line) at higher speeds.

w300, w1200, w9600
These are not true options, but set window only if the
speed is slow (300), medium (1200), or high (9600),
respectively. They are suitable for an EXINIT and make it
easy to change the 8 /16 /full screen rule.

wrapscan, ws  (default: wrapscan)

Searches that use regular expressions in addressing will
wrap around past the end of the file.

4-54



VISUAL EDITOR (vi)

wrapmargin, wm  (default: wrapmargin=0)
Defines a margin for automatic wrapover of text during
input in open and visual modes.

writeany, wa (default: nowriteany)
Inhibit checks normally made before write commands,
allowing a write to any file that the system protection
mechanism will allow.

CHARACTER FUNCTIONS SUMMARY

This summary shows the uses that the vi editor makes of each
character. Characters are presented in their order in the ASCII
character set: control characters first, most special characters,
digits, uppercase characters, and then lowercase characters.

Each character is defined with a meaning it has as a command
and any meaning it has during an insert. If it has meaning only
as a command, then only this is discussed. In most cases,
uppercase and lowercase <CTRL> characters perform the same
action.

<CTRL @> Not a command character. If typed as the first
character of an insertion, it is replaced with the last
text inserted; and the insert terminates. Only 128
characters are saved from the last insert; if more
characters have been inserted, the mechanism is
not available. A <CTRL @> cannot be part of the
file due to the editor implementation.

<CTRL a> Unused.

<CTRL b> Backward window. A count specifies repetition.
Two lines of continuity are kept, if possible.

<CTRL ¢> Unused.

<CTRL d> As a command, it scrolls down a halfwindow of text.
A count gives the number of (logical) lines to scroll
and the count is remembered for future <CTRL d>

4-55



VISUAL EDITOR (vi)

<CTRL e>

<CTRL f>

<CTRL g>

and <CTRL u> commands. During an insert, it
backtabs over autoindent white space at the
beginning of a line. This white space cannot be
backspaced over.

Exposes one more line below the current screen in
the file, leaving the cursor where it is, if possible.

Forward window. A count specifies repetition. Two
lines of continuity are kept, if possible.

Equivalent to :f<CR>, printing the current filename,
whether it has been modified, the current line
number, the number of lines in the file, and the
percent of the way through the file.

<CTRL h> (BS)

Same as left arrow (see h). During an insert, it
eliminates the last input character backing over it
but not erasing it. The character remains so you
can see what you typed if you wish to type
something slightly different.

<CTRL i> (TAB)

Not a command character. When inserted, it prints
as some number of spaces. When the cursor is at a
tab character, it rests at the last of the spaces that
represent the tab. The spacing of tabstops is
controlled by the tabstop option.

<CTRL j> (LF)

<CTRL k>

4-56

Same as Down arrow. It moves the cursor one line
down in the same column. If the position does not
exist, vi comes as close as possible to the same
column. Synonyms include j and <CTRL n>.

Unused.



VISUAL EDITOR (vi)

<CTRL I>

The ASCII form feed character that causes the
screen to be cleared and redrawn. It is useful after
a transmission error, if characters typed by a
program other than the editor scramble the screen,
or after output is stopped by an interrupt.

<CTRL m> (XCR>)

<CTRL n>

<CTRL o>

<CTRL p>

<CTRL g>

<CTRL r>

<CTRL s>

<CTRL t>

A carriage return advances to the next line, to the
first nonwhite position in the line. Given a count, it
advances that many lines. During an insert, a <CR>
causes the insert to continue onto another line.

Same as Down arrow. It moves the cursor one line
down in the same column. If the position does not
exist, vi comes as close as possible to the same
column. Synonyms include j and <CTRL j>.

Unused.

Same as Up arrow. It moves the cursor one line up.
A synonym is k.

Not a command character. In text input mode,
<CTRL q> quotes the next character, the same as
<CTRL v>, except that some TELETYPE drivers will
delete the <CTRL g> so that the editor never sees
it.

Redraws the current screen eliminating logical lines
not corresponding to physical lines (lines with only a
single @ character on them). On hardcopy
terminals in open mode, retypes the current line.

Unused. Some TELETYPE drivers use <CTRL s> to
suspend output until <CTRL g> is invoked.

Not a command character. During an insert with

autoindent set and at the beginning of the line, it
inserts shiftwidth white space.

4-57



VISUAL EDITOR (vi)

<CTRL u>

<CTRL v>

<CTRL w>

<CTRL x>

<CTRL y>

<CTRL z>

Scrolls the screen up (inverse of <CTRL d>). A
count gives the number of (logical) lines to scroll,
and the count is remembered for future <CTRL d>
and <CTRL u> commands. The previous scroll
amount is common to both. On a dumb terminal,
<CTRL u> will often necessitate clearing and
redrawing the screen further back in the file.

Not a command character. In text input mode, it
quotes the next character so that it is possible to
insert nonprinting and special characters into the
file.

Not a command character. During an insert, it
backs up as b would in command mode; the deleted
characters remain on the display (see <CTRL h>).

Unused.

Exposes one more line above the current screen
leaving the cursor where it is, if possible. There is
no mnemonic value for this key; however, it is next

to <CTRL u>.

Unused.

<CTRL [> (<ESC>)

4-58

Cancels a partially formed command (such as a z
when no following character has yet been given),
terminates inputs on the last line (read by
commands such as :, /, and ?), and ends insertions
of new text into the buffer. If an <ESC> is given
when in the command state, the editor rings the
bell or flashes the screen. Therefore, you can press
<ESC> if you do not know what is happening until
the editor rings the bell. If you do not know if you
are in insert mode, type <ESC>a and then the
material to be input; the material will be inserted
correctly whether or not you were in insert mode
when you started.



VISUAL EDITOR (vi)

<CTRL \>

<CTRL ]>

<CTRL 1>

<CTRL _>

SPACE

Unused.

Searches for the word that is after the cursor as a
tag. It is equivalent to typing :ta, this word, and
then a <CR>.

Equivalent to :e #<CR>, returning to the previous
position in the last edited file, or editing a file that
you specified if you got a ‘‘No write since last
change'’ diagnostic and do not want to have to type
the file name again. You have to do a :w before
<CTRL %> will work in this case. If you do not wish
to write the file, enter :e! #<CR> instead.

Unused. Reserved as the command character for
the TEKTRONIX* 4025 and 4027 terminals.

Same as right arrow (see I).

An operator that processes lines from the buffer
with reformatting commands. Follow ! with the
object to be processed, and then the command
name terminated by <CR>. Doubling ! and
preceding it by a count causes count lines to be
filtered; otherwise, the count is passed on to the
object after the I. Thus 2!} fmt<CR> reformats the
next two paragraphs by running them through the
program fmt. To read a file or the output of a
command into the buffer use :r. To simply execute
a command use :!.

Precedes a named buffer specification. There are
named buffers (1 through 9) used for saving deleted
text and named buffers (a through z) into which you
can place text.

*  Registered trademark of Tektronix, Inc.

4-59



VISUAL EDITOR (vi)

%

4-60

The macro character, when followed by a number,
will substitute for a function key on terminals
without function keys. In text input mode if this is
your erase character, it will delete the last
character you typed and must be preceded with a \
to insert it since it normally backs over the last
input character you gave.

Moves to the end of the current line. If the

:se list<CR> command is used, then the end of each
line will be shown by printing a $ after the end of
the displayed text in the line. When a count is used,
the cursor advances to the end of the line following
the count. For example, 2$ advances the cursor to
the end of the following line.

Moves to the parenthesis (()) or brace ({}) that
precedes or follows the parenthesis or brace at the
current cursor position.

A synonym for :&<CR>, analogous to the ex &
command.

When followed by a’, the cursor returns to the
previous context at the beginning of a line. The
previous context is set whenever the current line is
moved in a nonrelative way. When followed by a
letter (a through z), it returns to the line that was
marked with this letter with an m command at the
first nonwhite character in the line. When used with
an operator such as d, the operation takes place
over complete lines; if you use , the operation
takes place from the exact marked place to the
current cursor position within the line.

Retreats to the beginning of a sentence. A
sentence ends at a ., !, or ? followed by either the
end of a line or by two spaces. Any number of
closing characters (), ], ", and ') may appear after
the ., !, or ?, and before the spaces or end of line.



VISUAL EDITOR (vi)

Sentences also begin at paragraph and section
boundaries (see { and [[). A count may be used
before ( to advance more than one sentence.

Advances to the beginning of a sentence. A count
repeats the effect. See ( for the definition of a
sentence.

Unused.
Same as <CR> when used as a command.

Reverse of the last f, F, t, or T command, looking
the other way in the current line. Especially useful
after typing too many ; characters. A count repeats
the search.

Retreats to the previous line at the first nonwhite
character. This is the inverse of + and <CR>. If
the line moved to is not on the screen, the screen is
scrolled or cleared and redrawn. If a large amount
of scrolling would be required, the screen is also
cleared and redrawn with the current line at the
center.

Repeats the last command that changed the buffer.
Especially useful when deleting words or lines; you
can delete some words/lines and then type . to
delete more and more words/lines. Given a count,
it passes it on to the command being repeated.
Thus, after a 2dw, a 3. deletes three words.

Reads a string from the last line on the screen and
scans forward for the next occurrence of this string.
The search begins when you press <CR>, and the
cursor moves to the beginning of the last line to
indicate that the search is in progress. The search
may be terminated with a <DEL> or <RUB>, or by
backspacing when at the beginning of the bottom
line returning the cursor to its initial position.

4-61



VISUAL EDITOR (vi)

1-9

4-62

Searches normally wrap end-around to find a string
anywhere in the buffer.

When used with an operator, the enclosed region is
normally affected. By mentioning an offset from
the line matched by the pattern, you can force
whole lines to be affected. To do this, give a
pattern with a closing / and then an offset +n or -n.

To include the / character in the search string, you
must escape it with a preceding \. A 1 at the
beginning of the pattern forces the match to occur
at the beginning of a line only; this speeds the
search. A $ at the end of the pattern forces the
match to occur at the end of a line only. More
extended pattern matching is available. Unless you
set nomagic in your .exrc file, you will have to
precede the characters ., [, #, and ~ in the search
pattern with a \ to get them to work as you would
expect.

Moves to the first character on the current line.
Also used, when forming numbers.

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option
manipulation and escapes to the system. Input is
given on the bottom line and terminated with a
<CR>, and the command is then executed. If you
accidentally type :, you can return to where you
were by typing <DEL> or <RUB>.

Repeats the last single ‘‘character find'' that used f,
F, t, or T. A count iterates the basic scan.

An operator that shifts lines left one shiftwidth,
normally eight spaces. Like all operators, it affects
lines when repeated, as in < <. Counts are passed
through to the basic object, thus 3<< shifts three
lines.



VISUAL EDITOR (vi)

An operator that shifts lines right one shiftwidth,
normally eight spaces. Affects lines when repeated
as in >>. Counts repeat the basic object.

Scans backward, the opposite of /. See the /
description for details on scanning.

A macro character. Since this is the kill character,
you must escape it with a \ to type it in during text
input mode. It normally backs over the input given
on the current line.

Appends at the end of line, a synonym for $a.

Backs up a word, where words are composed of
nonblank sequences, placing the cursor at the
beginning of the word. A count repeats the effect.

Changes the rest of the text on the current line; a
synonym for ¢$.

Deletes the rest of the text on the current line; a
synonym for d$.

Moves forward to the end of a word, defined as
blanks and nonblanks, like B and W. A count
repeats the effect.

Finds a single following character, backward in the
current line. A count repeats this search a specified
number of times.

Goes to the line number given as preceding
argument or the end of the file if no preceding
count is given. The screen is redrawn with the new
current line in the center, if necessary.

4-63



VISUAL EDITOR (vi)

4-64

Same as Home arrow. Homes the cursor to the top
line on the screen. If a count is given, then the
cursor is moved to the count’s line on the screen.
In any case, the cursor is moved to the first
nonwhite character on the line. If used as the
target of an operator, full lines are affected.

Inserts at the beginning of a line.

Joins lines together, supplying appropriate white
space: one space between words, two spaces after
a ., and no spaces at all if the first character of the
joined on line is ). A count causes that many lines
to be joined rather than the default two.

Unused.

Moves the cursor to the first nonwhite character of
the last line on the screen. With a line count
number, moves the cursor to the first nonwhite
character of the indicated line from the bottom.
Operators affect whole lines when used with L.

Moves the cursor to the middle line on the screen
at the first nonwhite position on the line.

Scans for the next match of the last pattern given
to / or ?, but in the reverse direction. N is the
reverse of n.

Opens a new line above the current line and inputs
text there up to an <ESC>. A count can be used on
dumb terminals to specify a number of lines to be
opened; this is generally obsolete as the slowopen
option works better.

Puts the last deleted text back before /above the
cursor. The text goes back as whole lines above
the cursor if it was deleted as whole lines;
otherwise, the text is inserted between the
characters before and at the cursor.



VISUAL EDITOR (vi)

The P character may be preceded by a named
buffer specification " x to retrieve the contents of
the buffer. Buffers 1 through 9 contain deleted
material, buffers a through z are available for
general use.

Quits from vi to ex command mode. In this mode,
whole lines form commands and end with a <CR>.
You can give all the : commands; the editor supplies
the : as a prompt.

Replaces characters on the screen with characters
you type (overlay fashion). Terminates with an
<ESC>.

Changes whole lines; a synonym for cc. A count
substitutes for that many lines. The lines are saved
in the numeric buffers and erased on the screen
before the substitution begins.

Takes a single following character, locates the
character before the cursor in the current line, and
places the cursor just after that character. A count
repeats the effect. Most useful with operators such
as d.

Restores the current line to its state before you
started changing it.

Unused.

Moves forward to the beginning of a word in the
current line where words are defined as sequences
of blank/nonblank characters. A count repeats the
effect.

Deletes the character before the cursor. A count

repeats the effect, but only characters on the
current line are deleted.

4-65



-VISUAL EDITOR (vi)

Y Yanks a copy of the current line into the unnamed
buffer to be put back by a later p or P; a synonym
for yy. A count yanks that many lines. May be
preceded by a buffer name to put lines in that
buffer.

Y44 Exits the editor (same as :x<CR>). If any changes
have been made, the buffer is written out to the
current file. Then, the editor quits.

[l Backs up the previous section boundary. A section
begins at each macro in the sections options,
normally a .NH or .SH, and also at lines that start
with a form feed <CTRL I>. Lines beginning with {
also stop [[; this makes it useful for looking
backward, a function at a time, in C programs.

X Unused.

1] Forward to a section boundary. See [[ for a
definition.

i Moves to the first nonwhite position on the current
line.
Unused.

! When followed by a ', returns to the previous
context. The previous context is set whenever the
current line is moved in a nonrelative way. When
followed by a letter (a through z), the cursor returns
to the position that was marked with this letter.
When used with an operator such as d, the
operation takes place from the exact marked place
to the current position within the line. If you use’,
the operation takes place over complete lines.

a Appends arbitrary text after the current cursor
position; the insert can continue on to multiple lines
by using <CR> within the insert. A count causes
the inserted text to be replicated, but only if the

4-66



VISUAL EDITOR (vi)

inserted text is all on one line. The insertion
terminates with an <ESC>.

Backs up to the beginning of a word in the current
line. A word is a sequence of alphanumerics or a
sequence of special characters. A count repeats
the effect.

An operator that changes the following object,
replacing it with the following input text up to an
<ESC>. If more than part of a single line is
affected, the text to be changed is saved in the
numeric named buffers. If only part of the current
line is affected, the last character to be changed is
marked with a $. A count causes that many objects
to be affected, thus both 3c¢) and ¢3) change the
following three sentences.

An operator that deletes the following object. If
more than part of a line is affected, the text is
saved in the numeric buffers. A count causes that
many objects to be affected; thus 3dw is the same
as d3w.

Advances to the end of the next word, defined as
for b and w. A count repeats the effect.

Finds the first instance of the next character
following the cursor on the current line. A count
repeats the find.

Unused.

Same as Left arrow. Moves the cursor one
character to the left. Like the other arrow keys,
either h, the left arrow key, or one of the synonyms
(<CTRL h>) has the same effect. A count repeats
the effect.

Inserts text before the cursor; otherwise, like a.

4-67



VISUAL EDITOR (vi)

4-68

Same as Down arrow. Moves the cursor one line
down in the same column. If the position does not
exist, vi comes as close as possible to the same
column. Synonyms include <CTRL j> (linefeed) and
<CTRL n>.

Same as Up arrow. Moves the cursor one line up.
<CTRL p> is a synonym.

Same as Right arrow. Moves the cursor one
character to the right. SPACE is a synonym.

Marks the current position of the cursor in the mark
register that is specified by the next character a
through z. Return to this position or use with an
operator using * or ’.

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise,
like O.

Puts text after /below the cursor; otherwise, like P.

Unused.

Replaces the single character at the cursor with a
single character you type. The new character may
be a <CR>; this is the easiest way to split lines. A
count replaces each of the following count
characters with the single character given; see R
above, which is usually the more useful iteration of
r.

Changes the single character under the cursor to
the text that follows up to an <ESC>; given a count,
that many characters from the current line are
changed. The last character to be changed is
marked with $ as in c.



VISUAL EDITOR (vi)

Advances the cursor up to the character before the
next character typed. Most useful with operator
such as d and ¢ to delete the characters up to a
following character. You can use . to delete more if
this does not delete enough the first time.

Undoes the last change made to the current buffer.
If repeated, will alternate between these two states;
thus, is its own inverse. When used after an insert
that inserted text on more than one line, the lines
are saved in the numeric named buffers.

Unused.

Advances to the beginning of the next word, as
defined by b.

Deletes the single character under the cursor. With
a count, deletes that many characters forward from
the cursor position, but only on the current line.

An operator that yanks the following object into the
unnamed temporary buffer. If preceded by a
named buffer specification, " x, the text is placed in
that buffer also. Text can be recovered by a later p
or P.

Redraws the screen with the current line placed as
specified by the following character:

<CR>  Specifies the top of the screen
Specifies the center of the screen

- Specifies the bottom of the screen.

A count may be given after the z and before the
following character to specify the new screen size
for the redraw. A count before the z gives the
number of the line to place in the center of the
screen instead of the default current line.

4-69



VISUAL EDITOR (vi)

{ Retreats to the beginning of the preceding
paragraph. A paragraph begins at each macro in
the paragraphs option-- normally .IP, .LP, .PP, .QP
and .bp. A paragraph also begins after a completely
empty line and at each section boundary (see [[).

H Places the cursor on the character in the column
specified by the count.

} Advances to the beginning of the next paragraph.
See { for the definition of paragraph.

- Switches character from lowercase to uppercase
and vice versa.

<CTRL ?> (<DEL>)

Interrupts the editor returning it to command-
accepting state.

4-70



Appendix

MANUAL PAGES

This appendix contains the UNIX System Manual Pages for the Editor
Utilities. Manual pages for the following commands are provided in
alphabetical sequence.

edit
ex
Vi

You have the capability to arrange the manual pages provided in this
guide to support your local needs. The yellow sheet provided in this
manual describes your options for filing the manual pages as well as
the descriptive information.

For your convenience, the user manual pages for the Editing Utilities
are provided in both this guide and alphabetically in the 3B2 User
Reference Manual.

Page 1






EDIT (1) (Editing Utilities) EDIT(1)

NAME

edit — text editor (variant of ex for casual users)

SYNOPSIS

edit [ —r ] name ...

DESCRIPTION

10/84

Edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor.

-r Recover file after an editor or system crash.

The following brief introduction should help you get started with edit. If you
are using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command “edit
name” to the shell. Edit makes a copy of the file which you can then edit, and
tells you how many lines and characters are in the file. To create a new file,
just make up a name for the file and try to run edit on it; you will cause an
error diagnostic, but do not worry.

Edit prompts for commands with the character *’, which you should see after
starting the editor. If you are editing an existing file, then you will have some
lines in edit’s buffer (its name for the copy of the file you are editing). Most
commands to edit use its “current line” if you do not tell them which line to
use. Thus if you say print (which can be abbreviated p) and hit carriage return
(as you should after all ediz commands) this current line will be printed. If
you delete (d) the current line, edit will print the new current line. When you
start editing, edit makes the last line of the file the current line. If you delete
this last line, then the new last line becomes the current one. In general, after
a delete, the next line in the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you give this command (typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a “.”, placing these lines after the current line.
The last line you type then becomes the current line. The command insert (i)
is like append but places the lines you give before, rather than after, the current
line.

Edit numbers the lines in the buffer, with the first line having number 1. If
you give the command “1” then edit will type this first line. If you then give
the command delete edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line 1) so you can see where you are.
In general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the sub-
stitute (s) command. You say “s/old/new/” where old is replaced by the old
characters you want to get rid of and new is the new characters you want to
replace it with.

The command file (f) will tell you how many lines there are in the buffer you
are editing and will say “[Modified]” if you have changed it. After modifying
a file you can put the buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit (@) command. If
you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been “No write
since last change” and edit will await another command. If you wish not to
write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

- = 10/84



EDIT (1) (Editing Utilities) EDIT (1)

10/84

By using the delete and append commands, and giving line numbers to see lines
in the file you can make any changes you desire. You should learn at least a
few more things, however, if you are to use edit more than a few times.

The change (c¢) command will change the current line to a sequence of lines
you supply (as in append you give lines up to a line consisting of only a “.”).
You can tell change to change more than one line by giving the line numbers of
the lines you want to change, i.e., “3,5change”. You can print lines this way
too. Thus “1,23p” prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if you give a substitute command which does
not do what you want, you can say undo and the old contents of the line will be
restored. You can also undo an unde command so that you can continue to
change your mind. Edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount of change seems
unreasonable, you should consider doing an undo and looking to see what hap-
pened. If you decide that the change is ok, then you can undo again to get it
back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look
at a number of lines hit "D (control key and, while it is held down D key, then
let up both) rather than carriage return. This will show you a half screen of
lines on a CRT or 12 lines on a hardcopy terminal. You can look at the text
around where you are by giving the command “z.”. The current line will then
be the last line printed; you can get back to the line where you were before the
“z.” command by saying “”’. The z command can also be given other follow-
ing characters “z—" prints a screen of text (or 24 lines) ending where you are;
“z+” prints the next screenful. If you want less than a screenful of lines, type
in "z.12" to get 12 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the command
“delete 5.

To find things in the file, you can use line numbers if you happen to know
‘hem; since the line numbers change when you insert and delete lines this is
somewhat unreliable. You can search backwards and forwards in the file for
strings by giving commands of the form /text/ to search forward for fext or
’text? to search backward for text. If a search reaches the end of the file
vithout finding the text it wraps, end around, and continues to search back to
he line where you are. A useful feature here is a search of the form /“text/
vhich searches for rext at the beginning of a line. Similarly /text$/ searches
for text at the end of a line. You can leave off the trailing / or ? in these com-
mands.

The current line has a symbolic name “.”; this is most useful in a range of lines
as in “.$print” which prints the rest of the lines in the file. To get to the last
line in the file you can refer to it by its symbolic name “$”. Thus the com-
mand “$ delete” or “$d” deletes the last line in the file, no matter which line
was the current line before. Arithmetic with line references is also possible.
Thus the line “$—5” is the fifth before the last, and “.4+20” is 20 lines after the
present.

You can find out which line you are at by doing “.=”. This is useful if you
wish to move or copy a section of text within a file or between files. Find out
the first and last line numbers you wish to copy or move (say 10 to 20). For a
move you can then say “10,20delete a” which deletes these lines from the file
and places them in a buffer named a. Editr has 26 such buffers named g
through z. You can later get these lines back by doing “put a” to put the con-
tents of buffer a after the current line. If you want to move or copy these lines
between files you can give an edit (e) command after copying the lines,

= 2 10/84



EDIT (1) (Editing Utilities) EDIT (1)

following it with the name of the other file you wish to edit, i.e., “edit
chapter2”. By changing delete to yank above you can get a pattern for copying
lines. If the text you wish to move or copy is all within one file then you can
just say “10,20move $” for example. It is not necessary to use named buffers
in this case (but you can if you wish).

SEE ALSO

10/84

ex(1), vi(1).

-3 - 10/84






EX (1) (Editing Utilities) EX (1)

NAME
ex — text editor

SYNOPSIS

ex[ =10 —v]1[ —-ttagll =r1[ =R 1 [ +command 1 name ...
DESCRIPTION

Ex is the root of a family of editors: ex and vi. Ex is a superset of ed, with

the most notable extension being a display editing facility. Display based edit-
ing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this
case see vi(1), which is a command which focuses on the display editing por-
tion of ex.

FOR ED USERS

If you have used ed you will find that ex has a number of new features useful
on CRT terminals. Intelligent terminals and high speed terminals are very
pleasant to use with vi. Generally, the editor uses far more of the capabilities
of terminals than ed does, and uses the terminal capability data base (see Ter-
minal Information Utilities Guide) and the type of the terminal you are using
from the variable TERM in the environment to determine how to drive your
terminal efficiently. The editor makes use of features such as insert and delete
character and line in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using vi (1).

Ex contains a number of new features for easily viewing the text of the file.
The z command gives easy access to windows of text. Hitting "D causes the
editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just hitting return. Of course, the screen-oriented visual
mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. Ex gives you a lot
of feedback, normally printing changed lines, and indicates when more than a
few lines are affected by a command so that it is easy to detect when a com-
mand has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited
them so that you do not accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally hang
up the telephone, you can use the editor recover command to retrieve your
work. This will get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can,
give it a list of files on the command line and use the next (n) command to deak
with each in turn. The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files to be dealt with. In
general, file names in the editor may be formed with full shell metasyntax. The
metacharacter ‘%’ is also available in forming file names and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of
buffers, named a through z. You can place text in these named buffers and
carry it over when you edit another file.

There is a command & in ex which repeats the last substitute command. In
addition there is a confirmed substitute command. You give a range of substi-
tutions to be done and the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and substitutions. Ex also
allows regular expressions which match words to be constructed. This is

10/84 -1- 10/84



EX (1)

(Editing Utilities) EX (1)

convenient, for example, in searching for the word “edit” if your document also
contains the word “editor.”

Ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option which allows the editor to
automatically supply leading white space to align text. You can then use the
"D key as a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command
which supplies white space between joined lines automatically, commands <
and > which shift groups of lines, and the ability to filter portions of the buffer
through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

—-v
—t tagfR

—r file

-R

+command

Suppress all interactive-user feedback. This is useful in pro-
cessing editor scripts.

Invokes vi

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or posi-
tioning command.

The name argument indicates files to be edited.

Ex States
Command
Insert
Visual
10/84

Normal and initial state. Input prompted for by :. Your kill
character cancels partial command.

Entered by a i and c. Arbitrary text may be entered. Insert
is normally terminated by line having only . on it, or abnor-
mally with an interrupt.

Entered by vi, terminates with Q or "\.

-2- 10/84



EX(1)

(Editing Utilities) EX (1)

Ex command names and abbreviations

abbrev ab  next n unabbrev  una
append a number nu undo u
args ar unmap unm
change c preserve pre  version ve
copy co  print p visual vi
delete d put pu write w
edit e quit q xit X
file f read re yank ya
global g recover rec  window z
insert i rewind rew  escape !
join j set se Ishift <
list 1 shell sh print next CR
map source so resubst &
mark ma  stop st rshift >
move m substitute s scroll "D
Ex Command Addresses
n line n /pat next with pat
§ current ?pat previous with pat
$ last Xx-n n before x
+ next X,y x through y
= previous x marked with x
+n n forward ” previous context
% 1%

Initializing options

EXINIT
$SHOME/.exrc
J.exre

set x

set nox

set x=val

set

set all

set x?

Most useful options

10/84

autoindent
autowrite
ignorecase
list

magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode
slowopen
window
wrapscan
wrapmargin

place set’s here in environment var.
editor initialization file

editor initialization file

enable option

disable option

give value val

show changed options

show all options

show value of option x

ai
aw

nu
para

sect
SW
sm
smd
slow

WS
wm

supply indent

write before changing files
in scanning

print "I for tab, $ at end

. [ * special in patterns
number lines

macro names which start ...
simulate smart terminal
command mode lines
macro names ...

for < >, and input "D

to ) and } as typed

show insert mode in vi
stop updates during insert
visual mode lines

around end of buffer?
automatic line splitting

= 3 10/84



EX(1)

Scanning pattern formation

(Editing Utilities) EX(1)

beginning of line

$ end of line

. any character

\< beginning of word
\> end of word

[strl any char in str
[1serl ... not in str

[x—)yl ... between x and y
*

any number of preceding

AUTHOR

Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

FILES
/usr/lib/ex?.?strings error messages
/usr/lib/ex?.7recover recover command
/usr/lib/ex?.?preserve preserve command
/usr/lib/*/* describes capabilities of terminals
$HOME/ .exrc editor startup file
./ exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory
SEE ALSO

BUGS

10/84

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).

curses(3X), term(4), terminfo(4) in the 3B2 Computer System Programmer
Reference Manual.

Terminal Information Utilities Guide.

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. -More
than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line ¢ —’ option is
used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

-4 - 10/84



vI(1) (Editing Utilities)

NAME
vi — screen-oriented (visual) display editor based on ex

SYNOPSIS

vil —ttag 1l —rfilell —wnl[ -R 1 [ +command ]
view [ -t rag 1 [ —r file 1| —wn 1l -R 1 [ +command ]
vedit [ —ttag 1 [ —rfilel[ —wn1[ =R 1 [ +command 1

DESCRIPTION

VI(1)

Vi (visual) is a display-oriented text editor based on an underlying line editor
ex(1). It is possible to use the command mode of ex from within vi and vice-

versa.

When using vi, changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor on the screen indicates the

position within the file.

INVOCATION
The following invocation options are interpreted by vi:

—t tag Edit the file containing the tag and position the editor at its
definition.

—rfile Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

—wn Set the default window size to n. This is useful when using
the editor over a slow speed line.

-R Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.

+command The specified ex command is interpreted before editing
begins.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. The report flag is set to 1, and
the showmode and novice flags are set. These defaults make it easier to get

started learning the editor.

VI MODES

Command Normal and initial mode. Other modes return to command
mode upon completion. ESC (escape) is used to cancel a par-
tial command.

Input Entered by the following optionsai AT o O ¢ Cs S R. Arbi-
trary text may then be entered. Input mode is normally ter-
minated with ESC character, or abnormally with interrupt.

Last line Reading input for : / ? or !; terminate with CR to execute,

interrupt to cancel.

COMMAND SUMMARY
Sample commands

—|t— arrow keys move the cursor
hjkl same as arrow keys
itextESC insert text abc

ewnewESC change word to new
easESC pluralize word

X delete a character

dw delete a word

dd delete a line

3dd ... 3 lines

10/84 - 1=

10/84



VI(1) (Editing Utilities) VI(1)

u undo previous change
77 exit vi, saving changes
:q!CR quit, discarding changes
/textCR search for text

"U'D scroll up or down

:ex cmdCR any ex or ed command

Counts before vi commands .
Numbers may be typed as a prefix to some commands. They are interpreted in

one of these ways.

line/column number z G|
scroll amount ‘D U
repeat effect most of the rest
Interrupting, canceling
ESC end insert or incomplete cmd
2 (delete or rubout) interrupts
"L reprint screen if "? scrambles it
"R reprint screen if "L is — key
File manipulation
:wCR write back changes
:qCR quit
:q!CR quit, discard changes
:e nameCR edit file name
:e!CR reedit, discard changes
:e + nameCR edit, starting at end
e +nCR edit starting at line n
:e #CR edit alternate file
synonym for :e #
:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
demdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
“G show current file and line
:ita tagCR to tag file entry tag
g :ta, following word is tag

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a CR.

10/84 -2- 10/84



VI(1)

(Editing Utilities)

Positioning within file

F

forward screen
backward screen

scroll down half screen
scroll up half screen

g0 to specified line (end default)
next line matching pat
prev line matching pat
repeat last / or ?
reverse last / or ?

nth line after pat

nth line before pat

next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph

find matching () { or }

Adjusting the screen

R

zCR

z—CR
z.CR
/pat/z—CR
zn.CR

“E

Y

clear and redraw

retype, eliminate @ lines
redraw, current at window top
... at bottom

... at center

pat line at bottom

use 7 line window

scroll window down 1 line
scroll window up 1 line

Marking and returning

174

mx
“x

I3

X

Line positioning

1+ 25T

CR

Lorj
fork

10/84

move cursor to previous context

... at first non-white in line

mark current position with letter x
move cursor to mark x

... at first non-white in line

top line on screen

last line on screen

middle line on screen

next line, at first non-white
previous line, at first non-white
return, same as +

next line, same column
previous line, same column

VI(1)

10/84



VI(1)

(Editing Utilities)

Character positioning

0

$
hor —
lor —
“H
space
fx

%

first non white
beginning of line
end of line

forward

backwards

same as +—

same as —

find x forward

f backward

upto x forward

back upto x

repeat last f F t or T
inverse of ;

to specified column
find matching ( {) or}

Words, sentences, paragraphs

word forward

back word

end of word

to next sentence

to next paragraph
back sentence

back paragraph
blank delimited word
back W

to end of W

Corrections during insert

H
W
crase
kill

\
ESC
~?
D
1"D
0°D
v

erase last character

erase last word

your erase, same as “H

your kill, erase input this line
quotes “H, your erase and kill

ends insertion, back to command

interrupt, terminates insert
backtab over autoindent

kill autoindent, save for next
... but at margin next also
quote non-printing character

Insert and replace

oo =p—w

RtextESC

10/84

append after cursor
insert before cursor
append at end of line

insert before first non-blank

open line below

open above

replace single char with x
replace characters

VI(1)

10/84



VI(1) (Editing Utilities) VI(1)

Operators
Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the word
that would be moved over. Double the operator, e.g., dd to affect whole lines.

d delete

¢ change

y yank lines to buffer
< left shift

> right shift

1

filter through command
indent for LISP

Miscellaneous Operations

change rest of line (c$)
delete rest of line (d$)
substitute chars (cl)
substitute lines (ce)
join lines

delete characters (dl)
... before cursor (dh)
yank lines (yy)

M H =L DO

Yank and Put

Put inserts the text most recently deleted or yanked. However, if a buffer is
named, the text in that buffer is put instead.

p put back text after cursor

P put before cursor

"xp put from buffer x

"Xy yank to buffer x

"xd delete into buffer x

Undo, Redo, Retrieve

u undo last change

U restore current line

. repeat last change

"dp retrieve d’th last delete
AUTHOR

Vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Com-
puter Science.

SEE ALSO
ex (D).
3B2 Computer System Editing Utilities Guide.
BUGS
Software tabs using “T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

10/84 -5- 10/84






Index

A
abbreviating Words in Vi....coeevinneennnenaneenes 4-43
adjusting the screen in Vi.....oooiinieeinnnneeceenes 4-43
appending text ineditand ex .....c o eeeenn 2-14
appending text iN Vi....oevniuneeeeinrnanereeeeennes 4-18

C
changing files iN Vi..ueeviineneeenernnecernnenees 4-35
changing text in editand €X «....ceeeuernanere e 2-15
changing text N Vi...oeeieinrneeecnrannnenenceeenns 4-21
comment HNES N @X .o viieeneeeeeneanacecanenenees 3-14
continuously inputting text in vi . ...ceieiiiiiiaeeeen 4-19
copying another file into the bufferinedit .....c. 00 2-23
copying another file into the buffer in €X...ceceeeeeeecocenns 39
copying another file into the buffer iN Vi « v ceveeeeeeeceeens 4-34
copying textineditand ex ......ceiciiiiaie e 2-20
COPYING teXt INViueeueenneenannnenneeanaeoncnnens 4-23
copying UNIX System commands into the buffer invi........ 4-35
creating afileusing edit ... .ot 2-3
creating a file USINg €X. v v vvvinnaeerncnnnneerecnnnees 3-3
creatingafile USING Vi « oo vvviineneenrnencnrceneees 4-4
current line definition foredit ... ... 2-2
current line definition for €x «.covveee e iiinneneneeancens 3-2

D
deleting text ineditand X ....ovevreenciranaeeeennnn 2-16
deleting text N Vi..ueuee i iniarnenenrienaneececeenns 4-20



INDEX

descriptionof editors . ... ittt i it i i i e 1-1
displaying allcharacters in Vi.....o.uoeeieieneneeeeennnnns 4-44
displaying linesineditandex ........c.iiiiiiiiiineinnnn. 2-8
displaying lines in Vi. ... inieiineiinneennnn 4-44
dot(.)command in Vi ....eeeeeroeeeoneeeenenoneannnns 4-32
E
editing an existing fileusingedit ............. ... . . ..., 2-7
editing an existing fileusing ex .......c.ciiiiiiiiinnnn.. 3-7
editing an existing file USING Vi v v v v v it i i i i e 4-7
editing multiple filesinex .....oiiiet ... 3-11
editing multiple files in vi...ooveei ittt iennn.. 4-37
editingtwo filesin eX..ooviii i it 3-10
editor description (general) . .. vooiiiiiiii i e 1-2
erasing text while in the input modeinvi ................. 4-18
executing UNIX System commands while in edit and ex . ..... 2-24
executing UNIX System commands whileinvi ............. 4-39
F
find command iN Vi .« o inn ittt 4-17
G
global searchesineditand €X . ..oovvininnnnnenennnnnn. 2-11
global searches N Vi« v i it ii ittt e e 4-30
global substitutes iNn Vi......ouiiii it iiineneeeennnnnn. 4-31
global substitutionsineditand ex .. .oovv e i i i, 2-19
gotocommMaNd iN Vi c v v i v iie it et tteeeeseennennens 4-17
I
information about the bufferinedit ..................... 2-23
information about the bufferinex.............ovuu... ... 3-9
information about the bufferinvi .............coouuuu.... 4-38
insertingtextineditandex.........coviiiiiinnnnnnn... 2-15
insertingtextinvi ... it e, 4-18

Page 2



INDEX

INTErrUPtS iN €X « v ittt it onnneenanas 3-14
J
joiNiNg iNeS IN Vi v een it 4-19
L
leaving the input mode inedit..........cviiieiiean.. 2-4
leaving the input mode inex .....ovvieiiiiinnnnees 3-4
leaving the input mode inVvi ... ieeiiiiniineeeen. 4-5
liNE NUMDbBErS N Vi v veeereeeeeeeeennaeaaasesecosnnnsns 4-44
listing all characters iN Vi.....coveiiieinanaenennnen 4-44
M
macrodefiNing N Vie...ooeeeeeee ittt iiinaaaaeennns 4-45
marking lines inthefileinvi ... 4-42
movement commands ineditandex ........ccciieinen 2-9
moving around inafileinvi..... ..ot 4-9
moving around onalineinvi......ovieeiiineeeeeennn 4-11
moving by sentences, paragraphs, and sections MY 65 sammes 4-13
moving text ineditandex....... .ottt 2-21
moving text iN Vi «ovveiiiiiiiiiieennnenenennns 4-28
moving to differentlinesinvi ........ooiiiiiiiiienenn 4-12
multiple commands in €X. ... vviiiiirnnneetaeenn 3-14
(0]
open text to insertnew line invi......cooeeveeeeneencens 4-18
OPtONS fOr X + v veneee e inenenneneeenceennnnns 3-15
options for viand ex editors .......ciiiiiiiiii i 4-47
P
paging through thefile invi......oooiieiennn.. 4-10
previous context commands iN Vi «....ooeeiiiiiiiie. 4-17



INDEX

quitting the editeditor ........citiiiiiirinnenienrannnn 2-6
quitting the ex editor. . . ccsvenssivvorsniscsavanansnnmass 3-6
quittingthe vieditor ......ccveeivicsivansvssonsonaassas 4-6
R
read-only Mode iN EX. v vt eeeieneeeneeenneeennnonaennn. 3-10
read-onlymode invi ...ttt i e 4-38
reading an existingfile invi . ..., 4-8
reading another file into the bufferinedit................. 2-23
reading another file into the bufferinex.........ovvuuu.... 3-9
reading another file into the bufferinvi ..........c.ou..... 4-34
reading UNIX System commands into the bufferinvi........ 4-35
recovering from hang-ups and crashes in e€X.......ououuu... 3-13
recovering lost filesinedit ........... ... ... 2-25
recovering lostfilesinex.......couuiiiininnnnnnnnnnnn.. 3-12
recovering lostfilesinvi ..., 4-41
recovering lost lines in Vi.....ouuiniinneennnnnnnn. 4-40
refreshingthescreeninvi....... ... ... 4-43
removing textineditandex ........coii i, 2-16
removing text in Vie .. v i i et nn ittt e e e, 4-20
repeating commands iN Vi v . oueeeninin e ennnnennnnnn.. 4-32
repeating searches ineditandex ..........ovuuunnu.... 2-11
repeating searches iN Vi......ovuiiinneneiennnnnnnn. 4-15
replacing textin vi...... ..o 4-21
S
saving changes to the bufferinedit ...............c0...... 2-5
saving changes to the bufferinex............oouuuuno.. .. 3-5
saving changes to the bufferin vi ...............c.u.u.. .. 4-5
scrolling through the file in Vi .....ovvene ... 4-10
searching for a pattern of charactersin vi ................ 4-14
searching for textineditand ex . ......coovuvennvennnn.. 2-10
SPecial PUrPOSE KEYS & v vt vttt ettt ettt e e e 1-4
special search charactersineditandex .........ocuuu.... 2-12
special search charactersinvi ..........couuuuuennnnn... 4-15
special substitute characters in editandex ............... 2-18

Page 4



substituting text in B 2-17

substituting text e SR 4-21

summary of Vi character FUNCHONS « v veonmrsssrs 7777000 4-55
T

rarminal Configuration . « -+« sess e et T 4-3

terminalrdefinition .................................... 4-3
U

undoing the last command in edit .. .oeeeeneeem T 2-25

undoing the last command N €X «.eeeeseressers sttt 3-12

undoing the last command iN Vi «.eeeeeeeremmmsrt i ttn0l 4-40
W

writing the buffer to another file in [ PR R 2-22

writing the buffer to another file in @X.voveeenreeemerssstn? 3-8

writing the buffer to another file iN Vi «voveeeeeeermemrsts 4-33

Page 5






